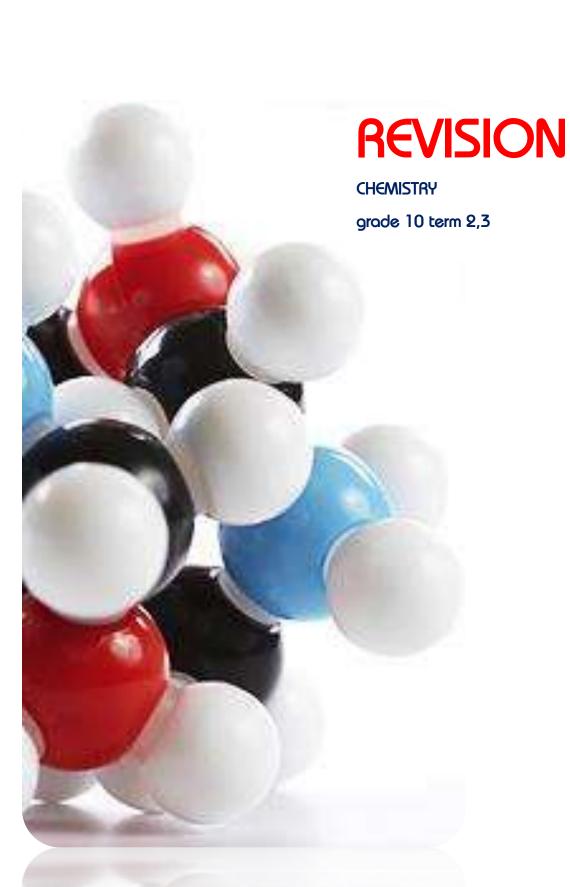
تم تحميل هذا الملف من موقع المناهج الإماراتية

الملف أوراق عمل مراجعة الفصلين الثاني والثالث

موقع المناهج ← المناهج الإماراتية ← الصف العاشر المتقدم ← كيمياء ← الفصل الثاني

روابط مواقع التواصل الاجتماعي بحسب الصف العاشر المتقدم المتعدم المناسبة الم


اللغة العربية

التربية الاسلامية

اللغة الانجليزية

الرياضيات

المزيد من الملفات بحسب الصف العاشر المتقدم والمادة كيمياء في الفصل الثاني	
كل مايخص الاختبار التكويني لمادة ال للصف العاشر يوم الثلاثاء 11/2/2020	1
كيمياء اوراق عمل	2
أوراق عمل الروابط الأيونية والفلزات	3
أسئلة لمراجعة الفصل الثاني مع الإجابة النموذجية	4
كيمياء اوراق عمل الروابط التساهمية	5

1)	The picture shows how two oxygen atoms covalently bond with one carbon atom to	
	form carbon dioxide. How many electron pairs are shared?	
	☐ Five electron pairs x	
	☐ Four electron pairs	
	☐ One electron pair	
	☐ Two electron pairs • • • • • • • • • • • • • • • • • • •	
2)	2) Which 2 statements describe why covalent bonding occurs?	
	☐ Because atoms are always trying to get a full inner electron shell	
	☐ Because atoms are always trying to get a full middle electron shell	
	☐ Because atoms are always trying to get a full outer electron shell	
	\square So, the atoms become stable	
3)	3) The picture shows the electron arrangement of a chlorine atom. Two chlorin	ne atoms can
- /	covalently bond together to form Cl ₂ . Why?	
	☐ Both atoms have 5 outer electrons so if they share three pair of	
	electrons, they will both have a complete outer electron shell	
	☐ Both atoms have 6 outer electrons so if they share two pair of	
	electrons they will both have a complete outer electron shell) 🕻 🛉
	☐ Both atoms have 7 outer electrons so if they share one pair of	
	electrons, they will both have a complete outer electron shell	
		e atom,
	#C000008	,8,7
4)	4) The picture shows how two oxygen atoms covalently bond with one carbon a	ntom to
form carbon dioxide. How many covalent bonds are there in total?		
	☐ Eight covalent bonds	
	☐ Four covalent bonds	
	☐ One covalent bond) 2 (O)
	☐ Three covalent bonds	
	☐ Two covalent bonds	
5)	5) The picture shows how two nitrogen atoms can be covalently bonded togeth	er to form
	N ₂ . How many covalent bonds are there?	
	☐ Four covalent bonds	
	☐ One covalent bond	
	☐ Six covalent bonds	N
	☐ Three covalent bonds	•]
	☐ Two covalent bonds	

6)	The picture shows how two nitrogen atoms can be covalently bonded together to form N_2 . How many pairs of electrons are shared?
	☐ One pair of electrons
	☐ Six pairs of electrons N N N
	☐ Three pairs of electrons
	☐ Two pairs of electrons
7)	Which statement best describes what happens between atoms in a covalent bond?
	☐ A pair of electrons are shared
	☐ A pair of electrons are transferred
	☐ A sea of free electrons is formed around the positive ions
	☐ Electrons are shared
	☐ Electrons are transferred
8)	Covalent bonding occurs between
	metal and non-metal atoms
	metal atoms
	□ non-metal atoms
9)	The picture shows how two hydrogen atoms covalently bond with one oxygen atom to
	form water. How many covalent bonds are there?
	□ Four H * O • * H
	Li One
	☐ Three
	□ Two
10)	The picture shows how two hydrogen atoms can form a covalent bond together. Why do
	they form a covalent bond?
	Because both atoms have one outer electron and want to
	gain 7 electrons to have a full outer electron shell Because both atoms have one outer electron so they both
	share one electron to gain a full outer electron shell
	☐ Because one hydrogen atom has two outer electrons and the other atom has zero outer
	electrons so one electron is transferred so both atoms gain a full outer electron shell
	cieculons so one electron is transferred so oddi atoms gain a rair oater electron shen
11)	Which statement best describes a covalent bond?
	☐ A The electrostatic force of attraction between positive metal ions and a sea of free electrons
	☐ B When atoms share a pair of electrons
	☐ C When atoms share electrons
	☐ D When electrons are transferred from one atom to another to form ions
	☐ E When one atom gains electrons and another atom loses electrons

12) As compare to ionic compounds, covalent bond has
☐ high melting but low boiling point
☐ low melting but high boiling point
☐ low melting and boiling point
☐ high melting and boiling point
ingh metang and bonning point
13) Large molecules such as polythene and polystyrene contains
\square ionic bonding
☐ metallic bonding
□ covalent bonding
\Box dative bonding
autive bonding
14) The bond which comes to existence due to sharing of electrons is known as
\Box ionic bonding
□ covalent bonding
☐ metallic bonding
☐ dative bonding
_ dutive conding
15) Most of the covalent compounds are found in
□ solid state
\square gaseous state
☐ liquid state
□ both in liquid and gaseous state
16) If no loss or gain of electrons occur by mixing of two atoms, we say that they may be
attached to each other due to
□ proton attraction
☐ neutron attraction
\square sharing of electrons
□ opposite charges
17) Double covalent bond refers to the sharing of
\square one electron
☐ two electrons
☐ three electrons
\Box four electrons
19) Double covalent hand referred to the showing of
18) Double covalent bond refers to the sharing of
□ one electron
☐ one pair of electron
☐ three electrons
\Box two pairs of electron

19) Common covalent bonds include
\square MgO
\square KF
□ LiCl
\square CH ₄
20) Formation of Cl ₂ requires sharing of
\square one electron
\Box one pair of electrons
☐ three electrons
☐ two pairs of electrons
21) In Oxygen molecule (O2), stability is gained through sharing of
\square one electron
☐ two electrons
☐ three electrons
☐ four electrons
 22) The bond created by overlapping of one modified orbit on another orbit is known as Sigma bond (σ-bond Pi bond (π-bond Covalent bond Dative bond
23) When a single atom provides both electrons which are needed for completion of covalent bond lead to
□ ionic bond
□ covalent bond
\Box co-ordinate bond
☐ dative bond
24) A covalently bond molecule's shape and bond angles rely on
□ number of pair of electrons
☐ number of lone pair
☐ number of proton pairs
□ both A and B
25) Dative covalent bond is found in
□ ammonia
☐ ammonium ion
\Box urea

26) In a molecule of chlorine trifluoride, CIF ₃ the bond angle is
□ 87.5°
□ 107.5°
□ 78.5°
□ 107.5°
 27) When two atoms of nitrogen bond, how many pairs of electrons will be shared between them? □ 1 □ 2 □ 3 □ 4
28) When two atoms of fluorine bond, how many electrons will be shared between them? $\begin{array}{c c} & 1 & \\ & 2 & \\ & & 3 & \\ & & 4 & \end{array}$
29) When an atom of H and an atom of F bond together: ☐ The H will be partially positive, because it has higher electronegativity than F.
☐ The H will be partially negative, because it has higher electronegativity than F.
 □ The F will be partially positive, because it has higher electronegativity than H. □ The F will be partially negative, because it has higher electronegativity than H.
The I'win be partially negative, because it has higher electronegativity than II.
 30) Which of the molecules listed below has the most polar bond between the bonded atoms, in terms of greatest END? □ HF □ HCl □ HBr □ HI
31) Which of the following compounds is formed by covalent bonding?
□ Na ₂ S
\square AlCl ₃
\Box C ₆ H1 ₂ O ₆
□ LiH
32) Which of the following molecules contains a nonpolar covalent bond?
\Box H ₂ O
\square HF
\square F_2
\square NH ₃

33) Which of the following molecules contains a polar covalent bond?
\square H ₂
\square PH ₃
\Box F_2
\square NH ₃
34) Which of the following molecules is polar?
\Box F_2
\square NH ₃
\square O ₂
\square Cl ₂
35) Which of the following molecules has the strongest hydrogen-bond attractions?
□ HF
□ HCl
□ HBr
□ HI
36) Which of the following nonpolar molecules has the highest boiling point?
\square CH ₄
\square C2H ₆
\Box C ₃ H ₈
\Box C ₄ H ₁₀
37) Which of the following molecules is a liquid at STP?
\square N_2
\square H ₂
\square Br ₂
\square I ₂
38) Which of the following molecules is bent?
\square N ₂
\Box H ₂ O
\square NH ₃
□ CCl ₄
39) Which of the following molecules is pyramidal?
\square N_2
\Box H ₂ O
\square NH ₃
□ CCl ₄

40) Which of the following molecules is tetrahedral?
\square N ₂
\square H ₂ O
\square NH ₃
\square CCl ₄
41) Which of the following substances is molecular? □ NaCl □ CO ₂
$\begin{array}{c} \square \ K_2O \\ \square \ C \end{array}$
 42) What is a chemical bond that involves sharing a pair of electrons between atoms in a molecule? □ A covalent bond □ An ionic bond
43) Covalent chemical bonds where two lobes of one involved electron orbital overlap two lobes of the other is a ☐ Ionic bond ☐ Covalent bond ☐ Sigma bond ☐ Pi bond
 44) A chemical bond in which one atom loses an electron to form a positive ion and the other atom gains an electron to form a negative ion is a (an) □ Ionic bond □ Covalent bond
45) A positively charged ion ☐ Anion ☐ Cation
46) A negatively charged ion
☐ A cation
☐ An anion
47) Bonding occurs because of the attractions of ☐ Ions ☐ Neutrons ☐ Electrons ☐ Protons
□ Protons

48) A bond in which a single pair electron is shared between a pair of atoms is
☐ A single bond
☐ Double bond
☐ Triple bond
☐ Ionic bond
49) A bond in which two pairs of electrons are shared between two atoms.
☐ Triple bond
☐ Double bound
☐ Single bond
☐ Ionic bond
50) Which one of the following statements concerning the length of carbon-carbon single, double, and triple covalent bonds is true?
☐ The carbon-carbon single bond is shorter than either the carbon-carbon double or triple bond.
☐ The carbon-carbon double bond is shorter than either the carbon-carbon single or triple bond.
☐ The carbon-carbon triple bond is shorter than either the carbon-carbon single or double bond.
\Box The carbon-carbon single, double, and triple bonds all have the same length.
51) Which one of the following is the correct bond angle between atoms adopting a trigonal planar geometry?
□ 180° □ 100.5°
□ 109.5° □ 00°
□ 90° □ 120°
□ 120°
52) The atoms in a molecule of water adopt what kind of geometry?
☐ Linear
☐ Tetrahedral
☐ Trigonal planar
53) Ammonia, NH ₃ , adopts a tetrahedral geometry. However, the non-bonding pair on the central nitrogen atom distorts the bond angle away from the expected 109.5°. Which of the following statements correctly describes how the bond angle is distorted?
☐ The actual bond angle is reduced: it is less than 109.5°
\Box The actual bond angle is increased: it is more than 109.5°
54) About which of the bonds along the backbone of a polypeptide is rotation not possible?
\square 2
□ 3

55)	sp	hybridization involves the hybridization of how many atomic orbitals?
		1
		2
		3
		4
56)	Fo	our sp ³ hybrid orbitals adopt what kind of geometry?
20)		Linear
		Trigonal planar
		Octahedral
		Tetrahedral
	ш	Tetranedrai
57)		hen applying VSEPR theory to predict molecular shape, which of the following do we
	no	t need to take into account?
		Valence electrons occupying sigma bonding orbitals
		Valence electrons occupying pi bonding orbitals
		Valence electrons occupying non-bonding orbitals
58)	W	hich of the following statements regarding the measurement of the atomic radius are
	co	rrect? Please select all that apply.
		The atomic radius is measured between atoms of different elements
		The atomic radius is measured between atoms of the same element
		The atomic radius is half the distance between the nuclei of two joined atoms
		The atomic radius is the distance between the nuclei of two joined atoms
		The atomic radius is only measured between two covalently-bonded atoms
		The atomic radius can be measured between both covalently- and ionically-bonded atoms
59)	Fr	om the following possible responses, select those responses that give the combination
U		bonds that makes up a triple covalent bond.
		Two sigma bonds
	\Box	One sigma bond
	\Box	Two pi bonds
	\Box	One pi bond
		Three sigma bonds
ረ ሀ/	\ \ X 7	hich is a correct Lewis structure for hydrogen cyanide, HCN?
		men is a correct Lewis structure for nyurogen cyamue, frem:
		H−C≣N
		H-C=N:
		H-c≡N:
		H-C≡N:

61) Which is a correct Lewis structure for carbonic acid, H₂CO₃?

62) Which is a correct Lewis structure for hydrogen carbonate ion, HCO₃⁻?

63) Which is a correct Lewis structure for nitric acid, HNO₃?

64) Wh	nich of the following does not have the ground-state configuration 1s ² 2s ² 2p ⁶ ?
	Ne
	Na+
	Cl-
	F-
	nich of the following elements is the most electronegative?
	В
	C
	Cl
	N
66) Wh	nich of the following elements is the most electropositive?
	B
	C
	Cl
	N N
Ш	
67) Wh	nich of the following elements is the most electronegative?
	Br
	Cl
	F
	I

Which	of the following elements is the most electropositive?
	Br
	Cl
	F
	I
68) Wł	nich of the following compounds has an ionic bond?
	H2O
	NH4Cl
	CH3Cl
	CH3Li
69) Which of the following molecules does not have a dipole moment?	
	CH3Cl
	CH2Cl2
	CHCl3
	CCl4

- 70) Which of the following contains an atom (other than hydrogen) which lacks an octet of valence electrons?
 - □ NH3
 - □ H3O⁺
 - □ BH3
 - □ NH4+
- 71) Which of the following is a correct Lewis structure of diazomethane, CH₂N₂?
 - □ c=n-n
- \Box $\ddot{c} \dot{n} \equiv N$
- $\Box \quad \stackrel{\mathsf{n}}{\triangleright} c^{\dagger} \mathsf{N} = \bar{\mathsf{N}}$
- $\Box \quad \overset{\mathsf{H}}{\triangleright} c = \overset{\mathsf{h}}{\mathsf{h}} = \overset{\mathsf{h}}{\mathsf{n}} :$
- 72) Which of the following Lewis structures of protonated methanamide is incomplete?
- +0 " H C NH₂
- H C NH2
- □ ;o ⊢ C NH₂
- □ ; O H ...

73) N	₂ O ₄ is:
	dinitride pentoxide
	Dinitrogen tetroxide
	Nitro-oxalic acid
	dinitrogen monoxide
74) N	₂ O ₆ is:
	nitrogen oxide
	Nitride hexoxide
	dinitride hexoxygen
	Dinitrogen heptoxide
75) H	2SO ₄ is:
	Dihydrogen sulfur tetroxide
	hydrosulfuric acid
	Sulfurous acid
	Sulfuric acid
76) C	Cl ₄ is:
	Monocarbon tetrachloride
	monocarbon tetrachlorine
	Carbon tetrachloride
	carbide pentachlorine
77) O	F ₂ is:
	oxygen difluoride
	Oxide difluorine
	oxide difluoride
	Monoxide difluoride
78) N	₂ O ₅ is:
	nitrogen oxide
	Dinitrogen pentoxide
	Nitrite
	Nitrate
79) N	
	Dinitride monoxide
	Dinitrogen monoxide
	Nitrogen monoxide
	dinitrogen monoxygen

80) SO ₃ is:
\square sulfate
☐ Sulfur dioxide
□ Sulfite
□ sulfuric acid
81) Suppose you encounter a chemical formula with H as the cation. What do you know
about this compound immediately?
☐ It is an acid
☐ It has a +1 charge
☐ It is an ionic compound
☐ It is a base
82) Which of the following is not a cation?
\Box Ca ²⁺
□ Sulfate
☐ Iron ion
☐ Mercury ion
83) Which set of the chemical name and chemical formula for the compound is correct?
☐ Iron phosphate, FePO ₄
\square Ammonium sulfite, $(NH_4)_2S$
☐ Lithium carbonate, LiCO ₃
☐ Magnesium dichromate, MgCrO ₄
84) What is the correct name for CoCl ₂
☐ Cobalt chlorate
☐ Cobalt chloride
☐ Cobalt chlorate
☐ Cobalt chloride
85) What is the correct name for the N_3 ion?
☐ Nitride ion
☐ Nitrite ion
☐ Nitrate ion
☐ Nitrogen ion
86) When naming a transition metal ion that can have more than one common ionic charge,
the numerical value of the charge is indicated by a
☐ Superscript after the name
□ Prefix
☐ Roman numeral following the name

87) Which of the following correctly represents an ion pair and ionic compound the ions
form?
\square Na ⁺ , Cl ⁻ ; NaCl ₂
\Box Ca ²⁺ , F ⁻ ; CaF ₂
$\Box \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\Box Pb^{4+}, O^{2-}; Pb_2O_4$
88) What type of ions have names ending in -ide?
☐ Only metal ions
□ Only cations
☐ Only gaseous ions
☐ Only anions
89) What is the formula for hydrosulfuric acid?
\square H ₂ S ₂
\square H ₂ SO ₂
\square HSO ₂
\Box H_2S
90) Which element, when combined with fluorine, would most likely form an ionic compound?
□ Phosphorus
☐ Lithium
☐ Carbon
☐ Chlorine
91) What is the formula for sulfurous acid?
\square H ₂ SO ₃
\square H ₂ SO ₄
\square H ₂ SO ₂
\square H ₂ S
92) Which of the following compounds contains the lead ion?
\square Pb ₂ O
□ PbO
\Box Pb ₂ S
\Box PbCl ₄
LI FOC14
93) What is the correct formula for potassium sulfite?
\square K ₂ SO ₃
\square K ₂ SO ₄
□ KHSO ₄
\square KHSO ₃

94) Which of the following is true about the composition of ionic compounds?
☐ They are composed of anions and cations
☐ They are formed from two or more nonmetallic elements
☐ They are composed of anions only
\Box They are composed of cations only
95) Which of the following is the correct name for N_2O_5 ?
☐ Nitrous oxide
☐ Nitrogen dioxide
☐ Dinitrogen pentoxide
☐ Nitrate oxide
96) What is the correct formula for barium chlorate?
\square BaCl ₂
\square Ba(ClO ₂) ₂
\Box Ba(ClO ₃) ₂
\square Ba(ClO) ₂
97) Which of the following shows correctly an ion pair and ionic compound the two ions form?
$\Box \text{ Fe}^{3+}, O^{2-}; \text{Fe}_2O_3$
\Box Cr ³⁺ , I ⁻ ; CrI
$\square Sn^{4+}, N^{3-}; Sn_4N_3$
$\square \operatorname{Cu}^{2+}, \operatorname{O}^{2-}; \operatorname{Cu}_2\operatorname{O}_2$
08) Salaat the compact formula for sulfur havefluoride
98) Select the correct formula for sulfur hexafluoride.
\Box F ₆ SO ₃
\Box F_6S_2
\square SF ₆
\square S2F ₆
99) Which set of chemical name and formula for the same compound is correct?
\square Tin(IV)bromide; SnBr ₄
\square Iron(II)oxide; Fe ₂ O ₃
\square Aluminum fluorate; AlF ₃
□ Potassium chloride; K ₂ Cl ₂
100) What is the correct name for $Sn_3(PO_4)_2$?
\square Tin(IV)phosphate
☐ Tin(III)phosphate
☐ Tritin diphosphate
☐ Tin(II)phosphate

101) What is the name of H ₂ SO ₃ ?
☐ Sulfuric acid
☐ Sulfurous acid
☐ Hydrosulfuric acid
☐ Hyposulfuric acid
102) Aluminum is a group 3 metal. Which ion does Al typically form? □ Al ³⁻
\Box Al ⁵⁺
$\Box Al^{3+}$
\Box Al ⁵ -
103) Which of the following formulas represents an ionic compound? \Box CS ₂
\square BaI ₂
\Box PCl ₃
\square N2O ₄
104) Molecular compounds are usually
☐ Composed of two or more nonmetals
☐ Composed of positive and negative ions
☐ Composed of metal and nonmetal
☐ Composed of two or more transition elements
What is the formula for phosphoric acid?
\square H ₃ PO ₄
\Box H ₂ PO ₃
\square HPO ₄
\square HPO $_2$
105) Which of the following formulas represents a molecular compound?
\square SO ₂
\square ZnO
\square BeF ₂
\square Xe
106) Which of the following shows both the correct formula and correct name of an acid?
☐ HClO₂, chloric acid
☐ HNO ₂ , hydronitrous acid
☐ H ₃ PO ₄ , phosphoric acid
☐ HI_iodic acid

Chemistry, grade 10, Term 2,3	REVISION
107) How are chemical formulas of binary ionic compounds generally writt	en?
☐ Anion on the left, cation on the right	
☐ Roman numeral first, then anion, then cation	
☐ Subscripts first, then ions	
☐ Cation on the left, anion on the right	
	•
108) Which of the following shows a prefix used in naming binary molecula	r compounds
with its corresponding number?	
☐ Hexa-, 8	
□ Deca-,7	
□ Octa-, 4	
□ Nona-, 9	
109) Which of the following correctly provides the names and formulas of p	oolyatomic ions?
☐ Nitrite: NO ⁻ ; nitrate: NO ₂ ⁻	·
☐ Carbonate: HCO ₃ ⁻ ; bicarbonate: CO ₃ ² -	
\square Sulfite: S_2^- ; sulfate: SO_3^-	
\Box Chromate: CrO_4^{2-} ; dichromate: $Cr_2O_7^{2-}$	
110) What is the formula for carbon dioxide?	
□ 2 CO	
\square CO ₂	
\Box CaO ₂	
\square C ₂ O ₂	
111) There are a few common names of accolout common de you should me	
111) There are a few common names of covalent compounds you should me	emorize. For
example, what is the formula for water?	
□ 2 HO	
□ H ₂ O	
\Box H ₂ O ₂	
112) The correct name for SiC is:	
☐ silicon carbide	
☐ silver carbide	
□ carbosilicon	
☐ silver carbon	
112) What is the formula for earlier total ablands?	
113) What is the formula for carbon tetrachloride? □ C ₄ Cl	
\Box 4 CCl	
□ CCl ₄	
□ CCl ₅	

114) P ₂ O ₅ is named:
☐ dipotassium pentoxide
☐ phosphorus oxide
☐ diphosphorus pentoxide
☐ diphosphorus heptoxide
115) What is the formula of nitrogen triiodide?
□ NI
\square N ₃ I
\square HNI ₃
\square NI ₃
116) What is the name given to H ₂ S(g)?
☐ hydrogenated sulfur
☐ sulfur hydride
☐ hydrogen sulfide
☐ hydrogen disulfide
117) SiO ₂ is found in sand, glass, and quartz. What is the correct name for this compound?
☐ silicon dioxide
□ silicate
118) The formula for dinitrogen pentoxide is:
\square Ni ₂ O ₅
\square N ₂ O ₄
\square N ₃ O ₃
\square N ₂ O ₅
119) Ozone is another important covalent compound that is known by its common name.
What is the formula for ozone?
\square O ₂
\square Os ₃
\square O ₃
□ CN
120) Which one of the following statements concerning the length of carbon-carbon single,
double, and triple covalent bonds is true?
\Box The carbon-carbon single bond is shorter than either the carbon-carbon double or triple bond.
\Box The carbon-carbon double bond is shorter than either the carbon-carbon single or triple bond.
\Box The carbon-carbon triple bond is shorter than either the carbon-carbon single or double bond.
\Box The carbon-carbon single, double, and triple bonds all have the same length.

121) Which one of the following is the correct bond angle between atoms adopting a
trigonal planar geometry?
□ 180°
□ 109.5°
□ 90°
□ 120°
122) The atoms in a molecule of water adopt what kind of geometry?
☐ Linear
☐ Tetrahedral
☐ Octahedral
☐ Trigonal planar
 123) Ammonia, NH3, adopts a tetrahedral geometry. However, the non-bonding pair on the central nitrogen atom distorts the bond angle away from the expected 109.5°. Which of the following statements correctly describes how the bond angle is distorted? ☐ The actual bond angle is reduced: it is less than 109.5° ☐ The actual bond angle is increased: it is more than 109.5°
124) About which of the bonds along the backbone of a
polypeptide is rotation not possible? □ 1 □ 2 □ 3
125) sp3 hybridization involves the hybridization of how many atomic orbitals? \Box 1
\square 2
 -
\square 4
126) Four sp3 hybrid orbitals adopt what kind of geometry? ☐ Linear ☐ Trigonal planar ☐ Octahedral
☐ Tetrahedral
 127) When applying VSEPR theory to predict molecular shape, which of the following do we not need to take into account? □ Valence electrons occupying sigma bonding orbitals □ Valence electrons occupying pi bonding orbitals
☐ Valence electrons occupying non-bonding orbitals

120) V	vinch of the following statements regarding the measurement of the atomic radius are
col	rrect? Please select all that apply.
	The atomic radius is measured between atoms of different elements
	The atomic radius is measured between atoms of the same element
	The atomic radius is half the distance between the nuclei of two joined atoms
	The atomic radius is the distance between the nuclei of two joined atoms
	The atomic radius is only measured between two covalently-bonded atoms
	The atomic radius can be measured between both covalently- and ionically-bonded atoms
129) F	rom the following possible responses, select those responses that give the combination
of	bonds that makes up a triple covalent bond.
	Two sigma bonds
	One sigma bond
	Two pi bonds
	One pi bond
	Three sigma bonds
Whi	ich one of the following is a linear molecule?
	$BeCl_2$
	BF_3
	CH ₄
	CCl ₄
130) V	Which of the following is the correct order for the electron pair repulsions?
	lone pair-lone pair < bond pair-bond pair < bond pair-lone pair
	lone pair-lone pair < bond pair-lone pair < bond pair-bond pair
	bond pair-bond pair < bond pair-lone pair < lone pair-lone pair
	bond pair-bond pair < lone pair-lone pair < bond pair-lone pair
131) V	Which of the following is not a trigonal planar molecule?
	AlCl ₃
	AlH_3
	BF_3
	NH ₃
132) V	Which of the following is tetrahedral?
	BF_3
	CH_4
	NH_3
	SF_6

133) 1	he shape of a molecule with six bond pairs and no lone pairs is
	hexahedral
	octahedral
	tetrahedral
	trigonal bipyramidal
_	
134) V	Which one of following molecules does not have any three of its atoms in a straight
line	e?
	$BeCl_2$
	CO_2
	H_2O
	SF ₆
135) T	he bond angles in a molecule of boron trifluoride are
	90°
	107°
	109.5°
	120°
136) T	he bond angles in PF5 are
	all 72°
	90° and 120°
	109.5° and 120°
	109.5° and 90°
137) W	Which of the following species has a shape based on two lone pairs and two bond
pai	irs?
	NH_3
	$\mathrm{NH_2}^{\text{-}}$
	$\mathrm{NH_{4}^{+}}$
	PH3
138) T	he shape of carbon dioxide is described as
	linear
	octahedral
	tetrahedral
	trigonal planar
139) T	he H-N-H bond angles in the ammonium ion NH ₄ + are
	greater than the H-N-H bond angles in ammonia
	identical H-N-H bond angles in ammonia
	107°
П	less than the H-N-H bond angles in ammonia

140) 1	ne snape of Aer4 molecules is based on them having
	4 bond pairs
	4 bond pairs and 1 lone pair
	4 bond pairs and 2 lone pairs
	4 bond pairs and 4 lone pairs
141) W	Which one of the following molecules/ions is square planar?
	CH ₄
	NH ₄ ⁺
	PCl ₄ +
	XeF_4
142) T	he molecule whose shape is based on lone pairs is
	CH ₄
	CO_2
	H_2O
	SF_6
The io	on whose shape is not based on lone pairs is
	$\mathrm{NH_{4}^{+}}$
	$\mathrm{NH_{2}^{-}}$
	H_3O^+
	PCl ₄ -
143) W	Which of the following statements about ammonia molecules is not true?
	they possess a lone pair
	the H-N-H bond is 107°
	they are pyramidal in shape
	they are tetrahedral in shape
144) W	Which of the following statements about SO ₂ molecules is true?
	the $O \rightarrow S \rightarrow O$ bond angle is 180°
	their shape is based on then having two lone pairs and two double bond pairs
	their shape is based on then having one lone pair and two bond bond pairs
	they are trigonal planar
145) W	Which of following best describes the shape of SO ₃ molecules?
	linear
	square planar
	tetrahedral
	trigonal planar

140) In which of the following changes are the bond angles in the second species smaller
than the first?
\Box H ₂ O and H ₃ O ⁺
\Box CH ₄ and CO ₂
\square NH ₄ ⁺ and NH ₃
\square AlCl ₄ - and AlCl ₃
147) The shape of BrF ₃ is best described as
□ linear
□ pyramidal
☐ trigonal planar
☐ T-shaped
148) The molecular structure of SF ₆ is
☐ linear
☐ tetrahedral
☐ hexagonal
The number of bonding pairs of electrons in water H ₂ O is
\square 2
\Box 3
\Box 4
□ 4
149) Lone pairs in CO ₂ are
\square 2
\Box 3
\Box 4
150) The bond angle of SF ₆ is
□ 90°
□ 180°
□ 120°
□ 87.5°
151) Molecule with the bond of shape trigonal pyramid is
\square H ₂ O
\square CO ₂
\square CH ₄
\square BF ₃

152) Which inter molecular force is the predominant inter molecular force for non-polar
molecules?
☐ Dispersion Forces
☐ Dipole-Dipole
153) Which inter molecular force results from polar molecules?
Dispersion Forces
☐ Dipole-Dipole
154) Which molecular geometry below is non-polar?
☐ Trigonal planar
☐ Trigonal pyramidal
□ Bent
□ See-saw
155) Which molecular geometry below is polar?
□ Square planar
☐ Tetrahedral
☐ T-shaped
□ Linear
156) Which bond has electrons that are shared equally?
☐ Non-polar ionic
□ Non-polar covalent
☐ Polar covalent
157) Using electronegativity values, what type of bond is C–H?
□ Non-polar
□ Polar
☐ Hydrogen
158) Using electronegativity values, what type of bond is C–O?
□ Non-polar
☐ Hydrogen
159) Using electronegativity values, what type of bond is B-F?
□ Non-polar
□ Polar
☐ Hydrogen

160) What is the predominant inter molecular force for CH ₄ ?	
☐ Dispersion forces	
☐ Dipole-dipole	
161) What is the predominant inter molecular force for NH ₃ ?	
☐ Dispersion forces	
☐ Dipole-dipole	
in Dipole dipole	
162) What is the predominant inter molecular force for SiO ₂ ?	
☐ Dispersion forces	
☐ Dipole-dipole	
163) What is the predominant inter molecular force for H ₂ O?	
☐ Dispersion forces	
☐ Dipole-dipole	
164) What happens to the boiling point as the strength of the inter molec	ular force
increases?	
☐ Decreases	
☐ Increase	
☐ Impossible to tell	
_	
☐ What's boiling point?	
165) Is the molecule CCl ₄ polar or non-polar?	
□ polar	
□ non-polar	
166) What is the predominant inter molecular force in the molecule HCN	!?
☐ Dispersion Forces	
☐ Dipole-Dipole	
167) Which of the following molecules has an equal electron distribution	around it's
bonded atoms?	
☐ HCl	
\square CO ₂	
\square Br ₂	
\square all of the above	
168) Which of the following molecules has unequal electron distribution :	around it's bonded
atoms?	
☐ HCl	
\square CBr ₄	
\square N_2	
\square all of the above	A 302.00

169) Which of the following molecules is non-polar?
\square NH ₃
\square BCl ₃
\square SO ₂
\square ICl ₃
170) Which of the following molecules is polar?
\square SiS ₂
\square PCl ₅
\square SO ₂
\square XeF ₄
171) What type of bond has a difference in Electronegativity between 0.4 and 1.7?
□ non-polar
□ polar
☐ I don't know
172) What type of bond has a difference in Electronegativity between 0.0 and 0.4?
□ non-polar
□ polar
☐ I don't know
□ I don't know
173) What type of bond has a difference in Electronegativity of 1.7 or greater?
□ non-polar
□ polar
□ ionic
☐ I don't know
174) Which molecule below is water soluble?
\square NH ₃
\square CH ₄
\square SiO ₂
\square BCl ₃
175) Which property below is NOT for non-polar molecules?
□ Not water soluble
☐ Low melting point
☐ High boiling point
☐ Usually gas or liquid at room temp.

176) Which property below is NOT for polar molecules?
☐ Water soluble
☐ High melting point
□ Soft solids
☐ Usually liquid or solid at room temp.
177) Both polar and non-polar molecules will always experience which inter molecular
force?
☐ Dispersion Forces
☐ Dipole-Dipole
☐ Hydrogen bonding
☐ Ionic bonding
178) Intermolecular forces or inter molecular forces are
□ covalent or ionic bonds
☐ within a molecule
☐ between neighboring molecules
\square stronger than bonds
179) A bond dipole points toward
☐ the less electronegative element
☐ the element with a partial positive charge
☐ the element with a partial negative charge
\Box the negative ion
180) Which molecule below has polar bonds but is a non-polar molecule?
\square SO ₂
\square SiO ₂
\Box CH ₄
\Box H ₂ O
181) Which atom is the molecular dipole pointed toward in CH ₂ O?
\Box C
□ н
\square O
\Box none
182) The electrons that reside in the outermost energy levels of an atom are called
□ core electrons
□ valence electrons
\square lone pairs
☐ nonbonded electrons
□ bonded electrons

183) Wh	at is the formula for manganese dioxide?
\square M	nO_2
\square M	nO_4
\square M	gO_2
\square M	$\mathrm{gO_4}$
184) Wh	at is the name of SO ₃ ?
□ su	lfur oxygen
\square su	lfite
□ su	lfate
□ su	lfur trioxide
What is	the name of NH ₃ ?
□ an	nmonium
□ an	nmonia
□ nit	trogen trihydrogen
□ nit	trogen hydride
185) Elec	ctronegativity is
□ the	e ability of an atom to attract electrons to itself in a chemical bond.
□ the	e measure of an atom's ability to make ionic bonds.
□ the	e amount of energy required for an atom to accept an electron.
\Box the	e amount of energy required for an atom to lose an electron.
186) Ide	ntify the ionic compound among the following:
\Box SC	\mathcal{O}_2
	Cl_3
☐ CI	H_4
	F
187) Wh	ich of the following is a polar molecule?
\Box CC	Cl_4
\Box H ₂	QO
\Box CO	O_2
□ H ₂	eBe
188) Wh	at is the overall polarity of methane?
□ no	npolar covalent
□ ро	lar covalent
□ ioi	nic
\square no	onpolar ionic

189) What does it mean when a molecule is said to be polar?	
\Box one end of the molecule is slightly negative while the other end is slightly positive	
□ both ends of the molecule are slightly positive	
□ both ends of the molecule is slightly negative	
☐ the molecule is neutral	
☐ the difference in electronegativities is zero	
and the difference in electronegativities is zero	
190) The shape of a water molecule is	
☐ trigonal	
□ bent	
☐ linear	
☐ tetrahedral	
191) Intermolecular forces are forces	
☐ within molecules	
☐ between molecules	
☐ pushing molecules apart	
\square of attraction between the protons and electrons	
192) Which of the following is a polar molecule?	
□ CCl ₄	
\square CO ₂	
\Box CH ₄	
\Box CH ₃ Cl	
193) What is the predicted bond angle for a molecule with a trigonal planar electron-pa	ir
geometry?	
□ 180o	
□ 120o	
□ 109.5o	
□ 45o	
□ 90o	
194) What is the electron-pair geometry for a molecule with two electron pairs?	
☐ Linear	
☐ Trigonal planar	
☐ Tetrahedral	
☐ Trigonal bipyramidal	
□ Octahedral	
195) Which of the following molecules dissolves in water?	
\square CCl ₄	
\square CBr ₄	
\Box C ₆ H ₆	
□ H ₃ OH	мон

196) The chemical formula of lead sulphate is
\square Pb ₂ SO ₄
\square Pb(SO ₄) ₂
\square PbSO ₄
\square Pb ₂ (SO ₄) ₃
197) Which information is not conveyed by a balanced chemical equation?
☐ Physical states of reactants and products
☐ Symbols and formulae of all the substances involved in a particular reaction
☐ Number of atoms/molecules of the reactants and products formed
☐ Whether a particular reaction is actually feasible or not
198) Chemically rust is
☐ hydrated ferrous oxide
□ only ferric oxide
☐ hydrated ferric oxide
\square none of these
199) Both CO ₂ and H ₂ gases are
☐ heavier than air
□ colorless
□ acidic in nature
□ soluble in water
200) Which of the following gases can be used for storage of fresh sample of an oil for a long
time?
☐ Carbon dioxide or oxygen
☐ Nitrogen or helium
☐ Helium or oxygen
☐ Nitrogen or oxygen
201) The electrolytic decomposition of water gives H ₂ and O ₂ in the ratio of
☐ 1: 2 by volume
□ 2: 1 by volume
□ 8: 1 by mass
☐ 1: 2 by mass
202) In the decomposition of lead nitrate to give lead oxide, nitrogen dioxide and oxygen
gas, the coefficient of nitrogen dioxide (in the balanced equation) is
□ 1
\square 2
\square 3
\Box 4

203) Fatty foods become rancid due to the process of
\square oxidation
☐ hydrogenation
204) Silver article turns black when kept in the open for a few days due to formation of
\square H ₂ S
\square AgS
\square AgSO ₄
\square Ag ₂ S
205) When crystals of lead nitrate are heated strongly in a dry test tube
☐ crystals immediately melt
☐ a brown residue is left
\Box white fumes appear in the tube
\square a yellow residue is left
206) Dilute hydrochloric acid is added to granulated zinc taken in a test tube. The following observations are recorded. Point out the correct observation.
☐ The surface of metal becomes shining
☐ The reaction mixture turns milky
☐ Odor of a pungent smelling gas is recorded
☐ A colorless and odorless gas is evolved
207) When carbon dioxide is passed through lime water,
☐ calcium hydroxide is formed
☐ white precipitate of CaO is formed
☐ lime water turns milky
\Box color of lime water disappears.
208) When a magnesium ribbon is burnt in air, the ash formed is
□ black
□ white
□ yellow
□ pink
209) In which of the following, heat energy will be evolved?
☐ Electrolysis of water
☐ Dissolution of NH4Cl in water
☐ Burning of L.P.G.
☐ Decomposition of AgBr in the presence of sunlight

210) Rancidity can be prevented by
☐ adding antioxidants
☐ storing food away from light
☐ keeping food in refrigerator
\square all of these
211) The reaction of H ₂ gas with oxygen gas to form water is an example of
□ combination reaction
☐ redox reaction
□ exothermic reaction
\square all of these reactions
212) The reaction in which two compounds exchange their ions to form two new compounds
is called
☐ replacement reaction
□ combination reaction
☐ double replacement reaction
☐ redox reaction
213) On immersing an iron nail in CuSO ₄ solution for few minutes, you will observe
□ no reaction takes place
☐ the color of solution fades away
☐ the surface of iron nails acquires a black coating
☐ the color of solution changes to green
214) An element X on exposure to moist air turns reddish-brown and a new compound Y is
formed. The substance X and Y are
$\square X \to Fe, Y \to Fe_2O_3$
$\square X \to Ag, Y \to Ag_2S$
$\square X \to Cu, Y \to CuO$
$\square X \to Al, Y \to Al_2O_3$
215) Which among the following is not a physical change?
☐ Melting of solids to liquids
☐ Vaporization of liquids to gases
☐ Liquefaction of gases to liquids
☐ Decay of matter
216) Which among the following is not a chemical change?
☐ Melting of ice
☐ Carbon cycle
☐ Dehydration of substances
☐ Fermentation of substances

217) Physical changes are
□ temporary
□ permanent
☐ irreversible
□ endothermic
218) An example of a chemical change is
☐ formation of clouds
☐ glowing of an electric light
☐ dropping sodium into water
☐ dissolving of salt in water
219) Which of these will cause a chemical change to occur?
☐ Grinding of wheat into flour
☐ Lighting of a gas stove
☐ Evaporation of water from a lake
☐ Ringing of an electric bell
220) Chemical changes are
☐ temporary, reversible and a new substance is produced
☐ always accompanied by exchange of light
☐ permanent, irreversible and a new substance is produced
☐ never accompanied by exchange of light and heat energy
221) Which of the following is a physical change?
☐ Solubility in water
☐ Combustibility
☐ Aerial oxidation
☐ Reaction with water
222) Which of the following information is conveyed by a chemical reaction?
☐ The color changes taking place
☐ The structure of the reactants and products
☐ The absorption of energy only
☐ The masses of the reactants and products involved in the reaction
223) Which is the correct symbol for manganese?
\square M
□ Ma
\square Mn
\sqcap M σ

224) The symbol H stands forof hydrogen.
\square one atom
\square one molecule
\square one ion
☐ two atoms
225) The correct formula for nitrogen dioxide is
\square NO
\square N ₂ O
\square NO ₂
\square N ₂ O ₅
226) The correct formula for ammonium sulphate is
□ NH ₄ SO ₄
$\square (NH_4)_2SO_4$
$\square (NH_3)_2SO_4$
$ \square (NH_4)_2(SO_4)_2 $
227) Which of the following is an incorrect formula?
\square NaCl ₂
\square BaSO ₄
\Box H ₂ CO ₃
\square P ₂ O ₅
228) In one molecule of ammonium sulphide there are
☐ 2 atoms of N, 8 atoms of H, and 1 atom of S
☐ 1 atom of N, 4 atoms of H, and 1 atom of S
☐ 1 atom of N, 4 atoms of H, and 2 atoms of S
☐ 2 atoms of N, 8 atoms of H, and 2 atoms of S
229) The correctly balanced equation for $FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$ is
$\Box 2 \text{FeS}_2 + O_2 \rightarrow \text{Fe}_2 O_3 + 4 \text{SO}_2$
\square 2FeS ₂ +3O ₂ \rightarrow 2Fe ₂ O ₃ + 4SO ₂
$_{\square}$ 4FeS ₂ + 4O ₂ \rightarrow 2Fe ₂ O ₃ + 2SO ₂
$\frac{-}{\Box} 4 \text{FeS}_2 + 110_2 \rightarrow 2 \text{Fe}_2 \text{O}_3 + 8 \text{SO}_2$
230) The sign used to indicate a reversible reaction is
□ →
^_

231) Breaking of lead bromide into lead and bromine is an example of
☐ decomposition reaction
☐ synthesis reaction
☐ replacement reaction
☐ neutralization reaction
232) In the equation $PbO_2 + 4HCl \rightarrow PbCl_2 + 2H_2O + Cl_2, \text{ the substance undergoing oxidation is } \$
☐ lead dioxide
☐ hydrochloric acid
☐ hydrogen
☐ lead chloride
233) NaCl + AgNO ₃ \rightarrow AgCl + NaNO ₃ is an example of
□ neutralization reaction
☐ redox reaction
☐ double replacement reaction
☐ decomposition reaction
234) In the reaction:
$BaCl_2 + ZnSO_4 \rightarrow ZnCl_2 + BaSO_4$, the white precipitate seen is due to
\Box ZnCl ₂
\Box BaSO ₄
\Box BaCl ₂
\square ZnSO ₄
235) A chemical reaction has taken place in which of the following process?
☐ Ice melts into water
☐ A wet shirt got dried in sunlight
☐ A brown layer is formed over iron rod kept in air
☐ Sugar getting dissolved in water
236) Which of the following is not a chemical Reaction?
☐ Formation of salt solution
☐ Milk turns sour in hot weather
☐ Burning of match stick
☐ Contamination of food

237) A chemical reaction has taken place can be represented by which of the following condition?
☐ Evolution of gas
☐ Heat released
☐ Change in color
☐ All the above
238) A chemical equation properly written has which of the following features?
☐ Temperature required
☐ Should be balanced
☐ Should have information regarding physical states
☐ All the above
239) A Chemical equation should be balanced to
☐ Display conservation of energy
☐ Display conservation of mass
☐ To make equation attractive
☐ All the above
240) An unbalanced chemical equation is equation written in Skeletal form
□ Proper form
☐ Simple form
☐ Unorganized form
241) A chemical equation is said to be balanced if number of
☐ Compounds are same in both side
☐ Molecules are same in both side
☐ Number of atoms is same in both side
☐ Number of electrons are same in both side
242) When magnesium is burnt in air then
☐ Magnesium is reacting with oxygen
☐ Magnesium is reacting with oxygen
☐ Magnesium is reacting with narbon
☐ Magnesium is reacting with Carbon di oxide
in Wagnesium is reacting with Carbon di Oxide
243) Write values of a,b and c if following chemical reaction is balanced .
$\mathbf{aMg} + \mathbf{bO}_2 \rightarrow \mathbf{cMgO}$
$\Box a \rightarrow 1, b \rightarrow 2, c \rightarrow 2$
$\Box a \rightarrow 2, b \rightarrow 1, c \rightarrow 2$
$\Box a \rightarrow 2, b \rightarrow 2, c \rightarrow 2$
\Box a \rightarrow 1, b \rightarrow 2, c \rightarrow 1

244) Write values of a, b and c so that following chemical equation is balance	ced
$aH_2 + bO_2 \rightarrow cH_2O$	
$\Box a \rightarrow 2, b \rightarrow 1, c \rightarrow 2$	
$\Box a \rightarrow 1, b \rightarrow 1, c \rightarrow 2$	
$\Box a \rightarrow 1, b \rightarrow 2, c \rightarrow 1$	
$\Box \ a \rightarrow 2, b \rightarrow 2, c \rightarrow 1$	
245) Potassium chlorate (+ heat) → Potassium chloride + Oxygen [2 KClO ₃	\rightarrow 2 KCl + 3 O ₂]
is an example of	
☐ synthesis or direct combination reaction	
☐ simple replacement reaction	
☐ decomposition reaction	
☐ double replacement reaction	
☐ Half-n-half Clue	
246) Zinc + Hydrochloric acid → Zinc chloride + Hydrogen [Zn + 2 HCl →	$ZnCl_2 + H_2$] is
an example of	
☐ simple replacement reaction	
☐ decomposition reaction	
☐ synthesis or direct combination reaction	
☐ double replacement reaction	
☐ Half-n-half Clue	
247) Magnesium + Oxygen \rightarrow Magnesium oxide [2 Mg + O ₂ \rightarrow 2 MgO] is a	n example of
☐ simple replacement reaction	
☐ synthesis or direct combination reaction	
☐ decomposition reaction	
☐ double replacement reaction	
☐ Half-n-half Clue	
248) Sodium oxide + Water → Sodium hydroxide [Na ₂ O + H ₂ O → 2 NaOH]	is an example of
☐ decomposition reaction	
☐ double replacement reaction	
☐ simple replacement reaction	
☐ synthesis or direct combination reaction	
☐ Half-n-half Clue	
249) Copper carbonate (+ heat) → Copper oxide + Carbon dioxide [CuCO ₃	$s \rightarrow CuO + CO_2$
is an example of	
☐ synthesis or direct combination reaction	
☐ simple replacement reaction	
☐ decomposition reaction	
☐ double replacement reaction	
☐ Half-n-half Clue	Po MOHAA

250) Iron + Sultur \rightarrow Iron sultide [Fe + S \rightarrow FeS] is an example of
☐ synthesis or direct combination reaction
☐ simple replacement reaction
☐ decomposition reaction
☐ double replacement reaction
☐ Half-n-half Clue
251) Water (+ electric current) \rightarrow Hydrogen + Oxygen [2 H ₂ O \rightarrow 2 H ₂ + O ₂] is an example of
☐ decomposition reaction
☐ synthesis or direct combination reaction
☐ simple replacement reaction
☐ double replacement reaction
252) Identify the type of reaction, No. 1 2H. 2NU.
252) Identify the type of reaction: $N_2 + 3H_2 \rightarrow 2NH_3$
☐ Synthesis☐ Decomposition
•
☐ Single Replacement
☐ Double Replacement
☐ Combustion
253) Identify the type of reaction:2NaI + $_{F2} \rightarrow$ 2NaF + I_2
☐ Synthesis
☐ Decomposition
☐ Single Replacement
☐ Double Replacement
☐ Combustion
254) Identify the type of reaction:2AgCl + BaBr ₂ \rightarrow 2AgBr + BaCl ₂
□ Synthesis
☐ Decomposition
☐ Single Replacement
☐ Double Replacement
☐ Combustion
255) Identify the type of reaction: $C_2H_6 + 5O_2 \rightarrow 3H_2O + 2CO_2$
☐ Synthesis
☐ Decomposition
☐ Single Replacement
☐ Double Replacement
☐ Combustion

256) Identify the type of reaction: $2H_2O \rightarrow 2H_2 + O_2$
☐ Synthesis
☐ Decomposition
☐ Single replacement
☐ Double replacement
☐ Combustion
257) How many atoms of oxygen are on the reactant side? $2H_2O \rightarrow 2H_2 + O_2$
□ One
□ Two
☐ Four
☐ Three
☐ I don't know!
258) How many atoms of oxygen are on the left side? $2H_2O \rightarrow 2H_2 + O_2$
□ One
□ Two
☐ Four
☐ Three
☐ I don't know!
259) How many nitrogen atoms are on the right side? $N_2 + 3H_2 \rightarrow 2NH_3$
259) How many nitrogen atoms are on the right side? $N_2 + 3H_2 \rightarrow 2NH_3$ \Box Three
☐ Three
☐ Three ☐ Two
☐ Three ☐ Two ☐ Four
 □ Three □ Two □ Four □ Six
☐ Three ☐ Two ☐ Four
 □ Three □ Two □ Four □ Six □ I don't know!
 □ Three □ Two □ Four □ Six □ I don't know! 260) How many hydrogen atoms are on the product side? N ₂ + 3H ₂ → 2NH ₃ □ Six □ Five □ Four
 □ Three □ Two □ Four □ Six □ I don't know! 260) How many hydrogen atoms are on the product side? N₂ + 3H₂ → 2NH₃ □ Six □ Five □ Four □ Three
 □ Three □ Two □ Four □ Six □ I don't know! 260) How many hydrogen atoms are on the product side? N ₂ + 3H ₂ → 2NH ₃ □ Six □ Five □ Four
 □ Three □ Two □ Four □ Six □ I don't know! 260) How many hydrogen atoms are on the product side? N₂ + 3H₂ → 2NH₃ □ Six □ Five □ Four □ Three
 □ Three □ Two □ Four □ Six □ I don't know! 260) How many hydrogen atoms are on the product side? N ₂ + 3H ₂ → 2NH ₃ □ Six □ Five □ Four □ Three □ Two
 □ Three □ Two □ Four □ Six □ I don't know! 260) How many hydrogen atoms are on the product side? N ₂ + 3H ₂ → 2NH ₃ □ Six □ Five □ Four □ Three □ Two 261) The chemical reaction: 2 H ₂ O → 2 H ₂ + O ₂ is a:
 □ Three □ Two □ Four □ Six □ I don't know! 260) How many hydrogen atoms are on the product side? N ₂ + 3H ₂ → 2NH ₃ □ Six □ Five □ Four □ Three □ Two 261) The chemical reaction: 2 H₂O → 2 H₂ + O₂ is a: □ synthesis reaction
 □ Three □ Two □ Four □ Six □ I don't know! 260) How many hydrogen atoms are on the product side? N ₂ + 3H ₂ → 2NH ₃ □ Six □ Five □ Four □ Three □ Two 261) The chemical reaction: 2 H₂O → 2 H₂ + O₂ is a: □ synthesis reaction □ decomposition reaction

202) The chemical reaction:	
\square synthesis reaction	
☐ decomposition reaction	
☐ single replacement reac	etion
☐ double replacement rea	ction
☐ combustion reaction	
263) The chemical reaction:	$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ is a:
\square synthesis reaction	
☐ decomposition reaction	
☐ single replacement reac	etion
☐ double replacement rea	ction
\square combustion reaction	
264) TILL 1	7
	$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ is a:
synthesis reaction	
☐ decomposition reaction	
☐ single replacement reac	
☐ double replacement rea	ction
☐ combustion reaction	
265) The chemical reaction:	$2 H_2 + O_2 \rightarrow 2 H_2O$ is a:
265) The chemical reaction: synthesis reaction	$2 H_2 + O_2 \rightarrow 2 H_2O$ is a:
☐ synthesis reaction	
☐ synthesis reaction☐ decomposition reaction	
☐ synthesis reaction☐ decomposition reaction☐ single replacement reaction	ction
☐ synthesis reaction☐ decomposition reaction	ction
 □ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction 	ction ction
 □ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction 266) The chemical reaction:	ction
 □ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction 	ction ction
□ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction	etion ction $CH_4 + 2 \ O_2 \rightarrow CO_2 + 2 \ H_2O \ is \ a:$
 □ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction 266) The chemical reaction: □ synthesis reaction 	etion ction $CH_4 + 2 \ O_2 \rightarrow CO_2 + 2 \ H_2O \ is \ a:$
synthesis reaction decomposition reaction single replacement reaction double replacement reaction combustion reaction 266) The chemical reaction: synthesis reaction decomposition reaction single replacement reaction double replacement reaction	etion ction $CH_4 + 2 \ O_2 \rightarrow CO_2 + 2 \ H_2O \ is \ a:$ etion
□ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction 266) The chemical reaction: □ synthesis reaction □ decomposition reaction □ single replacement reaction	etion ction $CH_4 + 2 \ O_2 \rightarrow CO_2 + 2 \ H_2O \ is \ a:$ etion
□ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction	etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion etion
□ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ the chemical reaction □ single replacement reaction □ combustion reaction	etion ction $CH_4 + 2 \ O_2 \rightarrow CO_2 + 2 \ H_2O \ is \ a:$ etion
□ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ synthesis reaction	etion ction $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion ction $2 Fe + 6 NaBr \rightarrow 2 FeBr_3 + 6 Na \text{ is a:}$
□ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction □ single replacement reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction □ synthesis reaction □ decomposition reaction	etion etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion etion $2 Fe + 6 NaBr \rightarrow 2 FeBr_3 + 6 Na \text{ is a:}$
□ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ double replacement reaction □ synthesis reaction □ synthesis reaction □ synthesis reaction □ decomposition reaction □ single replacement reaction □ single replacement reaction	etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion
□ synthesis reaction □ decomposition reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction □ single replacement reaction □ single replacement reaction □ double replacement reaction □ combustion reaction □ synthesis reaction □ decomposition reaction □ synthesis reaction □ decomposition reaction	etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \text{ is a:}$ etion

268) The chemical reaction: $Pb + O_2 \rightarrow PbO_2$ is a:
\square synthesis reaction
☐ decomposition reaction
☐ single replacement reaction
☐ double replacement reaction
□ combustion reaction
260) The chamical reaction $2CO \pm O \rightarrow 2CO$ is a
269) The chemical reaction: $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$ is a:
□ synthesis reaction
☐ decomposition reaction
☐ single replacement reaction☐ double replacement reaction
□ combustion reaction
270) The chemical reaction: $Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2 H_2O$ is a:
□ synthesis reaction
☐ decomposition reaction
☐ single replacement reaction
☐ double replacement reaction
□ combustion reaction
271) Which of the following substances should be written in molecular form in an ionic
equation?
\square Na ₂ SO ₄
\square K ₂ CO ₃
\square BaCl ₂
\Box Fe(OH) ₃
\Box Ba(OH) ₂
272) Which of the following substances should be written in molecular form in net ionic
equations representing reactions in aqueous solutions?
□ NaNO ₂
\square KC ₂ H ₃ O ₂
□ HI
\square HNO ₂
\square HNO ₃
273) Which net ionic equation best represents the reaction (if a reaction occurs) between
AgCl and KNO ₃
$\Box AgCl + NO_3^- \rightarrow AgNO_3 + Cl^-$
$\Box Ag + + K + \rightarrow AgK$
$\Box Ag + NO_3 \rightarrow AgNO_3$
$\Box AgCl + KNO_3 \rightarrow AgNO_3 + KCl$
□ No reaction

274) Write the net ionic equation for the reaction, if any, which occurs when Na ₂ CO ₃ and hydrochloric acid are mixed. Both are in aqueous solution if soluble. □ Na ₂ CO ₃ + 2H ⁺ → 2Na ⁺ + CO ₂ + H ₂ O □ CO ₃ ²⁻ + 2H+ → CO ₂ + H ₂ O □ Na+ + Cl ⁻ → NaCl □ Na ₂ CO ₃ + HCl → No Reaction
275) What is the correct net ionic equation for the reaction (if a reaction occurs) between Fe(NO ₃) ₃ and KOH □ Fe(NO ₃) ₃ + 3OH ⁻ → Fe(OH) ₃ + 3NO ₃ ⁻ □ Fe(NO ₃) ₃ + 3KOH → Fe(OH) ₃ + 3KNO ₃ □ No reaction □ Fe ³⁺ + 3KOH → Fe(OH) ₃ + 3K ⁺ □ Fe ³⁺ + 3OH ⁻ → Fe(OH) ₃
276) Which net ionic equation best represents the reaction (if a reaction occurs) between NaC ₂ H ₃ O ₂ and HCl:
277) Choose the correct net ionic equation for the reaction (if a reaction occurs) between $Ba(OH)_2$ and H_2SO_4 \square $Ba(OH)_2 + H_2SO_4 \rightarrow$ No reaction \square $OH^- + H^+ \rightarrow H_2O$ \square $Ba^{2+} + 2OH^- + 2H + + SO_4^{2-} \rightarrow BaSO_4 + 2H_2O$ \square $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$ \square $Ba^{2+} + H_2SO_4 \rightarrow BaSO_4 + 2H^+$
278) The correct form of the acid HF as it should be written in an ionic equation is: □ H ⁺ + F ⁻ □ HF ⁻ □ HF ⁺ □ HF □ HF
 279) Which of the following net ionic equations best represents the reaction that takes (if any) when sodium metal is placed in water? □ Na + H₂O → Na₂O + H₂ □ 2Na + 2H₂O → 2Na⁺ + 2OH⁻ + H₂ □ Na + H₂O → NaH + OH □ Na + H₂O → Na⁺ + OH⁻ + H₂

 \square Na + H₂O \rightarrow no reaction

280) The net ionic equation for the reaction,	if any, when aqueous solutions of CuCl2 and
Na ₂ S are mixed is:	

 \Box Cu²⁺ + S²⁻ \rightarrow CuS

 \square CuCl₂ + S²⁻ \rightarrow CuS + 2Cl⁻

 \square Na₂S + Cu²⁺ \rightarrow CuS + 2Na⁺

 \square Cu + S \rightarrow CuS

 \square Na₂S + CuCl₂ \rightarrow CuS + 2NaCl

281) The net ionic equation for the reaction, if any, which occurs when aqueous solutions of manganese chloride and sodium carbonate are mixed is:

 \square MnCl₂ + CO₃²⁻ \rightarrow MnCO₃ + 2Cl⁻

 \square MnCl₂ + 2Na⁺ \rightarrow 2NaCl + Mn²⁺

 \square Mn²⁺ + CO₃²⁻ \rightarrow MnCO₃

 \square Mn²⁺ + 2Cl- + 2N^{a+} + CO₃²⁻ \rightarrow no reaction

 \square MnCl₂ + Na₂CO₃ \rightarrow MnCO₃ + 2NaCl

282) Which of the following substances should be written in molecular form in an ionic equation?

 \square HC₂H₃O₂

□ HBr

 \square HC1

 \square HI

 \square HNO₃

283) which of the following should be represented in ionic form in aqueous solution?

 \square HNO₂

 \Box HF

☐ HClO₄

☐ HCN

 \square HC₂H₃O₂

284) Which of the following net ionic equations best represents the reaction that takes place when solid calcium carbonate and aqueous nitric acid solution are mixed?

 $\Box CO_3^{2-} + 2H^+ \rightarrow H_2CO_3$

 $\ \square \ CaCO_3 + 2HNO3 \rightarrow \ Ca(NO_3)_2 + H_2CO_3$

 \Box CaCO₃ + 2H⁺ \rightarrow Ca²⁺ + H₂CO₃

 \Box CaCO₃ + 2H⁺ \rightarrow Ca²⁺ + H₂O + CO₂

 $\square \ Ca^{2+} + 2NO_3^- \rightarrow \ Ca(NO_3)_2$

285) When the following equation is balanced with the smallest possible set of integer coefficients, what is the coefficient of Pb?
$- PbO + - NH_3 \rightarrow - Pb + - N_2 + - H_2O$
\square 2
\square 5
\Box 4
\square 3
286) When the following chemical equation is correctly balanced, using the smallest possible whole number coefficients, the coefficient before the H_2O is:
$\underline{Mg_3N_2} + \underline{H_2O} \rightarrow \underline{Mg(OH)_2} + \underline{NH_3}$
\square 5
287) The net ionic equation for the reaction , if any, when aqueous solutions of H_2SO_4 and $Ba(OH)_2$ are mixed is:
288) Which net ionic equation best represents the reaction (if a reaction occurs) between
CuCl ₂ and K ₂ S
$\Box \text{ CuCl}_2 + \text{S}^{2-} \rightarrow \text{ CuS} + 2\text{Cl}^-$ $\Box \text{ Cu}^{2+} + \text{K}_2\text{S} \rightarrow \text{ CuS} + 2\text{K}^+$
$\Box Cu^{2+} + S^{2-} \rightarrow CuS$ $\Box Cu^{2+} + S^{2-} \rightarrow CuS$
☐ No reaction will occur.
289) When the following equation is balanced with the smallest whole number coefficients
possible, the coefficient of KNO ₃ is:
$_K_3PO_4 + _Ca(NO_3)_2 \rightarrow _KNO_3 + _Ca_3(PO_4)_2$
\square 3 \square 2
\square 4

290) A mole of any substance contains
\Box 6.022 × 10 ²² particles
\Box 6.022 × 10 ²³ particles
\Box 6.022 × 10 ²⁴ particles
\Box 6.022 × 10 ²⁵ particles
•
291) 1 mole of substance refers to
□ molar mass
□ atomic mass
☐ electron mass
☐ neutron mass
292) 6.022×10^{23} atoms of Sulphur contains
\Box 2 moles
\square 3 moles
☐ 4 moles
□ 1 mole
293) If one mole of carbon contains x atoms then number of atoms in 12g of Mg are
\square x
\square 0.5x
\square 2x
□ 1.5x
294) The number of atoms of hydrogen in 2 moles of NH ₃
$\Box 5 \times 10^{23}$
$\square 3.01 \times 10^{23}$
$\square 3.61 \times 10^{24}$
$\square \ 4 \times 10^{23}$
295) What is the mass of one mole of Fe ₂ CO ₃ ?
\square 83.9
\Box 163.7
□ 171.7
\square 202.3
206) What is the pareent composition of average in As. O. 2
296) What is the percent composition of oxygen in As ₃ O ₂ ?
\Box 12.5%
□ 53%
\Box 60%
\square 87.5%

297) If the empirical formula is $MgBr_2$, which of the following formulas is an example of	a
possible molecular formula?	
\square Mg ₂ Br	
\square Mg ₂ Br ₄	
\square Mg ₃ Br ₂	
\square Mg ₄ Br ₂	
298) What is an empirical formula?	
\square Shows the number of atoms	
\Box The formula you find from dividing all mole values by the smallest mole value	
☐ The proportion of elements in a compound	
299) Calculate the percent composition of hydrogen in sodium bisulfate	
$\square \ 0.8\%$	
\square 1.4%	
\square 19.2%	
□ 80.8%	
300) If the empirical formula is 80% carbon and 20% hydrogen, how much mass of each	l
does that represent?	
☐ 20 g carbon, 80 g hydrogen	
□ 80 g carbon, 20 g hydrogen	
□ 100 g	
☐ There is not enough information	
301) What is Avogadro's number?	
$\Box 6.02 \times 10_{22}$	
$\Box 6.02 \times 10_{23}$	
\square 22.4	
☐ The molar mass of an element	
302) 22.4 L at STP is equal to which of the following?	
\square 1 mole of gas	
☐ 1 mole of liquid	
☐ 22.4 moles of gas	
☐ 22.4 moles of liquid	
303) How many atoms are in three moles of oxygen?	
$\Box 1.81 \times 10_{24}$	
$\Box 2.01x10_{23}$	
$\Box 6.02x10_{23}$	
\square 32	

504) What is the percent water in magnesium sumue umyurate:
\square 24.2%
\square 43.1%
\square 75.8%
305) The number of atoms in a mole of any pure substance is called
☐ its atomic number.
☐ Avogadro's number.
☐ its mass number.
☐ its gram-atomic number.
306) What can be said about 1 mol Ag and 1 mol Au?
☐ They are equal in mass.
☐ They contain the same number of atoms.
☐ Their molar masses are equal.
☐ They have the same atomic mass.
☐ They have the same atomic mass.
307) An Avogadro's number of any element is equivalent to
the atomic number of that element.
☐ the mass number of that element.
$\Box 6.022 \times 10^{23} \text{ particles.}$
\Box 12 g of that element.
308) The atomic mass of hydrogen is 1.008 amu. The reason that this value is not a whole
number is that
☐ hydrogen only exists as a diatomic molecule.
\Box the mass of hydrogen is the sum of the masses of the protons and electrons in the atom.
\Box the mass of a proton is not exactly equal to 1 amu.
☐ hydrogen has more than one isotope.
309) A chemical formula includes the symbols of the elements in the compound and
subscripts that indicate
\Box the number of formula units present.
\Box the number of atoms or ions of each type.
\Box the formula mass.
\Box the charges on the elements or ions.
310) How many atoms of fluorine are in a molecule of carbon tetrafluoride, CF ₄ ?
\square 2
\Box 4
\square 5

311) A formula that shows the simplest whole-number ratio of the atoms in a compound is	
the	
☐ molecular formula.	
☐ ideal formula.	
□ structural formula.	
☐ empirical formula.	
•	
312) The molar mass of an element is the mass of one	
\square atom of the element.	
\Box liter of the element.	
\square gram of the element.	
\square mole of the element.	
313) To determine the molar mass of an element, one must know the element's	
☐ Avogadro number.	
□ atomic number.	
□ number of isotopes.	
□ average atomic mass.	
a worde deathe mass.	
314) What is the molar mass of magnesium?	
□ 12.00 g	
□ 26.982 g	
□ 24.305 g	
□ 22.990 g	
315) What is the empirical formula for a compound that is 36.1% Ca and 63.9% Cl?	
\square Ca ₂ Cl	
\square CaCl ₂	
\Box Ca ₂ Cl ₂	
316) The molecular formula for vitamin C is $C_6H_8O_6$. What is the empirical formula?	
□ СНО	
\square CH ₂ O	
\Box C ₃ H ₄ O ₃	
\Box C ₂ H ₄ O ₂	
317) The percentage of sulfur in SO_2 is about 50% . What is the percentage of oxygen in this	
compound?	
\square 25%	
□ 50%	
\square 75%	
□ 90%	
De MOITA	N.

318) Wha	at is the percentage of OH– in Ca(OH) ₂ ?
□ 45	1.9%
□ 66	5.6%
□ 75	7%
□ 90	0.1%
	w many atoms are there in 3.33 moles of strontium?
	00×10^{24} atoms
	21×10^{32} atoms
	1×10^{11} atoms
□ 4.2	24×10^{23} atoms
320) Hov	w many atoms are there in 3.33 moles of strontium?
\square 2.0	00×10^{24} atoms
\square 3.2	21×10^{32} atoms
□ 1.1	1×10^{11} atoms
\square 4.2	24×10^{23} atoms
321) Wha	at is the mass of 3.35 moles of sulfur trioxide?
□ 33:	5 g
□ 26	
□ 24.	
222) Цох	v many moles are there in 425.0 g of sodium chloride?
	335 mol
	26 mol
	272 mol
	591 mol
□ 0.0	191 IIIOI
323) Wha	at is the mass of 5.55 moles of carbon monoxide?
\Box 15	5 g
\Box 14:	3 g
□ 13	8 g
□ 12	2 g
324) Avo	gadro's number represents the number of atoms in
	g of C1 ₂
	0g of Sulphur
	g of oxygen
	.7g of iodine

325) The number of moles of carbon dioxide which contain 8 g of oxygen is	
\square 0.5 mol	
\square 0.20 mol	
\square 0.40 mol	
□ 0.25 mol	
326) The total no of ions present in 111 g of cacl ₂ is	
☐ One mole	
☐ Two mole	
☐ Three mole	
☐ Four moles	
225 111 64 61 1 1 1 4 0	
327) Which of the following weighs the most ?	
☐ one g-atom of nitrogen	
☐ One mole of water	
☐ One mole of sodium	
\square One molecule of H ₂ SO ₄	
328) 5.0 liter of 0.4 M H ₂ SO ₄ Contains-	
\square 2.0 Mole Of H ₂ SO ₄	
\square 0.4 mole H ₂ SO ₄	
\Box 5.0 mole H ₂ SO ₄	
\square 2.0 moles H ₂ O	
329) A symbol not only represents the name of the element but also represents-	
its atomic no.	
☐ 1 gm-atom	
☐ its atomicity	
☐ Reactivity.	
□ Reactivity.	
330) Which has maximum number of atoms?	
$\Box 1.806 \times 10^{23}$	
$\square \ 31.80 \times 10^{23}$	
331) The maximum no. of molecules is present in	
☐ 15 L of H ₂ gas at S.T.P	
\square 5 L of N ₂ gas at S.T.P	
\square 0.5 g of H ₂ gas	
\Box 10 g of O_2 gas.	
332) The number of g-atom of oxygen in 6.02×10^{24} CO molecules is	
\square 0.5	
\Box 5	
\square 10	
\Box 1	- Pro IV

555) Number of electrons in 1.8 inl of 1	n ₂ O is:
$\Box 6.02 \times 10^{23}$	
$\Box 3.011 \times 10^{23}$	
$\Box 0.6022 \times 10^{23}$	
\Box 60.22 × 10 ²³	
334) Which names are associated with 1	1g / NA ?
☐ Rutherford	
☐ Dalton	
☐ Avogadro	
☐ 1 gram	
335) 100 g caco3 is treated with I liter of	f 1N HCl. What would be the weight of co2 liberated
after the completion of the reaction	
□ 5.5 g	
□ 11g	
□ 22g	
□ 33g	
□ 33g	
336) The mass of carbon present in 0.5	mole of K4 [Fe(CN) ₆] is
□ 1.8 g	
□ 18 g	
□ 3.6 g	
□ 36 g	
337) Number of water molecules in the	drop of water, if 1 ml of water has 20 drops and A is
Avogadro's number, is-	
□ 0.5A/18	
□ 0.05A	
□ 0.5A	
□ 0.05A/18	
338) 0.224 L of H ₂ gas at S.T.P is equiva	alent to
□ mol	
□ 1g	
339) A sample of phosphorus trichlorid	le (PCl ₃) contains 1 .4 moles of the substance. how
many atoms are there is the sampl	e?
□ 5.6	
□ 4	
$\square \ 8.431 \times 10^{23}$	
\Box 3 372 × 10 ²⁴	

340) Which among the following is the heaviest?
☐ One mole is oxygen
☐ One molecule of Sulphur trioxide
☐ 100 amu of uranium
☐ 44 g of carbon dioxide.
341) 6.02×10^{22} molecules of N_2 at NTP will occupy a volume of
\square 22.4 liters
\square 2.24 liters
\Box 6.02 liters
\Box 6.02 mL
342) How many grams are contained in 1 gram-atom of Na?
\square 13g
□ 23g
\square g
□ 1/23g
343) I mole of a compound contain 1 mole of C and 2 moles of O. The molecular weight of the compound is
\square 3
\square 12
\square 32
\square 44
344) The number of atoms of oxygen present in 10.6g of Na ₂ CO ₃ will be.
$\Box 6.02 \times 10^{22}$
$\Box 12.04 \times 10^{22}$
$\square 1.806 \times 10^{23}$
\square 31.8
345) Which of the following has the largest number of atoms?
□ 0.5 g atom of Cu
□ 0.635 g of Cu
□ 0.25 mole of Cu
\square 3.35 × 1020 amu of Cu
346) The number of atoms present in 16 g of oxygen is
$\Box 6.05 \times 1011.5$
$\square 3.01 \times 1023$
$\Box 3.01 \times 1011.5$
\Box 6.02 × 1023

347) Number of atoms in 12 g of C_6^{12} is-
\Box 5
\Box 12
$\Box 6.022 \times 10^{23}$
$\Box 12 \times 6.022 \times 10^{23}$
348) Which of the following contains the greatest number of oxygen atoms?
\Box 1 g of O
\square 1g of O_2
\Box 1 g of O ₃
☐ All have the same number of atoms
349) The total number of atoms represented by the compound CuSO ₄ . 5H ₂ O is -
\square 27
\square 21
\Box 5
\square 8
350) Which of the following has the highest mass?
☐ 1 g-atom of C
\square 3.011×10 ²³ atoms of oxygen
\square 1/2 mole of CH ₄
\Box 10 mL of water
351) If the atomic weight of carbon were set at 24 amu, the value of the Avogadro constant
would be
$\Box 6.022 \times 10^{23}$
$\Box 12.044 \times 10^{23}$
$\Box 3.011 \times 10^{23}$
\square none of these
352) If 32 g of O2 contain 6.022×1023 molecules at NTP then 32g of S, under the same
conditions, will contain,
$\Box 6.022 \times 10^{23} \text{ S}$
$\Box 3.011 \times 10^{23} \text{ S}$
$\Box 12.044 \times 10^{23} \text{ S}$
\Box 1×10 ²³ S
353) Atomic mass of an elements is
\Box the actual mass of one atom of the element
\Box the relative mass of an atom of the element
\Box the average relative mass of different atoms of the element
☐ much different from the mass number of the element.

354) The correct value of Avogadro's number is
$\Box 6.02 \times 10^{21}$
$\Box 6.02 \times 10^{22}$
$\Box 6.02 \times 10^{23}$
$\Box .62 \times 10^{-34}$
355) Which one of the following statements is incorrect?
☐ One gram atom of carbon contains Avogadro's number of atoms.
☐ One mole of oxygen gas contains Avogadro's number of atoms.
☐ One mole of hydrogen contains Avogadro's number of atoms.
\square One mole of electrons stands for 6.02x1023 electrons
356) The no. of gram atoms of oxygen present in 0.3 g mole of (COOH)2.2H2O is:
\square 0.6
\square 1.8
\square 1.2
\square 3.6
357) Which sample contains the largest number of atoms?
\square 1 mg of C ₄ H ₁₀
\square 1 mg of N_2
□ 1 mg of Na
☐ 1 mL of water
358) One mole of P ₄ molecules contain:
☐ 1 molecule of p
☐ 4 molecules of p
$\frac{1}{4}$ \(\frac{1}{4}\) \(\
\Box $4\times6.022\times10^{23}$ atoms of p
\square 24.088 × 10 ²³ atoms of p
359) A formula with the lowest whole # ratio of elements in a compound is called
□ covalent formula
☐ chemical formula
☐ empirical formula
☐ molecular formula
360) A chemical formula that shows the actual # and kinds of atoms present in one molecule
of a compound is called
☐ molecular formula
□ covalent formula
☐ empirical formula
☐ ionic formula

361) Which of the following is an empirical formula?
$\square P_4O_{10}$
\square H ₂ O ₂
\square N ₂ O
\Box C ₂ H ₄
362) All of the following are empirical formulas EXCEPT
\square N ₂ O ₄
\square Na ₂ SO ₄
\Box C ₃ H ₈
\square Al ₃ (SO ₄) ₂
363) Which of the following is the correct empirical formula for C_4H_{10} ?
\Box C ₂ H ₅
\Box C ₈ H ₂₀
\Box C ₄ H ₁₀
\square CH _{2.5}
364) A substance has a molecular formula of $C_8H_10N_4O_2$. The empirical formula is
365) A compound is 25.9% nitrogen and 74.1% oxygen. Find its empirical formula. □ NO
\square N ₄ O ₆
\square N ₂ O ₄
\square N ₂ O ₅
366) Determine the empirical formula for a compound with 87.1% Ag and 12.9% S. $\hfill\Box$ AgS_2
\square Ag ₂ S
\square Ag ₄ S ₂
$\square \ Ag_3S_5$
367) The empirical formula of a substance is CH ₂ O. Its molar mass is 180. What is the
molecular formula?
\Box C ₂ H4O ₂
\Box C ₄ H ₈ O ₄
\Box C ₈ H ₁₆ O ₈
$\Box C_6H_{12}O_6$

368) Epinephrine (adrenaline) is a hormone secreted into the bloodstream in times of stress.
It contains 59.0% C, 7.15% H, 26.20% O, and 7.65% N and has a molar mass of
183 g/mol. What is its molecular formula?
\Box C7H ₉ N ₂ O
\square C ₈ H ₁₂ NO ₂
\Box C ₅ H ₁₁ N3O ₂
\Box C ₉ H ₁₃ NO ₃
369) The empirical formula for water is
\square CO ₂
□ НО
\square H ₂
\square H ₂ O
370) The molecular formula gives
☐ simplest ratio of atoms
□ actual whole number ratio of atoms
□ whole number ratio of atoms
□ natural number ratio of atoms
371) In glucose the simplest ratio between C, H and O is
$\square \ 2:1:3$
$\square \ 3:2:1$
\square 1:2:1
$\square \ 3:4:1$
372) The formula which gives the simplest whole number ratio of atoms is
☐ empirical formula
☐ molecular formula
☐ chemical formula
□ none of above
373) To convert between moles and atoms of a substance, must be used.
☐ formula masses
□ mole ratios
□ atomic masses
☐ Avogadro's number
374) The simplest whole-number ratio of atoms in a compound is called the
☐ empirical formula
☐ molecular formula
☐ formula mass
\square none of the above

375) What is the empirical formula of a compound containing 0.347 mole P to 1.031 mole Cl?
\square PCl ₃
\square PCl ₅
\square P ₂ Cl ₅
\square P ₂ Cl ₆
376) Determine the empirical formula of a compound that was found to contain 6.412 g
potassium, 2.292 g N, and 7.871 g O.
\square KN ₂ O ₅
\square KNO ₃
\square KNO ₂
\square K ₂ NO ₅
377) How many atoms of chromium are in 2.35 g Na ₂ Cr ₂ O ₇ ?
$\square 2.14 \times 10^{22}$
$\Box 5.39 \times 10^{21}$
$\square 1.08 \times 10^{22}$
$\Box 9.27 \times 10^{-23}$
□ 9.27 × 10
378) Why do chemists usually work with moles instead of amu?
amu's are hard to count
☐ individual atoms or molecules are too small
☐ they like large numbers
☐ they are lazy
379) How many grams are in 1 mole of 16O?
☐ it depends on the element
☐ it depends on the formula of the compound
\Box 16
$\Box 6.022 \times 10^{23}$
□ 6.022 x 10 ⁻³
280) To convert between moles and stoms of a substance must be used
380) To convert between moles and atoms of a substance, must be used. ☐ formula masses
☐ mole ratios
□ atomic masses
☐ Avogadro's number
201) Which is the moles mass of a cetylgolicylic acid (agniwin) C.H.O.
381) Which is the molar mass of acetylsalicylic acid (aspirin), C ₉ H ₈ O ₄ :
□ 29 g
□ 108 g
□ 196 g
□ 180 g
\square none of the above

562) How many nyurogen atoms are present in 42 g of animomum carbonate:
\square 3.5
\square 8
$\square \ \ 2.6 \times 10^{23}$
$\square 10^{24}$
$\square \ \ 2.1 \times 10^{24}$
383) A mole of H ₂
\Box contains 6×10^{23} atoms
\Box contains 6×10^{23} molecules
☐ contains 1 gram of hydrogen
\Box is 6 × 10 ²³ grams of hydrogen
\square none of the above
384) How many mL of water must be added to 300 mL of 0.75 M HCl to dilute the solution
to 0.25 M?
□ 900 mL
\square 600 mL
□ 300 mL
□ 930 mL
□ 100 mL
385) What volume of concentrated nitric acid (15.0 M) is required to make 300mL of a
2.5M nitric acid solution?
□ 1.8 L
\square 50 mL
□ 12.5 mL
□ 18 mL
□ 8 mL
386) What is the molarity of a solution that contains 3.00 moles of solute and 12.00 Liters of
solution?
□ 0.25 M
□ 3.00 M
□ 4.00 M
□ 12.00 M
\square Not enough information is given to the question.

387) A compound of vanadium and oxygen is found to be 56.04 percent by weight
vanadium. What is the empirical formula of the compound?
(V = 51.00, O = 16.00)
\square VO ₂
\square V ₂ O
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\square \ \ \mathrm{V_2O_3}$
$\square \ \ \mathrm{V_2O_5}$
388) Calculate the number of moles of CaCO ₃ (Formula wt. = 100) in a sample that weighs
25.0 grams.
\square 25.0
\square 100
\square 4.0
\square 0.750
\square 0.250
389) Calculate the amount of sulfur dioxide produced when 145 grams of iron pyrite (FeS ₂)
completely reacts with oxygen according to the equation:
$\mathbf{4FeS_2} + \mathbf{11O_2} \rightarrow \mathbf{2Fe_2O_3} + \mathbf{8SO_2}$
$(FeS_2 = 120, SO_2 = 64.1)$
\square 77.5
\square 38.7
\square 155
\square 1.21
□ 129
390) Metal X combines with oxygen to form a compound with the formula X_2O_7 . 0.0441 grams of oxygen (O) combines with 0.0432 grams of metal X. Calculate the atomic
weight of X. (Atomic wt. of $O = 16.00$)
\square 15.7
\square 4.48
\square 4.67
\square 54.9
\square 16.3
391) The percent, by weight, of oxygen in barium nitrate, Ba(NO ₃) ₂ is: Weights: $N = 14.0$, $Ba = 137$, $O = 16.0$, $Ba(NO3)2 = 261$
□ 0.368%
□ 6.13%
\square 36.8%
□ 137%
\square 2.30%

, <u>-</u>	of an oxide of an unknown metal, M, contains	0
oxygen. If	the formula of the metal oxide is M_2O , what	is the atomic weight of the
metal M?	Atomic weight: $O = 16.0$	
□ 39.1		
□ 23.0		
□ 46.0		
□ 63.5		
□ 92.0		
393) The molecu	ular formula of the sugar glucose is C ₆ H ₁₂ O ₆ .	
	Molar masses: $C_6H_{12}O_6 = 180$; $C = 12.0$;	H = 1.01; O = 16.0
If a samp	ole of glucose contains 4.00 moles of H, how m	nany moles of C are there in the
sample?		
\Box 4.0		
\square 2.0		
□ 8.0		
□ 18.0		
□ 48.0		
304) What is the	e percent by weight of P in the compound in	D.S.?
□ 17.7	e percent by weight of 1 in the compound in	1 403.
□ 17.7 □ 12.9		
□ 12.9 □ 56.4		
□ 43.2		
□ 77.5		
395) The molecu	ular formula of the sugar glucose is C ₆ H ₁₂ O ₆ .	
	Molar masses: $C_6H_{12}O_6 = 180$; $C = 12.0$;	H = 1.01; O = 16.0
If a samp	ole of glucose contains 3.00 moles of carbon, h	ow many oxygen atoms are
	the sample?	
$\Box 4.98 \times 10^{-2}$	24	
\Box 5.98 × 10 ⁻¹	-23	
\square 2.01 × 10 ²	23	
$\square 1.81 \times 10^2$	24	
$\square \ \ 2.17 \times 10^2$	25	
396) What is the	e number of O atoms in 88.0 grams of CO ₂ (N	MW = 44.0)?
□ 1.00	, ·	
□ 4.00	M	IW = molecular weight
\Box 6.02 × 10 ²	23	
$\square 1.20 \times 10^2$		
$\square 2.41 \times 10^2$		
_ 2.11 \(10		

397) What is the weight of one F_2 molecule in grams?	
(Atomic weight F =	= 19.0)
$\Box 1.58 \times 10^{-22}$	
$\Box 6.31 \times 10^{-23}$	
$\Box 1.43 \times 10^{-23}$	
$\square \ \ 2.29 \times 10^{25}$	
$\Box 1.58 \times 10^{22}$	
398) Which of the following could be an empirical form	nula?
\square H ₂ O ₂	
\Box C ₆ H ₆	
\Box C ₆ H ₁₂ O ₆	
□ CH ₂ O	
\square N ₂ O ₄	
399) What is the percent by weight of sulfur in SO ₂ ?	
Atomic weights: $S = 32.0$, $O = 16.0$	
□ 33.3	
□ 48.0	
□ 50.0	
□ 64.0	
□ 66.7	
400) The combustion of one mole of a hydrocarbon yiel	ds 3.00 moles of CO ₂ and 4.00 moles
of H ₂ O. The empirical formula of this compound is	s:
\Box C ₃ H ₄	
\Box C ₃ H ₃	
\square CH ₄	
\Box C ₄ H ₃	
\Box C ₃ H ₈	
401) A 25.0-gram sample of a compound contains 6.64	grams of potassium
(K, at.wt. = 39.1), 8.84 grams of chromium (Cr, at.	.wt. = 52.0), and 9.52 grams of
oxygen $(O, at.wt. = 16.0)$. Find the empirical form	ula of this compound.
\square K ₂ CrO ₄	
\square K ₃ CrO ₃	at.wt. = atomic weight
\square K ₂ Cr ₂ O ₇	at.wt. – atomic weight
□ KCrO ₄	
$\Box K_7Cr_2O_2$	

407) How many moles of CO ₂ are present in 220 mg?
□ moles
\square 0.005 mole
\Box 5000 moles
\square 10 moles
408) What is the percent water in hydrated calcium chlorideCaCl₂�2H₂O?
□ 66.67%
□ 32.47%
□ 24.51%
□ 12.26%
409) What is the empirical formula for a compound that contains 17.34% hydrogen and
82.66% carbon?
\Box C ₅ H
\square C ₂ H ₅
\Box CH ₃
\square CH $_2$
410) What is the molecular formula for a compound that is 46.16% carbon, 5.16%
hydrogen and 48.68% fluorine if the molar mass of this compound is 156.12 g?
nyurogen and 40.00 % nuorme n the motar mass of this compound is 150.12 g.
\Box C ₃ H ₄ F ₂
\Box C ₃ H ₄ F ₂
$\Box C_3H_4F_2 \Box C_5H_{10}F_5$
$ \Box C_3H_4F_2 $ $ \Box C_5H_{10}F_5 $ $ \Box C_6H_8F_4 $
$ \Box C_3H_4F_2 $ $ \Box C_5H_{10}F_5 $ $ \Box C_6H_8F_4 $
$ \Box C_3H_4F_2 $ $ \Box C_5H_{10}F_5 $ $ \Box C_6H_8F_4 $ $ \Box C_6H_6F_3 $
 □ C₃H₄F₂ □ C₅H₁₀F₅ □ C₆H₈F₄ □ C₆H₆F₃ 411) If 2.68 g of hydrated sodium sulfate, Na₂SO₄�nH₂O, on heating produces 1.26 g of water, what is the empirical formula of this compound?
 □ C₃H₄F₂ □ C₅H₁₀F₅ □ C₆H₈F₄ □ C₆H₆F₃ 411) If 2.68 g of hydrated sodium sulfate, Na₂SO₄�nH₂O, on heating produces 1.26 g of water, what is the empirical formula of this compound? □ Na₂SO₄H₂O
 □ C₃H₄F₂ □ C₅H₁₀F₅ □ C₆H₈F₄ □ C₆H₆F₃ 411) If 2.68 g of hydrated sodium sulfate, Na₂SO₄�nH₂O, on heating produces 1.26 g of water, what is the empirical formula of this compound? □ Na₂SO₄H₂O □ 2Na₂SO₄H₂O □ 2Na₂SO₄H₂O
 □ C₃H₄F₂ □ C₅H₁₀F₅ □ C₆H₈F₄ □ C₆H₆F₃ 411) If 2.68 g of hydrated sodium sulfate, Na₂SO₄♠nH₂O, on heating produces 1.26 g of water, what is the empirical formula of this compound? □ Na₂SO₄H₂O □ 2Na₂SO₄H₂O □ Na₂SO₄7H₂O □ 9Na₂SO₄8H₂O □ 9Na₂SO₄8H₂O
 □ C₃H₄F₂ □ C₅H₁₀F₅ □ C₆H₈F₄ □ C₆H₆F₃ 411) If 2.68 g of hydrated sodium sulfate, Na₂SO₄�nH₂O, on heating produces 1.26 g of water, what is the empirical formula of this compound? □ Na₂SO₄H₂O □ 2Na₂SO₄H₂O □ Na₂SO₄7H₂O □ Na₂SO₄7H₂O □ 9Na₂SO₄8H₂O 412) One mole of (NH₄)₂HPO₄ contains _? _ moles of hydrogen atoms.
 □ C₃H₄F₂ □ C₅H₁₀F₅ □ C₆H₈F₄ □ C₆H₆F₃ 411) If 2.68 g of hydrated sodium sulfate, Na₂SO₄♠nH₂O, on heating produces 1.26 g of water, what is the empirical formula of this compound? □ Na₂SO₄H₂O □ 2Na₂SO₄H₂O □ Na₂SO₄7H₂O □ 9Na₂SO₄8H₂O 412) One mole of (NH₄)₂HPO₄ contains _? _ moles of hydrogen atoms. □ 1
□ C ₃ H ₄ F ₂ □ C ₅ H ₁₀ F ₅ □ C ₆ H ₈ F ₄ □ C ₆ H ₆ F ₃ 411) If 2.68 g of hydrated sodium sulfate, Na ₂ SO ₄ ♠nH ₂ O, on heating produces 1.26 g of water, what is the empirical formula of this compound? □ Na ₂ SO ₄ H ₂ O □ 2Na ₂ SO ₄ H ₂ O □ Na ₂ SO ₄ H ₂ O □ 9Na ₂ SO ₄ H ₂ O □ 9Na ₂ SO ₄ 8H ₂ O 412) One mole of (NH ₄) ₂ HPO ₄ contains _? _ moles of hydrogen atoms. □ 1 □ 5
 □ C₃H₄F₂ □ C₅H₁₀F₅ □ C₆H₈F₄ □ C₆H₆F₃ 411) If 2.68 g of hydrated sodium sulfate, Na₂SO₄♠nH₂O, on heating produces 1.26 g of water, what is the empirical formula of this compound? □ Na₂SO₄H₂O □ 2Na₂SO₄H₂O □ Na₂SO₄7H₂O □ 9Na₂SO₄8H₂O 412) One mole of (NH₄)₂HPO₄ contains _? _ moles of hydrogen atoms. □ 1

