تم تحميل هذا الملف من موقع المناهج الإماراتية ## الهيكل الوزاري الجديد المسار العام منهج بريدج الخطة 101-C موقع المناهج ← المناهج الإماراتية ← الصف الحادي عشر العام ← فيزياء ← الفصل الأول ← ملفات المدرس ← الملف تاريخ إضافة الملف على موقع المناهج: 31-10-2024:57 ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس المزيد من مادة فيزياء: ## التواصل الاجتماعي بحسب الصف الحادي عشر العام صفحة المناهج الإماراتية على فيسببوك الرياضيات اللغة الانجليزية اللغة العربية التربية الاسلامية المواد على تلغرام ## المزيد من الملفات بحسب الصف الحادي عشر العام والمادة فيزياء في الفصل الأول | المريد من الملقات بحسب الصف الحادي عشر العام والمادة فيرياء في الفصل الأول | | | |--|---|--| | كتاب الطالب المجلد الأول باللغة الانجليزية | 1 | | | كتاب الطالب المجلد الأول | 2 | | | أسئلة الامتحان النهائي الورقي | 3 | | | مراجعة عامة وفق الهيكل الوزاري | 4 | | | نموذج الهيكل الوزاري الجديد بريدج | 5 | | | Academic Year
العام الدراسي | 2025/2024 | | |---|-----------------------------------|--| | Term
الفصل | 1 | | | Subject
الموضوع | Physics (Bridge) | | | Grade
الصف | 11 | | | Stream. المسار | العام /General | | | Code | PHY-C-101-AR | | | Number Of MCQ
عدد الأسئلة الموضوعية | 15 | | | Markes of MCQ درجة الأسئلة الموضوعية | 4 | | | Number of FRQ
عدد الأسئلة المقالية | | | | Marks Per FRQ الدرجات للأسئلة المقالية | 8-12 | | | Type of All Questions | الأسئلة الموضوعية /MCQ | | | نوع كافة الأسئلة | الأسئلة المقالية /FRQ | | | Maximum Overall
Grade
الدرجة القصوى الممكنة | 100 | | | Exam Duration
مدة الإمتحان | 150 min | | | Mode of
Implementation
طريقة التطبيق | Paper-Based
&
Swift Assess. | | | Calculator
الآلة الحاسبة | Allowed | | | | | | | Question* | | Learning Outcome/Performance Criteria** | المرجع في كتاب الطالب (النسخة الانجليزية)
Reference(s) in the Student Book
(English Version) | | |-----------|----|--|--|----------------------------| | السوال* | | * ۱ ما الما الما الما الما الما الما الما | Example/Exercise | Page | | | | ناتج التعلم/ معايير الأداء** | مثال/تمرين | صفحة | | | 1 | (1) Define centripetal acceleration. (2) Relate the centripetal acceleration to the object's speed and the radius of the circular path $a_c = \frac{v^2}{r}$. | Student Textbook Term 1 | 11,12 | | | 2 | (1) Define the centripetal/central force.(2) Identify forces like tension, gravity, and friction that cause centripetal acceleration | Student Textbook Term 1 | 13 | | | 3 | Relate the centripetal acceleration and the speed of an object in uniform circular motion to its period of revolution and use this relation to find unknown parameters. $(v=\frac{2\pi r}{r} \ , \ a_c=\frac{4\pi^2 r}{r^2})$ | Student Textbook Term 1 Q.(23),Q.(58, 60) Q.(9) | 12
15,23
27 | | | 4 | Explain Kepler's Second Law which states that an imaginary line from the Sun to a planet sweeps out equal areas in equal time intervals. | Student Textbook Term 1 | 31 | | | 5 | Apply Kepler's third Law to solve problems by finding unknown parameters. | Student Textbook Term 1 Example (1) | 32 | | | 6 | (1) Calculate the orbital speed of a satellite. (2) Calculate the orbital period of a satellite. | Q.(6) Student Textbook Example 2 / Q.(15, 17) | 39
40 | | | | | Q.(21) Student Textbook Term1 | 45 | | | 7 | Calculate the gravitational field strength for an object of mass m at a distance r from its center and specify the units for gravitational field. | Q.(18.a) | 45 | | | 8 | (1) Define angular displacement. (2) Define a radian and convert degrees to radians and vice-versa. (3) Identify that counterclockwise motion is in the positive direction and clockwise motion is in the negative direction | Student Textbook Term1 | 56-57 | | | 9 | Relate the linear acceleration (a) to the angular acceleration (α) and the distance (r) | Student Textbook Term1 | 58 | | | 9 | from the axis of rotation. | Q.[3 , 8] | 59 | | | 10 | (1) Define the term torque.(2) Identify that a torque on a body involves a force and a lever arm which is the perpendicular distance from the axis of rotation to the point where the force is applied | Student Textbook Term1 Q.(63) | 60-61
81 | | | 11 | (1) State the conditions for an object to be in static equilibrium- both translational and rotational equilibrium.(2) Solve problems related to objects in equilibrium | Student Textbook Term1 Example 2 / Q.(18) Example 5 / Q.(39) | 63 , 7
64 / 6
74 / 7 | | | 12 | (1) Define moment of inertia as the resistance to rotation. (2) Find the total moment of inertia due to many point masses. (3) Determine the moment of inertia of extended objects like the hoop, solid uniform cylinder, uniform sphere, long uniform rod and rectangular plate. | Student Textbook Term1 Example 3 Example 4 Q.(68) | 65 - 66
67
69
81 | | | 13 | (1) State newton's second law for rotational motion which relates the net torque on a body to the body's moment of inertia and rotational acceleration, all calculated relative to a specified axis of rotation. (2) Apply newton's second law for rotation to solve problems. | Student Textbook Term1 Example 4 Q.(29,30,33,66) Q.(66) | 68
69
70
81 | | | 14 | Apply the relationship between power, the work done by a force, and the time interval in which that work is done (P=W/t). | Student Textbook Term2 Example 3 Q.(10,13) / Q.(55) | 95
96
96 / 10 | | ŀ | | (1) Apply the work–energy theorem to relate the net work done on a system and the | Student Textbook Term 2 | 94 | | | 15 | resulting change in kinetic energy. (2) Solve problems related to work and kinetic energy. | Q.(11) | 96 | | | 16 | Demonstrate that the velocity vector at any time is tangent to the circular path for an object in uniform circular motion. Show how an object moving with a constant speed along a circle can have acceleration towards the center of the circular path. Apply the relation of centripetal acceleration, tangential speed, and radius of circular path to calculate unknown parameters. Apply the expression for centripetal/central force to solve problems on relevant systems. | Student Textbook Term 1 SECTION 2 REVIEW. Q (22.24) STP.MCQ. (2, 3, 4) | 11,12
15
27 | | | 17 | Apply the law of universal gravitation to calculate the gravitational force or other unknown parameters. Calculate the orbital period of a satellite. | Student Textbook Term 1 EXAMPLE. (2) SECTION 1 REVIEW. Q (9) | 34,39
40
37 | | | | ❖ Relate the arc length (x) to the angular displacement (⊕) and the distance (r) from the axis of rotation. | CH 2 Assess.Q.[42,43] / Q. [68] Student Textbook Term 1 | 48 /50
57-58
60-61 | | | 18 | Apply the relationship between average angular velocity, angular displacement, and the time interval for that displacement. Solve problems that involve torque. | EXAMPLE. (1) APPLICATIONS. Q [12.13] CH 3 Assess.Q.[53,55,64,65] | 62
81-82 | | | | ❖ Calculate the work done by a force (exerted at an angle to the direction of motion) as | Student Textbook Term 2 | 88-93 | | | 19 | a product of the component of the force in the direction of the displacement and the displacement. Calculate the net work done by multiple forces acting on a system as the sum of the work done by each force. | EXAMPLE. (1)
EXAMPLE. (2)
APPLICATIONS. Q [6,8]
CH 4 Assess.Q.[47,48,53] | 92
93
93
108 |