

		CHANNEL				
	سر المتقدم على تلغرام	روابط مواد الصف العاش				
الرياضيات	<u>اللغة الانجليزية</u>	اللغة العربية	<u>التربية الاسلامية</u>			

ر المتقدم والمادة فيزياء في الفصل الأول	المزيد من الملفات بحسب الصف العاش
تلخيص مبسط لأول أربع واحدات 20182017	1
<u>تحميل دليل المعلم اساسيات الضوء</u>	2
التوزيع الزمني للخطة الفصلية	3
<u>ملخص شامل للفصل الرابع (القوى في بعد واحد)</u>	4
ملخص الوحدة 1234 مدخل الى علم ال	5

POP QUIZ- Physics Grade 10

Student	Data	
Name	Date	

Choose the best answer

	Kej	pler's third law of planetary motion states that the ratio of
	Α	The orbital period to the to the orbital radius is the same for all planets.
1	B	The orbital periods of any two planets equals the ratio of the orbital radii.
	С	All planets would orbit with the same orbital period.
	D	The period squared to the radius cubed is the same ratio for all planets.

	Ab	oullet and	a truck <u>Made</u> have the same momentum because
		i.i.	
	Α	can	when the bullet has a lower velocity because the two masses are not the same.
2	В	can't	the two masses are not the same.
	С	can	when the bullet has a higher velocity because the two masses are not the same.
	D	can't	the two velocities cannot be the same.

	Ne Su	ptune n. The	orbits the Sun at an average distance (r, meter) from the centre of the period of Neptune will depend on which of the following factors:
	~	I.	Mass of the Sun
		II.	Mass of Neptune
		III.	Temperature of Neptune
2		IV.	The distance between Neptune and the Sun
3			Select the correct answer from the codes given below:
	Α	I and	Π
	В	II and	1 IV
	С	I and	IV
	D	I, III	and IV

	Mo	omentum is a(n) quantity
	Α	energy
4	В	scalar
	С	vector
	D	science

Elite Stream-Centralised Continuous Assessment

	If t the	If the distance between two bodies is doubled, the force of attraction, F, between them will be			
5	Α	$\frac{1}{4}F$			
	В	$\frac{1}{2}F$			
	С	F			
	D	2F			

	Th of 1	The force of attraction between a proton of mass 1.7×10^{-27} kg and an electron of mass 9.1×10^{-31} kg when they are at 1.5×10^{-10} m apart is		
6	Α	$4.5 \times 10^{-26} \text{ N}$		
	В	$4.6 \times 10^{-48} \text{ N}$		
	С	$6.7 \times 10^{-37} \text{ N}$		
	D	$6.9 \times 10^{-58} \text{ N}$		

	Th Gi	The gravitational field strength at the surface of the Moon is Given that (Mass of Moon= 7.3×10^{22} kg; radius of the Moon = 1.7×10^{6} m)		
	Α	1.7 N/kg		
7	В	2.4 N/kg		
	С	3.1 N/kg		
	D	9.8 N/kg		

	The orb (ra	The orbital time period of the Earth about the Sun is 3.2×10^7 s. Calculate the orbital period of Mars. (radius of Earth orbit = 1.5×10^{11} m; radius of Mars orbit = 2.3×10^{11} m)		
8	Α	about 1.1 years		
	В	about 1.3 years		
	С	about 1.5 years		
	D	about 1.9 years		

	A b mo	A ball of mass 0.25 kg is moving to the right at a speed of 7.4 m/s. Calculate the momentum of the ball.		
	Α	1.85 kg m/s to the Left		
9	В	1.85 kg m/s to the right		
	С	-1.85 kg m/s to the right		
	D	-1.85 kg m/s to the Left		

Elite Stream-Centralised Continuous Assessment						
10	The change in momentum is 1.52 N s for a ball that strikes the floor for 1.05×10^{-2} s. Find the value force applied to the ball.					
	A	$1.60 \times 10^{-2} \mathrm{N}$				
	В	$1.44 \times 10^2 \text{ N}$				
	С	1.60 N				
	D	23.8 N				

Elite Stream-Centralised Continuous Assessment Section II – Performance Task: Answer all the questions below.

Elite Stream-Centralised Continuous Assessment

<u>Feedback</u>

Tested Learning outcomes	Question(s)	\checkmark	х	Action (extra practice question)
State and discuss the consequences, and perform calculations using Kepler's third Law	1			· · · · · · · · · · · · · · · · · · ·
State and discuss the consequences, and perform calculations using Newton's law of universal gravitation.	5 & 6			
Explain and make calculations related to satellite and planetary movements, including: o Speed o Orbital movement	3 &8			
Deduce the value of earth's surface gravity acceleration (g)-also known as the gravitational field value.	7			
Define and mathematically evaluate: o Impulse (vector quantity) o Momentum (vector quantity)	2 &4			
Derive and explain the impulse momentum theorem.	12 & 13			
Apply the impulse momentum theorem conceptually and mathematically.	9 & 10 &11			
Student Comments	·			
Parent Signature				

Elite Stream-Centralised Continuous Assessment Answer Key

Multiple Choice				
Q1	D			
Q2	С			
Q3	С			
Q4	С			
Q5	Α			
Q6	В			
Q7	Α			
Q8	D			
Q9	В			
Q10	В			

almanan). C Structured Response Answer Key

Question		Correct Answer	Allocation of Marks
Q11	a)	$F\Delta t = \text{Area under the graph (triangle)}$ $= \frac{1}{2} (2.0 \text{ N})(2.0 \text{ s}) = 2.0 \text{ N.s}$	1 mark 1 mark
	b)	$F\Delta t = m\Delta v$ 2.0 N.s = $m(v_f - v_i)$	1 mark
		2.0 N.s = $(0.150 \ kg)(v_f - 12 \ m/s)$ $v_f = \frac{2.0 \ kg.m/s}{0.150 \ kg} + \frac{12m}{s} = 25m/s$	1 mark 1 mark
Q12	a)	$F\Delta t = m\Delta v = m(v_f - v_i)$ = (20.0 kg)(0.0 - 10) = -2.0 × 10 ² kg.m/s	1 mark 1 mark
	b)	$F\Delta t = m\Delta v = m(v_f - v_i)$ $m(v_f - v_i)$	1 mark
		$F = \frac{1000 - 000}{\Delta t}$ $F = \frac{(20.0)(0.0 - 10)}{0.05} = -4.0 \times 10^3 N$	1 mark 1 mark

Elite Stream-Centralised Continuous Assessment

Q13	a)	$\Delta p = m(v_f - v_i)$ (0.174) × (-38.0 - 26.0) = -11.1 kg.m/s	1 mark
	b)	$F\Delta t = p_f - p_i = \Delta p = -11.1 \ kg.m/s \ (N.s)$	1 mark
	c)	$F = \frac{m(v_f - v_i)}{\Delta t}$	1 mark
		$=\frac{(0.174)\times(-38.0-26.0)}{(0.80\ ms)(\frac{1\ s}{1000\ ms})}=-1.4\ \times\ 10^4\ N$	2 marks

almanah).Com/ae آيتالها كغانيا