تم تحميل هذا الملف من موقع المناهج الإماراتية

شرح الدرس الأول الحركة الدورية Motion Periodic من الوحدة الأولى الأولى الاهتزازات والموجات

موقع المناهج ← المناهج الإماراتية ← الصف العاشر المتقدم ← فيزياء ← الفصل الأول ← ملفات متنوعة ← الملف

تاريخ إضافة الملف على موقع المناهج: 25-10-2024 17:01:57

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة فيزياء:

التواصل الاجتماعي بحسب الصف العاشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف العاشر المتقدم والمادة فيزياء في الفصل الأول

	.) - '
الدروس المطلوبة للامتحان الوزاري منهج انسباير	1
حل أسئلة مراجعة عامة اختيار من متعدد منهج انسباير	2
ملخص الوحدات الأولى والثانية والثالثة نظام المقررات	3
حل أوراق عمل الدرس الأول Motion Periodic الحركة الدورية من الوحدة الأولى	4
أوراق عمل الدرس الأول Motion Periodic الحركة الدورية من الوحدة الأولى	5

Section 1: Periodic Motion

MAINIDEA

Periodic motion repeats in a regular cycle.

K What I Know	W What I Want to Find Out	L What I Learned
2025		2024
.2:		9

Essential Questions

- What is simple harmonic motion?
- How much energy is stored in a spring?
- What affects a pendulum's period?

Vocabulary

Review

• gravitational field (g)

New

- periodic motion
- period
- amplitude
- simple harmonic motion
- Hooke's law
- simple pendulum
- resonance

Mass on a Spring

Go to your ConnectED resources to play Animation: Mass on a Spring.

Copyright © McGraw-Hill Education

Mass on a Spring

- Oscillatory motion is the movement of an object back and forth between two opposing points.
- Any motion that repeats in a regular cycle is an example of periodic motion.
- Examples of periodic motion
 - a mass bobbing up and down on a spring
 - a pendulum
 - a vibrating guitar string
 - a tree swaying in the wind
- In each example, the object has one position at which the net force on it is zero.
 At that position, the object is in equilibrium.

Mass on a Spring

- Whenever the object is pulled away from its equilibrium position, the net force on the system becomes nonzero and pulls the object back toward equilibrium.
- Any system in which the force acting to restore an object to its equilibrium position is directly proportional to the displacement of the object shows simple harmonic motion.

• Two quantities describe simple harmonic motion: the period and the amplitude of the motion.

- The period (*T*) is the time needed for an object to repeat one complete cycle of the motion.
- The amplitude of the motion is the maximum distance the object moves from the equilibrium position.

- When a force is applied to stretch a spring, such as by hanging an object on its end, there is a direct linear relationship between the exerted force and the displacement.
- The slope of the graph is equal to the spring constant, given in units of newtons per meter.
- The area under the curve represents the work done to stretch the spring and, therefore, equals the elastic potential energy that is stored in the spring as a result of that work.

Copyright © McGraw-Hill Education

A spring that exerts a force directly proportional to the distance stretched obeys Hooke's law.

F = -kx

- **Hooke's Law** F = -kx k is the spring constant, which depends on the stiffness and other properties of the spring
- x is the distance that the spring is stretched from its equilibrium position

• The potential energy stored in a spring that obeys Hooke's law is proportional to the displacement squared.

Potential Energy in a Spring

$$PE_{\rm sp} = \frac{1}{2}kx^2$$

Click to begin.

ADDITIONAL IN-CLASS EXAMPLE

<u>Use with Example Problem 1.</u>

Problem

A 560-N cyclist sits on a bicycle seat and compresses the two springs that support it. The spring constant equals 2.2×10^4 N/m for each spring.

- a. How much is each spring compressed?
- b. By how much does the compression increase each spring's elastic PE?

Response

SKETCH AND ANALYZE THE PROBLEM

- Sketch the situation. Draw a force diagram.
- List the knowns and unknowns.

KNOWN	UNKNOWN
$F_{\rm sp} = F_{\rm g}/2 = 280 \text{ N}$	x = ?
$k = 2.2 \times 10^4 \text{ N/m}$	$PE_{\rm sp} = ?$

SOLVE FOR THE UNKNOWN

Use Hooke's law to find the compression of each spring.

$$F_{\text{sp}} = kx$$

 $x = \frac{F}{k} = \frac{\frac{1}{2}F_{\text{g}}}{k} = \frac{\frac{1}{2}(560 \text{ N})}{2.2 \times 10^4 \text{ N/m}} = 1.3 \times 10^{-2} \text{ m}$

• Use the relationship among potential energy, the spring constant, and the displacement.

$$PE_{sp} = \frac{1}{2}kx^2$$

= $\frac{1}{2}(2.2 \times 10^4 \text{ N/m})(1.3 \times 10^{-2} \text{ m})^2 = 1.9 \text{ J}$

EVALUATE THE ANSWER

• Displacement is in meters and energy is joules, so the units are correct.

Copyright © McGraw-Hill Education

Periodic Motion

Pendulums

- Simple harmonic motion also can be demonstrated by the swing of a pendulum.
- A simple pendulum consists of a massive object, called the bob, suspended by a string or light rod ℓ length ℓ .
- The period of a pendulum depends on the length the pendulum and the gravitational field, but not the bob's mass.

Period of a Pendulum

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

Pendulums

ADDITIONAL IN-CLASS EXAMPLE

Use with Example Problem 2.

Problem

What is the period of a simple pendulum with a length of 0.25 m?

Response

SKETCH AND ANALYZE THE

PROBLEM

- Sketch the situation.
- List the knowns and unknowns.

KNOWN

$$\ell = 0.25$$

UNKNOWN

$$T = ?$$

SOLVE FOR THE UNKNOWN

• Use the relationship between the period and the length of pendulum.

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$
$$= 2\pi \sqrt{\frac{(0.25 \text{ m})}{(9.8 \text{ N/kg})}}$$
$$= 1.0 \text{ s}$$

EVALUATE THE ANSWER

- The period is in seconds, so the units are correct.
- A period of 1 second is reasonable for a 25-cm pendulum.

Resonance

- Resonance occurs when small forces are applied at regular intervals to a
 vibrating or oscillating object and the amplitude of the vibration increases. The
 time interval between applications of the force is equal to the period of
 oscillation.
- Examples of resonance
 - Rocking a car to free it from a snowbank
 - Jumping rhythmically on a trampoline or a diving board

Review

Essential Questions

- What is simple harmonic motion?
- How much energy is stored in a spring?
- What affects a pendulum's period?

Vocabulary

- periodic motion
- period
- amplitude

- simple harmonic motion
- Hooke's law

- simple pendulum
- resonance

