
*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا
https://almanahj.com/ae

* للحصول على أور اق عمل لجميع مواد الصف الثاني عشر العام اضغط هنا
https://almanahj.com/ae/12
* للحصول على جميع أوراق الصف الثاني عشر العام في مادة فيزياء ولجميع الفصول, اضغط هنا
https://almanahj.com/ae/12
* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر العام في مادة فيزياء الخاصة بـ اضغط هنا
https://almanahj.com/ae/12
* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الثاني عشر الحام اضغط هنا
https://almanahj.com/ae/grade12
للتحدث إلى بوت المناهج على تلغرام: اضغط هنا
https://t.me/almanahj_bot

Final review

 Chapter 1
Mohannad Sami

Grade 12 General / physics
Trimester 1 / Academic Year 2019-2020 Prepared by Mohanned Sami

Student Name

Q1: Chose the correct answer of the following questions.

1- If a balloon rubbed to the head hair, which of the following statements is correct ?
A. The hair becomes posetively charge, by losing electrons.
B. The balloon becomes negatively charge, by losing electrons.
C. The hair becomes posetively charge, by gaining protons.
D. The balloon becomes negatively charge, by gaining protons.

2- A negatively charged rubber rod, touched a neutral conductor sphere, which of the follwing statements is correct?

	Sphere's Charge	The sphere's charge distribution
A	Negative	inside the sphere
B	Positive	Outside surface of the sphere
C	Negative	Outside surface of the sphere
D	Positive	Inside and outside surface of the sphere

3- Why is rubber a good insulator?
A. Its electrons move readily.
B. Its electrons cannot move readily.
C. It always has a negative charge.
D. Its protons move readily.

4- Which of the following is a conductor?
A. The Plastic.
B. The Glass.
C. The Dry air.
D. The Plasma.

5- What is the name of charging way shown in the figure beside?
A. Induction
B. Conduction
C. Grounding
D. Creating charges

6- What is the charge of the sphere shown in the figure after removing the grounding and then removing the positively charged rod?
A. Positive
B. Negative.
C. Neutral.
D. None of above.

7- What is the charge of the sphere shown in the figure after removing the positively charged rod and then removing the grounding?
A. Positive
B. Negative.
C. Neutral.
D. None of above.

8- Two identical isolated neutral conducting spheres (A, B) touch each other as shown in the figure, if a Negatively charged rod brought near sphere A what is the charge of sphere B if it's taken away from sphere A and then the rod removed?
A. Positive
B. Negative.
C. Neutral.
D. None of above.

9- A negatively charged rod brought near a charged electroscope, the leaves fall closer together, what is the charge of the electroscope?
A. Positive
B. Negative.
C. Neutral.
D. Positive and negative.

10- A negatively charged rod brought near a negatively charged electroscope, how to describe the behavior of the leaves?
A. The leaves fall closer together.
B. The leaves spread apart farther.
C. The leaves hang loosely.
D. Nothing will change.

11- Find the magnitude of electrostatic force between the point charges shown in the figure, and determine the type of the force.

	The magnitude	The type
A	$4.0 \times 10^{2} \mathrm{~N}$	Attraction
B	$3.0 \times 10^{2} \mathrm{~N}$	Repulsion
C	$2.0 \times 10^{2} \mathrm{~N}$	Attraction
D	$1.0 \times 10^{2} \mathrm{~N}$	Repulsion

12- Find the distance between the two point charges shown in the figure, and determine the sign of charge \boldsymbol{q}_{2}.

	The distance	The sign of $\boldsymbol{q}_{\mathbf{2}}$
A	0.13 m	Positive
B	0.13 m	Negative
C	1.6 m	Positive
D	1.6 m	Negative

$\left|q_{2}\right|=6 \mu C$
$q_{1}=3 \mu C$

13- According to the figure, find the magnitude and sign of the point charge q_{1}.

	The distance	The sign of $q_{\mathbf{2}}$
A	$0.1 \times 10^{-6} \mathrm{C}$	Positive
B	$1.1 \times 10^{-6} \mathrm{C}$	Negative
C	$3.5 \times 10^{-6} \mathrm{C}$	Positive
D	$4.6 \times 10^{-6} \mathrm{C}$	Negative

14- Which of the following is the unit of coloumb constant K ?
A. $N \cdot m^{2} / C$
B. $N . m / C^{2}$
C. $N . m^{2} / C^{2}$
D. $N^{2} \cdot m^{2} / C^{2}$

15- From the figure, determine the magnitude and the direction of the force on \boldsymbol{q}_{2} ?
A. 5.0 N , to the left.
B. 5.0 N , to the right.
C. 2.5 N , to the left.

D. 2.5 N , to the right.

16- What is the charge of the object in the figure beside?
A. Negative.
B. Positive.
C. Neutral.
D. Negative and positive.

17- What is the direction of the net electrostatic force on point charge q_{3} shown in the figure (all point charges on the same line)
A. Right.
B. Left.
C. Up.
D. Down.

18- What is the direction of the net electrostatic force on point charge q_{1} shown in the figure .

A	\searrow
B	\longleftrightarrow
C	\longleftarrow
D	

19- Which of te following represent the elementary charge?
A. The charge of the electron
B. The charge of the atom
C. The charge of the nucleus.
D. The charge of the neutron.

20- How many electrons have been removed from a positively charged conducting object if it has a net charge of $7.5 \times 10^{-11} \mathrm{C}$?
A. 7.5×10^{-11} electrons
B. 2.1×10^{-9} electrons
C. 1.2×10^{8} electrons
D. 4.7×10^{8} electrons

21- What is the charge on a conducting spherethat has an excess of 4.8×10^{10} electron ?
A. $3.3 \times 10^{-30} \mathrm{C}$
B. $7.7 \times 10^{-9} C$
C. $4.8 \times 10^{-10} \mathrm{C}$
D. $4.7 \times 10^{10} C$

Q2: Solve the following problems:
1- Three charges, A, B, and C, are located in a line, as shown below. What is the net force on charge B ?

$$
+8.5 \times 10^{-6} \mathrm{C} \quad+3.1 \times 10^{-6} \mathrm{C}+6.4 \times 10^{-6} \mathrm{C}
$$

4.2 cm

2- Three point charges are located as shown in the figure below, Find the net electrostatic force on point charge \boldsymbol{q}_{1}

3- If the electrostatic force between two charged spheres is F, how does this force change in these following cases.
$>$ If the distance between the spheres is doubled.
\qquad
\qquad
\qquad
If the distance between the spheres is halved.
\qquad
\qquad
\qquad
> If the charge of each sphere is halved.
\qquad
\qquad
\qquad

