

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/ae

* للحصول على أوراق عمل لجميع مواد الصف الحادي عشر العام اضغط هنا * المحصول على على أوراق عمل لجميع الفصول, اضغط هنا * للحصول على جميع أوراق الصف الحادي عشر العام في مادة كيمياء ولجميع الفصول, اضغط هنا * https://almanahj.com/ae/11chemistry

* للحصول على أوراق عمل لجميع مواد الصف الحادي عشر العام في مادة كيمياء الخاصة بـ الفصل الأول اضغط هنا https://almanahj.com/ae/11chemistry1

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الحادي عشر العام اضغط هنا

للتحدث إلى بوت المناهج على تلغرام: اضغط هنا bot_almanahj/me.t//:https

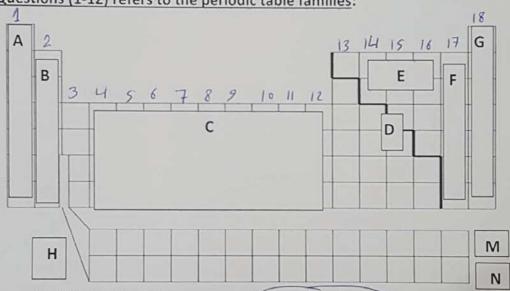
Revision grade 10 Adv Chemistry - Term1 2018/2019

Newslands: repetition of properties each 8 elements : created law of octaves

Lothar Meyer: arranged elements in order of atomic mass

Mendeleev predicted the existence and properties of

undiscovered elements


Moseley atomic number

important

connection between atomic mass and properties

Periodic law: the periodic repetition of chemical and physical properties (increasing atomic number)

Questions (1-12) refers to the periodic table families:

- 1- Which letter(s) best represent transition elements?
 - a) A and B

b) C and D

- d) H
- 2- Which letter(s) best represent alkaline earth metals?
 - a) A and B

b) C and D

- (2)
- 3- Which letter(s) best represent alkali metals?
 - a) M and N

C) A > Group (1)

b) C and D

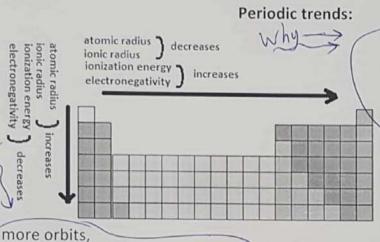
- d) B
- 4- Which letter(s) best represent halogens?
 - a) A and N

() F Group (17)

b) C and D

d) G

5- Which letter(s) best repres	ent noble gases?
a) E and B	c) G > Group 18
b) G and F	d) F
6- Which letter(s) best repres	sent metals? left side a laments)
a) A and B	c) C (most of elements)
b) C and D	d) A,B,C and H)
7- Which letter(s) best repres	sent inner transition elements?
a) M and B	c) N
b) N and D	(d) H \
8- Which letter(s) best repres	sent metalloids? > between metals
a) D >> Zigzag	c) E and non-metals
b) C and D	d) F
9- Which letter(s) best repres	sent lanthanide series?
a) N and B	C) M >> La
b) C and M	d) N
10- Which letter(s) best rep	present actinide series?
a) N and B	c) M
b) C and M	d) N) AC
11- Which letter(s) best rep	present non-metals? > right side
a) D,E and B	c) C
b) Enf and G	d) D
12- Which letter(s) best rep	present representative elements?
a) A,D,C and B	c) A,B,C and G $13 \rightarrow 18$
b) A,B, E,F and G	d) H,C


Complete the coming table?

element	Atomic number	Longhand configuration	Shorthand configuration	Valence electrons	group	period	block
С	6	15 25 2p	[He] (252 2p)	4	14	2	P
Na	11	15 25 2 p 35	[Ne] (35) ->	1	1	3	5
Al	13	13)25 26)3536	[Ne] 35 3 p	3	13	3	P
S	16	15/25/28/3538	[Ne] 35 3 p	6	16	3	P
Ca	20	13/2522/33384		2	2	4	5
Fe	26	13)25 20/353 6)4	35 CANH3336		8	4	9

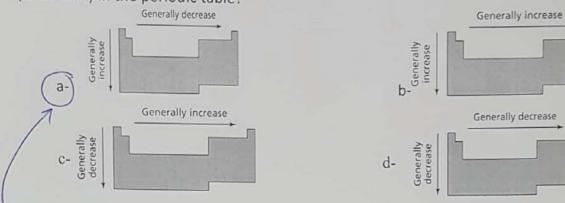
KBZ school

Fill the table	period	55 Block	S+0 P+12 } ground
Till the table		0 6,00	d +2 ,

fu x 2	group	period	block
[Kr](5s ²)	2	5	5
$[Ne](3s^2 (3p^4))$	4+12= 16	3	P
[Kr] (5s ² 4d ¹⁰ (5p ⁵)	5+12 17	5	P
[Ar] 4s ² (3d ⁵)	5+2 7	4	d

more electrons in the same energy level, so more attraction to nucleus

more orbits,
so electrons further from nucleus

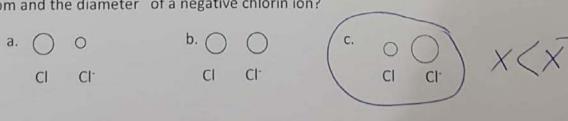

Choose the correct answer

- 13 Why atomic radii decrease as you move from left to right across period?
 - a. The decrease of the mass of the nucleus.
 - b. The increase in the positive charge of the nucleus. > were attraction
 - c. The fewer the number of filled orbitals.
 - d. The increase of principal energy levels.

14(Why)atomic radii increase as you move down a group?

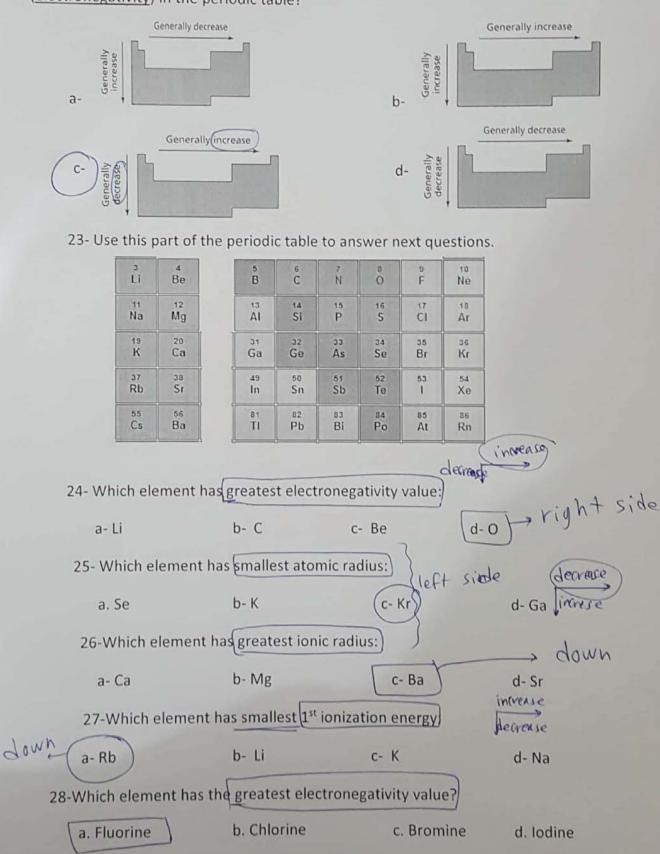
- a. The decrease of the mass of the nucleus.
- b. The increase in the positive charge of the nucleus.
- c. The fewer the number of filled orbitals.
- d. The increase of principal energy levels.


15- Which diagram best represents the group and period trends in <u>atomic radii</u> (ionic radii) in the periodic table?


- 16- The general trend in the radius of an atom moving down a group is partially accounted for by the
- a- decrease in the mass of the nucleus.
- b- increase in the charge of the nucleus.
- c- fewer number of filled orbitals.
- (d-) shielding of the outer electrons by inner electrons.

tom, or bonded group o	of atoms, that has a positive or
cisotope	d- molecule
ely charged by	
b- gaining a p	roton.
d- losing a neu	utron.
	cisotope ely charged by b- gaining a p

19- Which diagram best represents the relationship between the diameter of a sodium atom and the diameter of a positive sodium ion? \times


20 - Which diagram best represents the relationship between the diameter of a Chlorin atom and the diameter of a negative chlorin ion?

Osama Z. Almustafa

KBZ school

20- Which diagram best represents the group and period trends in <u>lonization energy</u> (<u>electronegativity</u>) in the periodic table?

Osama Z. Almustafa

KBZ school

29- Which element has the least electronegativity values?

a. Cesium and Fluorine

b. Cesium and Francium

c. Bromine and Francium

d. Bromine and Fluorine

30-Who is the scientist that discovered electronegativity and it's unit related to his name?

- a. Moseley
- b. Mayer
- c. Newlands

d. Linus Pauling

31-Which group of the periodic table has no electronegativity value?

- a. Alkali metals
- b. Halogens
- c. Noble gases
- d. Alkaline earth metals
- 32-Choose the suitable definition from (A) for expression in group (B)

group (B)		up (A)	gro
Ionization Energy	(Q.)	Half the distance between nuclei of identical atoms that are chemically bonded together.	A
lon	(S)	Atoms tend to gain, lose or share electrons in order to acquire a full set of eight valence electrons.	В
Atomic Radius	(.A)	Atom or bonded group of atoms that has a positive or negative charge.	С
Electronegativity	(.E)	Energy required to remove an electron from a gaseous atom.	D
Octet rule	(B.)	Ability of atoms to attract electrons in a chemical bond.	E

33-Write number of valence electrons and the oxidation number of each group elements of the representative elements?

group	1	2	13	14	15	16	17	18
number of valence electrons	1	2	3	4	5	6	7	8
The oxidation number	+1	+2	+3	44/4	-3	-2	-1	0

KBZ school

Chapter 2	Ionic compounds and metals
themical bond: the force that h	
positively charged ion atom loses electrons	Na loses 1e Na+

anion: negatively charged ion Cl gains 1e Cl atom gains electrons

non-metals

metals

Why???? to get noble gas configuration (octet rule)

Na 1e Cl (non-metal) (metal)

(Na+)_(CI-) Ionic bond / ionic compound

Ionic compounds properties:

· Organized in crystal lattice (three dimensional arrangement) What is the ration of ionic compound from

Aluminium and Oxygen?

Magnesium and Oxygen? How many magnesium atoms in the formula?

MgO

1 Mg atom in the formula

Form an ionic compound forms from these elements then name it.

Cal Cium Ca: and oxygen O	Aluminum Al and sulfur S Align 2 3 2 3	
Ca C Cal Gum Oxide Sodium Na and nitrogen N	Alz Sz Alumhum sulfide	
Nã Nã	Lithium Li and oxygen O	
Na3 N Sodium nitride	LizO Lithium oxide	

Osama Z. Almustafa

KBZ school

- Electrolyte: aqueous solution of ionic compound / conduct electricity
- Solid ionic compound doesn't conduct electricity (because no free-to-move) ions)

Dissolved/ melted ionic compound conduct electricity (free-to-move ions)

- High melting and boiling points Why?? (because of strong attractions
- Hard, brittle, rigid

between ions)

 Easy to break if hammered. Why??(because of repulsion between same charge ions).

Lattice energy; the energy required to separate 1mol of ionic compound into more change ions.

more charge/ smaller size >>> higher lattice energy.

Which has the highest lattice energy:

CaO, marge

Al₂S₃,

KI, Na₂O

NaCl, KI,

LiCI,

least

KBr

Penod Which of the ionic compounds has greatest lattice energy (Highest melting/boiling point)?

Which of the ionic compounds has greatest lattice energy?

Names and formulas

Net charge of ionic compound = zero

Monatomic ion (one atom)ion Na+, Ca2+, Cl-....)

Polyatomic ion (more than one atom ion SO42, NO3, NH4+)

Formula unit (the simplest ration)

oxyanion

Osama Z. Almustafa

F-	Fluoride	O ²⁻	Oxide	
Cl-	Chloride	S ²⁻	Sulphide	
Br	Bromide	р3-	Phosphide	
-	lodide	N ³⁻	Nitride	
H-	Hydride			Tier.

Ion	Name	Ion	Name	lon	Name
NO ₃ -	nitrate	PO ₄ ³ -	phosph <i>ate</i>	C ₂ H ₃ O ₂ -	acet <i>ate</i>
NO ₂ -	nitr <i>it</i> e	HPO ₄ ² -	Hydrogen phosphate	AsO ₄ ³ -	arsen <i>ate</i>
SO ₄ ² -	sulfate	H ₂ PO ₄ -	dihydrogen phosphate	MnO ₄ -	permangan <i>ate</i>
SO32-	sulfite	CO ₃ ² -	cabonate		
S2O32-	thiosulfate	HCO ₃ -	hydrogen carbonate	OH-	hydroxide
		CrO ₄ ² -	chromate	CN-	cyanide
		Cr ₂ O ₇ ² -	dichromate	NH ₄ ⁺	ammonium

Ion	Name	Ion	Name	Ion	Name
C10 ₄ -	perchlorate			IO ₄ -	periodate
ClO ₃ -	chlorate	BrO ₃ -	bromate	IO ₃ -	lod <i>ate</i>
C102-	chlorite				
CIO-	hypochlorite				

Name the following ionic compounds

Formula	Name	Formula	Name
NaCl	Sodium Chloride	NaNO ₂	Sodium nitrite
MgF ₂	Magnerium flooride	Al ₂ (SO ₄) ₃	Aluminium Sulfate
Al ₂ O ₃	Aluminium Oxide	Li ₂ CO ₃	Lithium Carbonate
Li ₃ N	Lithium mitride	Ca ₃ (PO ₄) ₂	Calcium Phosphate
CaS	Calcium sulfide	NaOH	sodium hydroxide
CuF	Copper(1) fluoride (Fe(ClO3) ₂	Iron(11) Chlorate
+1 -1	The second second	+2(5-1 1-2

Osama Z. Almustafa

KBZ school (103)

Write formulas of the following

sodium phosphide	lithium sulfide	ammonium chloride	Aluminum nitride
Na ₃ XP	Lix52	NHU) (ATXN3
Na ₃ P	Li ₂ S	NHUCI	AIN
Aluminum Hydroxide	Iron (II) chloride	calcium chlorate	Ammonium Nitrate
AT OH	FeXCI	Ca C103	NH4 NO3
AI (OH)	FeCl2	Ca (C103),	NH4 NO3
Sodium cyanide	aluminum chromate	magnesium perchlorate	Barium Nitrite
Na CN	AT C103	Mg (104)	Ba NO2
NaCN	A1 (C 103)3	Mg ((104)2	Ba (NO3)2

Choose the correct answer:

1. What is the chemical formula for a compound formed from calcium ions (Ca 2+) and chloride ions (Cl_)?

a) Ca₂CI

b) Ca₂Cl₂

- c) CaCl
- d) CaCl₂

2. Which pair of the following have the same number of electrons. (O=8, Ca=20, Fe=26,

Cl=17, F=9)

- b- Ca+2, Fe+3
- c- O-2, F 9 10 (20-2) (26-3) (26-3) (26-3) (26-3) 3. Which of the following pairs can form an ionic compound?
- d- Ca+2, Cl-

a. C and F

- b. Na and Q
- c. Na and Ba
- d. Ar and F

metal/non-metal

4. What are the states of ionic compounds that conduct electricity'

- a. solid and liquid
- c. solid and solution

b. liquid and solution

d. answer is not given

dissolved

Osama Z. Almustafa

KBZ school

Metallic bond:

Only metals/electrons-sea model/delocalized electrons/ metallic bond

Properties:

- · high melting and boiling points
- · malleable, ductile and durable
- · hardness and strength

vhy & because of

strong attraction between cations and delocalized electrons

· conduct electricity (because of delocalized electron)

Alloys: mixture of elements.

Different properties from the properties of elements they contain.

Substitutional: replaced by similar-size atom (Silver and copper) Interstitial: fill small holes with smaller atoms (Iron and carbon)

Table 7.13

Commercial Alloys

NAME AND ADDRESS OF TAXABLE PARTY.	THE RESERVE TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW		
Common Name	Composition	Uses	
Alnico	Fe 50%, Al 20%, Ni 20%, Co 10%	magnets	
Brass	Cu 67–90%, Zn 10–33%	plumbing, hardware, lighting	
Bronze	Cu 70-95%, Zn 1-25%, Sn 1-18%	bearings, bells, medals	
Cast iron	Fe 96-97%, C 3-4%	casting	
Gold, 10-carat	Au 42%, Ag 12–20%, Cu 37.46%	jewelry	
Lead shot	Pb 99.8%, As 0.2%	shotgun shells	
Pewter	Sn 70–95%, Sb 5–15%, Pb 0–15%	tableware	
Stainless steel	Fe 73-79%, Cr 14-18%, Ni 7-9%	instruments, sinks	
Sterling silver	Ag 92.5%, Cu 7.5%	tableware, jewelry	

(atomic number

Which of the following pairs can form an interstitial alloy?

a. Fe , Mn 26 25 b. Fe, C 26 6

c. Ag, Au 47 79 d. Ag, Cu 47 29

KBZ school

and big atoms

small

100chem.weebly.com

Osama Z. Almustafa

Chapter-3 Covalent bond:

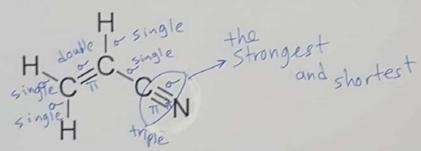
Non-metals/ sharing/ molecule/ Lewis structure

Sigma bond is not formed when:

- a. s orbital overlaps with another s orbital
- b. p parallel orbitals overlap and share electrons
- c. s orbital overlaps with another p orbital
- (d.) two p orbitals overlap end-to-end.

What does a triple bond consist of?

A. three sigma bonds


C. two sigma bonds and one pi bond

- B. three pi bonds
- D. two pi bonds and one sigma bond

Determine all: Single, double, triple, Sigma and pi bonds

The shortest and strongest bond

Which of the following has the shortest and strongest bond

a. F₂

d. HF

Endothermic reaction: absorbs energy / breaking bonds Exothermic reaction: releases energy / forming bonds

Number of atoms	Prefix	Number of atoms	Prefix
1	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-
5	Penta-	10	deca-

Name the following compounds:

CCI4 Carbon tetrachloride	P2O5 diphosphorous pentoxide	N20 dinitrogen monoxide
hydrochloric acid	HBr hydrobromic acid	H2S hydro sulfuric acid
H2SO4 Sulfuric acid	Nitrous acid	

Write the formula of the following compounds:

Chlorine trifluoride

Clf3

Hydrofluoric acid

HF

Carbonic acid

H2CO3

dihydrogen monoxide

H20

hydrobromic acid

HBr

Nitric acid

carbon disulphide

C52

Sulfurous acid

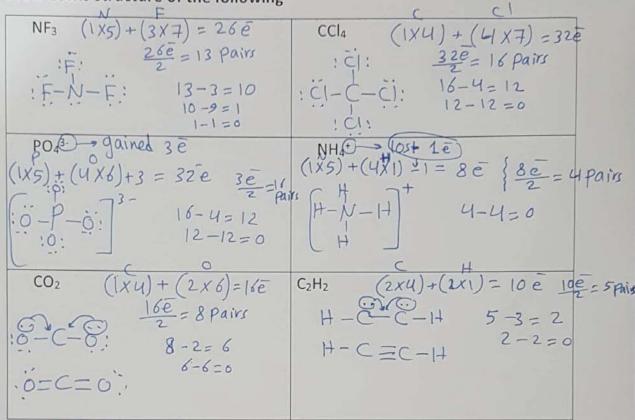

HNO3 H2503

Table 8.5	Formulas and Names of Some Covalent Compo	
Formula	Common Name	Molecular Compound Name
H ₂ O	water	dihydrogen monoxide
NH ₃	ammonia	nitrogen trihydride
N ₂ H ₄	hydrazine	dinitrogen tetrahydride
HCI	muriatic acid	hydrochloric acid
C ₃ H ₈ O ₄	aspirin	2-(acetyloxy)benzoic acid
NO	nitric oxide	nitrogen monoxide

Osama Z. Almustafa

KBZ school

Draw Lewis structure of the following

Draw resonance structures for:

more

than $103^{\circ}(15) + (3x6) + 1 = 24e^{-50} = 18e^{-50}$ one

structure 12-3=9 12-3=9 1-1=6 10-1=6 10-1=6

[0-N=0;] => [0-N-0;]

Draw Lewis structure for the following and determine the exception type

	re for the following a	ind determine th	ic exception type	
NO2 (1X5)	+ (2×6) = 17e	XeFa (1x 8	1)+(4/17)= 30	SE
6	= 8 ½ Pairs	1.57	36E = 18	Pairs
0-W=0:	8/2-2=6/2	F-Xe-F:	18-1=14	
1	02-0-2	:F:	14-12= 2	
	number =- == 0	14.7	0-2-1	
	+ elections	e	panded octet	-
PC(5) (1X5).	+ (5 X7) = 40ē	/BH3 (1X3)	+ (3 XI)=60 0	e = 3
	40e = 20 Paid	H-B-H		2
· : :::		14-8-11		
:0-p-ci.		Sulad	1	
61/15		Subocte	T .	
		(4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 5000
	В	Be, Al HB+	- H H	H Covale

Using the previous questions, determine hybrid orbitals, molecule shape(draw, name and angles) of the following:

	BH ₃	1-1
CI-Be-CI	H-B-H	17 B 5 H
linear 180°.	Sp2	trigonal Planar
cl	NF ₃ Fi	(P) 107.3
2109.5	· .EE:	ENT
p3 cl cl cl tetra halval	5 p ³	trigonal pyramida
	PCI ₅	a
H OCH	ici- P-ci:	cl pro
bent	ic! .c.:	trigonal bi pyramida
	37 0	1 1 1 2011 21 1 11 11 11 11
- p3° -		11.19.00
- 5790		1 10000
F		130000000000000000000000000000000000000
	P3 cl cl cl cl tetra hedral	CI-Be-CI H-B-H linear Sp2 180' Sp2 NF3: F: 109:52 F-N-F: 5p3 tetra hedral PCIs. 104:5 CI-P-CI:

Osama Z. Almustafa

atoms

OCTA NEGRAT KBZ school

100chem weebly.com

expanded

Suboctet