تم تحميل هذا الملف من موقع المناهج الإماراتية

حل أسلطة مراجعة عامة اختيار من متعدد

موقع المناهج ← المناهج الإماراتية ← الصف العاشر المتقدم ← فيزياء ← الفصل الأول ← حلول ← الملف

تاريخ إضافة الملف على موقع المناهج: 24-10-2024 14:13:53

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة فيزياء:

التواصل الاجتماعي بحسب الصف العاشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف العاشر المتقدم والمادة فيزياء في الفصل الأول

يد هل المتعات بحسب النفعة العاشر المتعد / والمادة خيرياء في العقل الأول	المر
ملخص الوحدات الأولى والثانية والثالثة نظام المقررات	1
حل أوراق عمل الدرس الأول Motion Periodic الحركة الدورية من الوحدة الأولى	2
أوراق عمل الدرس الأول Motion Periodic الحركة الدورية من الوحدة الأولى	3
عرض بوربوينت درس MAGNETISM AND ELECTRICITY الكهرباء والمغناطيسية	4
عرض بوربوينت الدرس الأول Energy of Nature The طبيعة الطاقة من الوحدة السادسة	5

$$F = -kx$$

$$P.E_{spring} = \frac{1}{2}kx^2$$

$$f=\frac{1}{\tau}$$

$$au=2\pi\sqrt{rac{l}{g}}$$

$$f_{\mathbf{d}} = f_{\mathbf{s}}(\frac{v - v_{\mathbf{d}}}{v - v_{\mathbf{s}}})$$

$$v = \lambda f$$

$$f_1 = \frac{v}{4L}$$

$$f_1 = \frac{v}{4L}$$

$$f_3 = 3f_1$$

$$f_5 = 5f_1$$

$$f_5 = 5f_1$$

$$f_1 = \frac{v}{2L}$$

$$f_2 = 2f_1$$

$$f_3 = 3f_1$$

$$f_2=2f_1$$

$$f_3 = 3f_1$$

$$F = k \frac{q_1 q_2}{r^2}$$

$$E = \frac{F_{onq}}{q}$$
, $E = k \frac{q}{r^2}$

$$\Delta V \equiv \frac{W_{onq}}{q}$$
 , $\Delta V = Ed$

$$q = ne$$

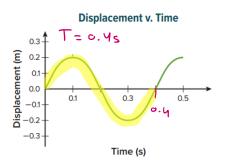
$$C = \frac{q}{\Lambda V}$$

	G10 A	Physics – inspire	physics	2023-2024	
	Questi	on	1		
	Which of the following from the equilibrium		num distance that a vibra	ting object moves	
	☐ The period	Į.	An amplitude		
	☐ The Frequence	cy [☐ A complete oscillatio	n Teary = 37	
	2. The period of a simple				
	pendulum when it is mo	ved to the moon $ au_{moo}$	$_n$? Given that g_{moon}	$= \frac{gearth}{6} \qquad T = 2\pi \sqrt{\frac{L}{g_{moon}}}$	
	\Box $\tau_{moon} = 6 \tau_{moon}$	earth [$\mathbf{I} \boldsymbol{\tau_{earth}} = \sqrt{6} \boldsymbol{\tau_{moon}}$	Tmoon = 27 L	
	$\Box \tau_{moon} = \sqrt{6}$	$ au_{earth}$	$\tau_{earth} = \sqrt{6} \tau_{moon}$ $\tau_{earth} = 6 \tau_{moon}$	$T_{moo_N} = 2 \pi \int_{\frac{6}{\sqrt{3}}}^{\frac{6}{\sqrt{3}}} \frac{g_{(a,r+b)}}{6}$	
	3. Which of the following			- Control	
	☐ The length of	the pendulum	☐ The mass of the bob	lation 2x L	
	☐ The gravitation	onal field strength	☐ The mass of the oscil	lation Voca 44	
. 2	4. What will happen to th	ne period of a pendulur e period will double		January 1974 Ilum was to double? Vill increase by a factor of 1.4	
√2 47	ان صالا کان کان کان کان کان کان کان کان کان کا	e period will become hal lue	fourth	vill decrease by a factor of or	
	·	he period of a 0.75 m l	ong pendulum is 2 s. wha		
	□ 7.4 N/kg		☐ 1.6 N/kg T= :	•	
	山 9.1 N/kg			- T J OTS (shift + solly Es	
	6. What is the spring co	nstant of a spring that	<u>۱۹۵۰ = ۵۰۰</u> 6 stretches <u>6 cm</u> when an o	object weighing 12 N is	
	hung from it ?		E)		
	□ 200 N/m		☐ 100 N/m 🤘 =	$=\frac{F}{x}=\frac{12}{9.96}$	
	☐ 400 N/m		☐ 50 N/m	0.06	
	7. What happens to the a spring when its stretch of	elastic potential energ doubles? P6 =	y stored in $\frac{1}{2} k (2x)^2$	0000000000000000000000000000000000000	
	☐ PE doubles	☐ PE halves P6	w= 4 PE=1)	0000000000	
	PE quadruples	☐ PE stays the sam	ne	4 cm →	
	8. What type of waves di wave's travel?	isturb the particles in t	ne medium perpendicula	r to the direction of the	
	wave s traver:				
	Longitudinal	☐ transverse			

G	10 A	Physics – ii	nspire	physics	2023-2024
	Ques	tion			1
9. What	type of waves	s are sound wav	ves?		
	Longitudinal	☐ tr	ansverse		h e
	surface	☐ ra	adioactive		macen ampli
	figure shows t f the following	wo waves movi	ing at the	same speed.	A A A A A A A A A A A A A A A A A A A
	/ave A has a gr equency than			A has a greater than wave B	V V V V
	/ave A has less equency than		Wave / than w	A has less energy vave B	B
	e frequency of lowing quantit	a wave double: :ies? $T = \bot$	s , while th	he amplitude stays the $\frac{1}{2}$ Told Velocity: stay	he same. what happens
☐ Th	e period : <i>hal</i>	ves 2f		□ Velocity : <i>stay</i>	is the same $V = \lambda f$
☐ Th	e wavelength				
12. Wha	t is true about	: mechanical wa	aves?	N = 1 / 011	sthe same since amplitude
	It transfers m	natter		☐ It transfers	s energy
	It travels thro	ough vacuum		☐ It can only	be transverse waves
_				ve of wavelength 20 is speed of the wave?	m, with a frequency of
,	200 m/s			☐ 2.0 m/s	$V = \lambda f$
	20.0 m/s			□ 0.50 m/s	= 20×10 = 200
14 The	figure shows a	soundwave pro	nduced by	a loud speaker,	V 1/F
the sound	d propagates ir	n the air at the	=		0.80 m →
•	ency of the so		t=	V - 336	(0)
	00 Hz	□ 300 Hz	, –	$\frac{\lambda}{V} = \frac{336}{0.8}$	
4	.20 Hz	□ 212 Hz			
the echo i sound of	s heard <mark>2.75 s</mark> the hiker's voi ve if the wavel	ard a vertical cli later. What is tl ce in air? What ength is <u>0.75 m</u> A	he speed of is the free	of American	465 m J= 465 x 2
☐ Th	e speed is 331 e frequency is			e speed is 169.1 m/s quency is 225.4 Hz	T - V - 7 - 1
	e speed is 169 e frequency is			e speed is 1278.75 n quency is 126.8 Hz	m/s while the = $99/4$

1

$$f = \frac{1}{T} = \frac{1}{0.4} = 2.5 \text{ Hz}$$


17. What is the frequency of the following wave?

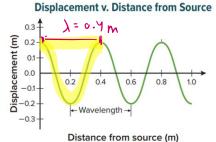
6 Hz

0.4 Hz

2.5 Hz

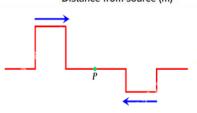
0.2 Hz

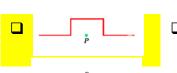
18. what is the frequency of the wave if you know


that its speed is 300 m/s

240 Hz

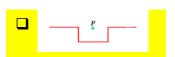
120 Hz


750 Hz


1 Hz

19. Two wave pulses on the same string are headed towards each other as shown. When both occupy the same space, which diagram

best describes the resulting wave form?



1 Hz

20. Two wave pulses on the same string are headed towards each other as shown. When both occupy the same space, which diagram best describes the resulting wave form?

21. What is the speed of sound at 30 Celsius?

30 Celsius?
$$V = 343 + 0.6 (T-20)$$

349 m/s

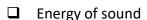
333 m/s

331 m/s

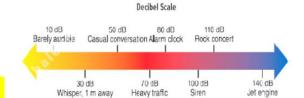
343 m/s

22. In which type of materials is the sound fastest?

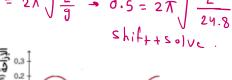
Solids

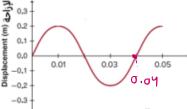

Liquids

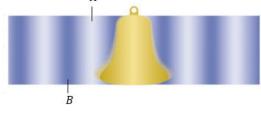
gasses plasma

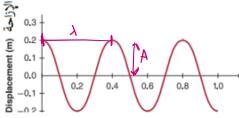

G10 A	Physics – inspir	е	physics	2023-2024
Que	stion			1
23. A speaker is placed	next to a flame, a lou	ıd	Type of wave	Direction of flame movement
sound wave is placed thr the flame to vibrate. Whi	ch of the following ro	ws	Longitud	linal
describes, correctly, the t direction of the flame mo		:he B	Transve	rse
			Longitud	linal
haled's (→ ↓	D Plitale	Transve	rse
24 Which of the follo	میہ wing birds has the lou	1	?	
" WW				
25. To increase the pi	ch of the sound , we	must increa	se which of the fo	ollowing properties?
☐ The amplitud	The freque	ency		
phase	energy			
26. Which of the follo	wing statements is tr	ue about wa	ve A and B ?	
The amplitude of higher than the amplitude of B	•	uency of A is an the frequ	\ /	A
☐ The amplitude of higher than the amplitude of A	The state of the s	uency of B is an the frequ	nency (B
27. When a wave cross	es a boundary betwe	en two med	ia thin rope and t	:hick rope, as
its frequency and speed change, bu wavelength does	t its frequenc	ength and y change, bu es not.	ut its	_
its wavelength, spand frequency change		ength and spout its freque		

1


Which one of the following quantities is measured 23. in decibels (dB)?


- Loudness of sound
- Pitch of sound
- Sound level


- 24. Which one of the following units is used to quantify sound level?
 - **Joules**
- decibel
- Hertz
- meters
- 25. How long must a pendulum be on Jupiter , where g=24.8 N/kg to have a period of 0.5 s ?
 - 0.79 m
- 0.16 m
- 0.32 m
- 0.20 m


- 26. According to the wave figure. What is the frequency of the wave?
 - 0.2 Hz
- 13 Hz
- 50 Hz
- 25 Hz

- 27. The diagram shows waves moving out from the bell after it has been struck in air. Which of the following is correct according to regions A and B?
 - A low pressure, B high pressure
- A high pressure, B low pressure
- A and B high pressure
- A and B low pressure

- 28. According to figure. Which of the following is correct?
 - $A = 0.2 \, m$
- $A = 0.4 \, m$
- $\lambda = 1 m$ $A = 0.2 \, m$
- $\lambda = 0.4 m$ A = 1 m

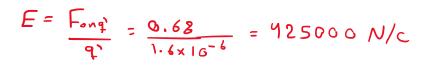
- 29. According to hook's law the magnitude of the force exerted by a spring depends on:
 - The spring constant
- The stretch distance
- The stretch compression
- All the above
- 30. A spring with a spring constant k= 215 N/m compressed by 0.340m. What is the spring's elastic potential energy?
 - 36.6 J

- 73.1 J
- $P \in = \frac{1}{2} | \langle X^2 \rangle$ $= \frac{1}{2} \times 215 \times (0.34)^2$

24.8 J

12.4 J

Question 1 31. What is the wave that disturbs the particles in the medium perpendicular to the direction of the wave's travel? Neither transverse wave nor longitudinal wave and transverse wave. The longitudinal wave The transverse wave. What is the name given to the wave behavior in which a wave changes direction as it moves from one medium to another medium? Interference reflection The transverse wave. Superposition The transverse wave T						
31. What is the wave that disturbs the particles in the medium perpendicular to the direction of the wave's travel? Neither transverse wave nor longitudinal wave and transverse wave The longitudinal wave The transverse wave The transverse wave The transverse wave 32. What is the name given to the wave behavior in which a wave changes direction as it moves from one medium to another medium? interference reflection refraction Superposition refraction 33. A sound wave has a wavelength of 4.0 m and travels at a speed of 340 m/s. What is the period of the wave? 85 s 0.006 s T = 1 = 1 = 1 = 1	G10 A	Physics – insp	oire	physics	2023	3-2024
the wave's travel? Neither transverse wave nor longitudinal wave The longitudinal wave The longitudinal wave The longitudinal wave The transverse wave	Ques	stion			1	
The longitudinal wave The transverse wave 32. What is the name given to the wave behavior in which a wave changes direction as it moves from one medium to another medium? reflection interference reflection Superposition refraction 33. A sound wave has a wavelength of 4.0 m and travels at a speed of 340 m/s. What is the period of the wave? 85 s 0.006 s = 1		nat disturbs the par	rticles	in the medium perp	endicular to the	direction of
32. What is the name given to the wave behavior in which a wave changes direction as it moves from one medium to another medium? interference	☐ Neither transve			•	ngitudinal wave a	nd
from one medium to another medium? interference	☐ The longitudina	wave		The transverse way	re	
Superposition	from one medium to anot				anges direction a	s it moves
33. A sound wave has a wavelength of 4.0 m and travels at a speed of 340 m/s. What is the period of the wave? 85 s						
period of the wave? 85 s	Superposition	ک	_	retraction	V	
34. How many times greater is the sound pressure level of a typical airplane (130 dB) than a normal whisper (30 Db) 10 times greater 1000 times	period of the wave?	wavelength of 4.0		T = 1 =	T (f= N =	
34. How many times greater is the sound pressure level of a typical airplane (130 dB) than a normal whisper (30 Db) 10 times greater 1000 times				—		,
normal whisper (30 Db) 10 times greater 1000					: mala na (120 dD)	+ la a .a a
100 times greater	normal whisper (30 Db)	ater is the sound p	ressui		زی مر	عرب 20 J
35. How many times greater is the sound pressure level of a typical rock concert (110 dB) than a normal whisper (50 Db) □ 10 times greater □ 1000 times gr	_	r			or	
 □ 10 times greater □ 1000 times greater □ 1000 times greater □ 1000 times greater □ 10000 times greater □ 2000 times	35. How many times gre				20	
36. In which case do you hear a frequency higher than the actual frequency of the sound? When the source of sound is moving away from you sound When the source of sound is moving towards you whear? When you and the source of sound are not moving When you and the source of sound are not moving When you and the source of sound are not moving The source of sound are not moving 37. You are in a car, travelling toward a siren. If the siren's frequency is \$\frac{365}{365} \text{ Hz}, what frequency do you hear? Use \$\frac{343}{3} \text{ m/s}\$ as the speed of sound 382Hz \$\frac{1}{3} = \int_{x}^{x} \left(\frac{\frac{\frac{1}{3} \cdot 3}{2 \cdot 3} - 25} \right) \text{ 363 Hz} \$\frac{365}{3 \text{ Hz}} \right(\frac{1}{3 \text{ 13} - 25} \right) \text{ 291 Hz} 38. A train is travelling with constant speed \$\frac{(0.25v)}{3 \text{ 13} - 25}\$ toward an observer standing on a platform, where \$\frac{1}{3} \text{ is the speed of sound} \text{ What is the observed fraguency 2}	<u> </u>			1000 times greater	110 -	50 = 60
 When the source of sound is moving away from you sound When the source of sound is moving towards you When you and the source of sound are not moving You are in a car, travelling toward a siren. If the siren's frequency is 365 Hz, what frequency do you hear? Use 343 m/s as the speed of sound 382Hz	☐ 100 times greate	r		10000 times greate	$r = \frac{60}{20}$	3 Zevos
moving away from you sound When the source of sound is moving towards you where $\frac{3}{5}$. You are in a car, travelling toward a siren. If the siren's frequency is $\frac{3}{5}$. What frequency do you hear? Use $\frac{3}{5}$ what frequency do you hear? Use $\frac{3}{5}$ sathe speed of sound $\frac{3}{5}$ and $\frac{3}{5}$ sathe speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound what is the observed frequency $\frac{3}{5}$ sather speed of sound $\frac{3}{5}$ sather speed of s	36. In which case do you h	ear a frequency hi	gher t	han the actual frequ	ency of the soun	d ?
moving towards you moving 37. You are in a car, travelling toward a siren. If the siren's frequency is $\frac{365 \text{ Hz}}{365 \text{ Hz}}$, what frequency do you hear? Use $\frac{343 \text{ m}}{3}$ as the speed of sound 38. A train is travelling with constant speed $\frac{(0.25v)}{343-0}$ toward an observer standing on a platform, where v is the speed of sound. What is the observed frequency 2				•	vay from the sour	ce of
frequency is $\frac{365 \text{ Hz}}{365 \text{ Hz}}$, what frequency do you hear? Use $\frac{343 \text{ m}}{3}$ as the speed of sound 382Hz $\frac{1}{3} = \frac{1}{5} \times \left(\frac{\sqrt{3} - \sqrt{3}}{\sqrt{3} - \sqrt{3}}\right)$ $\frac{363 \text{ Hz}}{\sqrt{3} + \sqrt{3} - \sqrt{3}}$ 38. A train is travelling with constant speed $\frac{365 \times (3 + \sqrt{3} - \sqrt{3})}{\sqrt{3} + \sqrt{3} - \sqrt{3}}$ toward an observer standing on a platform, where $\frac{1}{3}$ is the speed of sound. What is the observed frequency $\frac{3}{3} = \frac{365 \text{ Hz}}{\sqrt{3}}$				•	source of sound a	are not
400 Hz = $\frac{345 \times (343 - 25)}{343 - 0}$ 291 Hz $\frac{1}{2} = 25.0 \text{ m/s Negative}$ 38. A train is travelling with constant speed $\frac{(0.25v)}{(0.25v)}$ toward an observer standing on a platform, where v is the speed of sound. What is the observed frequency $\frac{3}{2} = 0$	frequency is \$\frac{3}{65}\$ Hz, what Use 343 m/s as the speed	frequency do you l of sound		e siren's	$f_{\rm s} = 365 {\rm F}$	tz (((((
38. A train is travelling with constant speed $(0.25v)$ toward an observer standing on a platform,						
38. A train is travelling with constant speed $(0.25v)$ toward an observer standing on a platform,	□ 400 Hz	$\times \left(\frac{343-0}{34356}\right)$	2	91 Hz $v_1 = 2$	5.0 m/s Negative	
where $\frac{V}{V}$ is the speed of sound. What is the observed frequency? $\frac{8}{10}f$ $\frac{8}{10}f$ $\frac{7}{4}f$ $\frac{1}{2}f + \frac{1}{2}f + $				<u>)</u> toward an observ	•	
	V	uliu. What is the o	□ -	$\frac{1}{f}$	$= f^{7} \times \left(\frac{\Lambda - \alpha}{\Lambda - \alpha} \right)$	3
				$\frac{1}{2}f$ $f_1 = f_2$	fsx (\(\frac{\nabla}{0.75 \nabla} \))

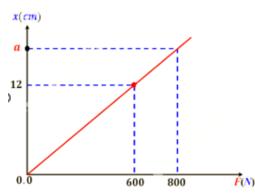

G10 A	Physics – inspire	physics	2023-2024
Ques	tion	1	L
39. A stationary siren war runs towards the siren at what is the wavelength of 0.372 m 0.621 m	speed of (5.0m/s) . If you	know that the speed of s	
	-	siren, it moved towards <i>i</i>	Adam, away from sara.
Adam hears the sired sound at a lower frequency than Sara	Adam hears th sound, while S	/	NA NA
Adam hears the sire sound with a frequency equal to what Sara hears	Adam hears the sound at a high frequency than	ner \\	Observer
41. A 440 Hz tuning fork of sound in helium gas. If the speed of sound in he 2.20 m/s $\sqrt{}$	the spacing between the lium gas?	g column to determine the resonances is 110 cm, where $L_2 - L_1 = -\frac{1}{2} \lambda$	hat is
	月68 か/s are tuning their instrume d the other player sounds	ents. One player sounds a s a tone with a pitch of 52	tone 22 Hz.
,	. <i></i>	tocat = I fA	
543. Which of the following instrument a unique sound	= : : : : : : : : : : : : : : : : : : :		-522 = 5 bears
dissonance		timber	
□ harmonics		Hearing resonance	
43. If a guitar string has a of the following frequencial			13 m
☐ 1250 Hz		750 Hz	
	2×500 = 1000	1750 Hz -3 = 3 × 500 = 1500 - 4 × 500 = 2000	
	, 9 -		

Question	1

61. A $+1.6\mu C$ test charge is located at point a near a point charge (q), as shown in the figure. The electric force exerted by q on the test charge is 0.68N what is the magnitude of the electric field at point a?

 \square 1.08 × 10⁻⁶ N/C

 \Box 2.4 × 10⁻⁶ N/C



1. The figure represents the relationship between the stretch distance x of a spring and the force acting on it. What is the magnitude of the stretch distance (a) on the graph?

$$\begin{array}{c} 600 \rightarrow 12 \\ 800 \stackrel{\times}{\rightarrow} a \end{array}$$

1

2. A spring has a spring constant of 256 N/m. how far must it be stretched to give it an elastic potential energy of 60 J

otential energy of 60 J

PE

Alpha + calc

PE =
$$\frac{1}{2}$$
 K X 2 -> 60 = $\frac{1}{2}$ × 256 × $\frac{1}{2}$ alpha + $\frac{1}{2}$

Question

Superposition of Waves:

Sketch two wave pulses whose interference produces a pulse with an amplitude greater than either of the individual waves.

Sketch two wave pulses whose interference produces a pulse with an amplitude dishucchic share of the individual waves.

Sketch two wave pulses whose interference is completely distructive

same amplitude different orientation = total distruction 1

A trumpet plays a note with a frequency of 262 Hz. How fast would it have to be moving to raise the frequency to 277 Hz? Use 343 m/s as the speed of sound and assume the listener is stationery

$$f_{J} = f_{s} \times \left(\frac{V - V_{J}}{V - V_{s}}\right)$$

$$\frac{1}{V_{s}} = \frac{1}{262} \times \left(\frac{343 - 0}{343 - V_{s}}\right)$$

$$\frac{1}{\sqrt{343 - V_{s}}}$$

$$\frac{1}{\sqrt{343 - V_{s}}}$$

$$\frac{1}{\sqrt{343 - V_{s}}}$$

$$\frac{1}{\sqrt{343 - V_{s}}}$$

to solve: Shift+calc+E V.= 18.5 m/s

Question

3

Write closed or open to identify weather each description applies to closed-pipe resonators or open piper resonators.

has a node at one end and an antinode at another end

opun has nodes at both ends

resonance lengths are $\frac{1}{2}\lambda$, λ , $\frac{3}{2}\lambda$, 2λ , etc.

<u>resonance lengths are $\frac{1}{4}\lambda$, $\frac{3}{4}\lambda$, $\frac{5}{4}\lambda$, $\frac{7}{4}\lambda$, etc</u>

high pressure reflects as high pressure

nigh pressure reflects as low pressure

<u>് പ്രട്ര</u> only has odd numbered harmonics

<u>υρω</u> resonance lengths have an even number of quarter wavelengths

resonance lengths have an odd number of quarter wavelengths

Question

5

The bottle acts as an organ pipe open at one end and closed at the other. The length of the pipe is equal to the length of the bottle (0.18 m), and the speed of sound is 343 m/s. what is the frequency of the harmonic formed in the bottle?

$$L = \frac{3}{4}\lambda$$

$$0.18 = \frac{3}{4}\lambda \quad \text{alpha} + D$$

$$\text{alpha} + \text{calc}$$
then shift + calc + =
$$\lambda = 0.24 \text{ m}$$

$$f = \frac{V}{\lambda}$$
= $\frac{343}{0.24}$
= 1429.16 H
ov ().43 KH₂)

G9 A Physics – inspire physics 2023-2024

Question 6

The figure shows three charges ($q_1=3.0~\mu C$) , ($q_2=-2.0~\mu C$) and ($q_3=-4.0~\mu C$) what is the net force exerted on the positive charge (q_1) ?

Coulomb's constant $k = 9 \times 10^9$

$$q_2$$
 q_1
 q_3
 q_3
 q_3
 q_4
 q_5
 q_5
 q_6
 q_7
 q_8
 q_8

$$f_2 = K \frac{9.92}{V_1^2} = 9 \times 10^9 \times \frac{3 \times 10^6 \times 2 \times 10^6}{(0.05)^2} = 21.6 N / ef+$$

$$f_3 = K \frac{f_3 f_2}{V_{32}^2} = 9 \times 10^9 \times \frac{4 \times 10^6 \times 2 \times 10^{-6}}{(0.03)^2} = 80 \text{ right}$$