

\*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/ae

\* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر العام اضغط هنا

https://almanahj.com/ae/12

\* للحصول على جميع أوراق الصف الثاني عشر العام في مادة فيزياء ولجميع الفصول, اضغط هنا

https://almanahj.com/ae/12

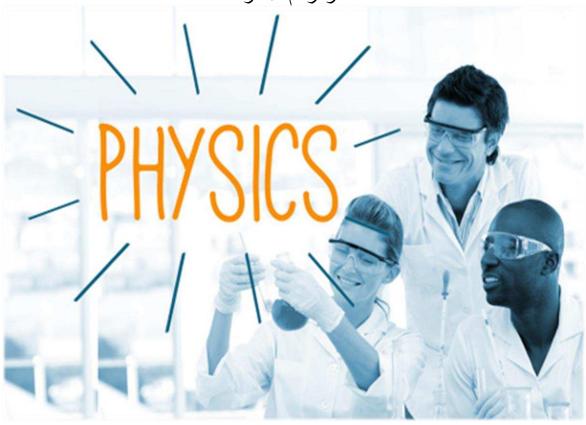
\* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر العام في مادة فيزياء الخاصة بـ اضغط هنا

https://almanahj.com/ae/12

\* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الثاني عشر العام اضغط هنا

https://almanahj.com/ae/grade12

للتحدث إلى بوت المناهج على تلغرام: اضغط هنا


https://t.me/almanahj\_bot

برنامج الدعم المدرسي العام الدراسي 2020-2019




وزارة التربية والتعليم قطاع العمليات المدرسية

مركز أم الامارات

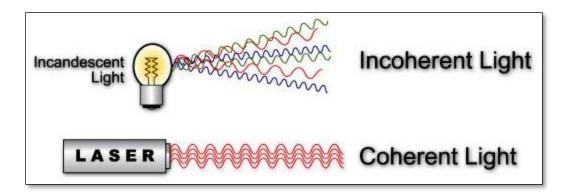


**Grade 12 General / physics Trimester 2 / Academic Year 2019-2020** 



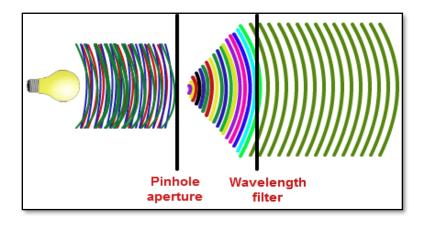
#### Incoherent and Coherent Light

#### 1- What led scientists to believe that light has wave properties?


They discovered that light could be made to interfere, which results from the superposition of waves

#### 2- Define the incoherent light?

It is light whose waves are not in phase


#### 3- Define the coherent light?

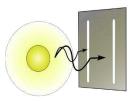
It is Light made up of waves of the same wavelength that are in phase with each other



### 4- How we can create a coherent light?

- ✓ It can be created by a single point source.
- ✓ It can be created by multiple point sources when all point sources are in phase. This type of coherent light is produced by a laser.

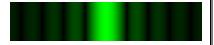



#### Interference of Coherent Light

#### 1- What is the prerequisite for a clear interference of light waves?

The light waves should be from coherent sources.

#### 2- What was Thomas Young experiment?


In his experiment, monochromatic light from a small source (single point source). was passed through two closely spaced slits and produced an interference pattern.





#### 3- Define interference fringes

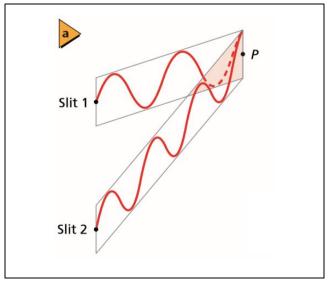
The pattern of bright and dark band

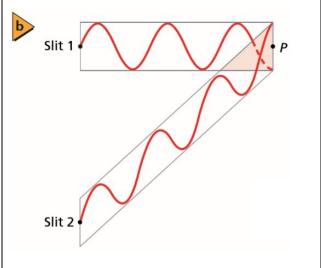


Note1: There are two types of waves interference (constructive – destructive)

| Constructive                  | Destructive                            |  |  |
|-------------------------------|----------------------------------------|--|--|
| When two waves meet in such a | When two waves meet in such a way      |  |  |
| way that their crests line up | that the crest of one wave meets the   |  |  |
| together.                     | trough of another.                     |  |  |
| ~~~                           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |  |  |
|                               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |  |  |
| $\overline{\wedge}$           |                                        |  |  |

- Note2: In the interference pattern:
  - ✓ The Bright band represents an area where a constructive interference occurs.
  - ✓ The dark area represents an area where a destructive interference occurs.


# **Exercises:**

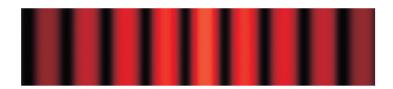

Rely on the following figure to fill in the table.



| The areas of constructive interference | The areas of destructive interference |
|----------------------------------------|---------------------------------------|
|                                        |                                       |
|                                        |                                       |

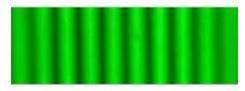
Rely on the following figure to fill in the table.






| At point "p"                      |                                   |  |  |
|-----------------------------------|-----------------------------------|--|--|
| Case a                            | Case b                            |  |  |
| What is the type of interference? | What is the type of interference? |  |  |
| Answer:                           | Answer:                           |  |  |
| What is the type of the band?     | What is the type of the band?     |  |  |
| Answer:                           | Answer:                           |  |  |

4- Describe the pattern that Thomas Young gets in his experiment (Double-Slit Interference)

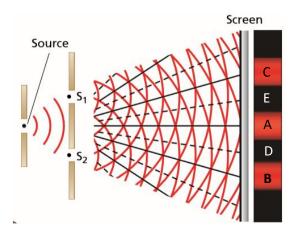

https://www.youtube.com/watch?v=9D8cPrEAGyc

(0:00-1:08 min)



- ✓ A bright central band of the given color on the screen
- ✓ Other bright bands of near-equal spacing and near-equal width on
  either side
- ✓ The intensity of the bright bands decreases the farther the band is from the central band
- ✓ Between the bright bands are dark areas where destructive interference occurs.
- ➤ <u>Note</u>: The positions of the constructive and destructive interference bands depend on the light's wavelength
- 5- Describe the changes in the interference pattern when we use a green light instead of a red one.





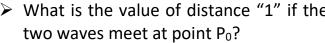

- ✓ The distance between the bright fringes decreases.
- ✓ The width of the bright fringes decreases.

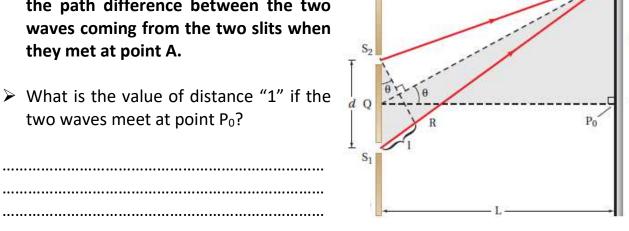
6- Describe the pattern that Thomas Young gets in his experiment (Double-Slit Interference) when he uses a white light.



- ✓ A bright central band of white color on the screen.
- ✓ Colored spectra on either side of the central band.
- 7- Use the figure to answer the following questions




a. What is the useful of each of the single slit and the double slit barriers in the double slit experiment?


| The single slit barrier | The double slit barrier |
|-------------------------|-------------------------|
|                         |                         |
|                         |                         |
|                         |                         |

b. Name the following areas?

| The area | The name |
|----------|----------|
| А        |          |
| В,С      |          |
| D,E      |          |

8- In the figure, the distance "1" represent the path difference between the two they met at point A.





> If the two waves met at point A, complete the following table

| Path difference<br>Distance 1 value | Type of the band<br>(bright- dark) | The order of the band $m = 1, 2, 3,$ |
|-------------------------------------|------------------------------------|--------------------------------------|
| 1λ                                  |                                    |                                      |
| 2λ                                  |                                    |                                      |
| λ/2                                 |                                    |                                      |
| 3λ/2                                |                                    |                                      |

9- What is the equation of the wavelength from the Double-Slit **Experiment?** 

$$m\lambda = \frac{x_m.\,d}{L}$$

| N | The symbol                                                         | The physical quantity          |  |  |  |
|---|--------------------------------------------------------------------|--------------------------------|--|--|--|
| 1 | m                                                                  | The order of the fringe        |  |  |  |
| 2 | $x_m$ The Distance from the central bright band to the bright band |                                |  |  |  |
| 3 | λ                                                                  | The wavelength of the light    |  |  |  |
| 4 | d                                                                  | The distance between the slits |  |  |  |
| 5 | L                                                                  | The distance to the screen     |  |  |  |

Note: all the quantities are measured in meter except m which is dimensionless quantity

### **Applications**

1- A double-slit experiment is performed to measure the wavelength of red light. The slits are 0.0190 mm apart. A screen is placed 0.600 m away, and the first-order bright band is found to be 21.1 mm from the central bright band. What is the wavelength of the red light?



2- Violet light falls on two slits separated by  $1.90\times10^{-5}$  m. A first-order bright band appears 13.2 mm from the central bright band on a screen 0.600 m from the slits. What is  $\lambda$ ?



3- Yellow-orange light from a sodium lamp of wavelength 596 nm is aimed at two slits that are separated by 1.90×10–5 m. What is the distance from the central band to the first-order yellow band if the screen is 0.600 m from the slits?

| screen i | screen is 0.600 m from the slits? |  |  |  |  |
|----------|-----------------------------------|--|--|--|--|
|          |                                   |  |  |  |  |
|          |                                   |  |  |  |  |
|          |                                   |  |  |  |  |
|          |                                   |  |  |  |  |
|          |                                   |  |  |  |  |
|          |                                   |  |  |  |  |
|          |                                   |  |  |  |  |

| In a double-slit investigation, physics students use a laser with $\lambda$ = 632.8 nm. A student places the screen 1.000 m from the slits and finds the first-order bright band 65.5 mm from the central line. What is the slit separation?                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                          |
| Yellow-orange light with a wavelength of 596 nm passes through two slits that are separated by $2.25\times10^{-5}$ m and makes an interference pattern on a screen. If the distance from the central line to the first-order yellow band is $2.00\times10^{-2}$ m, how far is the screen from the slits? |
| A flat screen is placed 4.200 m from a pair of slits that are illuminated                                                                                                                                                                                                                                |
| by a beam of monochromatic light. On the screen, the separation between the central bright band and the second-order bright band is 0.082 m. The distance between the slits is 5.3×10 <sup>-5</sup> m. Determine the wavelength of the light                                                             |
|                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                          |

Part 1 end