تم تحميل هذا الكلف من هوقع المناهج الإماراتية

الملف الخطة الأسبوعية للأسبوع الخامس الحلقة الثانية في مدرسة أبو أيوب الأنصاري
هوقح المناهج ص المناهح الإمار اتية ص ملفات مدرسية ص المددارس ص الففـل الأول

روابط هواقع التواهل الاجتماعي بحسب ملفات مدر سية			
35	(1))	(0)
روابط مواد ملفات مدر سية على تلغرام			
الرياضيات	اللغة الانحليزية	اللغة العربية	اللتربية الاسلامية
المزيد من الملفات بحسب ملفات مدر سية والمادة المدارس في الفصل الأول			
توحيهات بدء الكراسة للعام الدراسي الحديد		1	
امتحانات منتصف الفصل الأول للصفين الحادي عشر والثاني عشر في مدرسة الثعلة الخاهة		2	
امتحانات منتهف الفصل الأول للصيين التاسعح والعاشر في مدرسة الثعلة الخامة		3	
امتحانات منتصف الفصل الأول للهفوف الخامس حتى الثامن في مـرسة الثعلة الخاهة		4	
امتحانات منتصف الثفـل الأول للصفوف الأول حتى الرابح في مكرسة الثعلة الخاهة		5	

Mixed Exercises

Describe the end behavior, state the degree and leading coefficient of each polynomial. If the function is not a polynomial, explain why.
23. $f(x)=-5 x^{4}+3 x^{2}$
24. $g(x)=2 x^{5}+6 x^{4}$
25. $g(x)=8 x^{4}+5 x^{5}$
26. $h(x)=9 x^{6}-5 x^{7}+3 x^{2}$
27. $f(x)=-6 x^{6}-4 x^{5}+13 x^{-2}$
28. $f(x)=(5-2 x)(4+3 x)$
29. $h(x)=(x+5)(3 x-4)$
30. $g(x)=3 x^{7}-4 x^{4}+\frac{3}{x}$
31. REASONING Describe the end behavior, and the possible degree and sign of the leading coefficient of the graph shown.

Describe the end behavior of each function using the leading coefficient and degree, and state the domain and range.

1. $f(x)=3 x^{4}$
2. $f(x)=-2 x^{3}$
3. $f(x)=-\frac{1}{2} x^{5}$
4. $f(x)=\frac{3}{4} x^{6}$

Example 2

5. USE A MODEL The shape of a parabolic reflector inside a flashlight can be modeled by the function $f(x)=\frac{4}{3} x^{2}$. Graph the function $f(x)$, and state the domain and range.
6. MACHINE EFFICIENCY A company uses the function $f(x)=x^{3}+3 x^{2}-18 x-40$ to model the change in efficiency of a machine based on its position x. Graph the function and state the domain and range.

Exalmpie ।

Determine the consecutive integer values of x between which each real zero of each function is located by using a table. Then sketch the graph.

1. $f(x)=x^{2}+3 x-1$
2. $f(x)=-x^{3}+2 x^{2}-4$
3. $f(x)=x^{3}+4 x^{2}-5 x+5$
4. $f(x)=-x^{4}-x^{3}+4$

Example 2

Use a table to graph each function. Then estimate the x-coordinates at which relative maxima and relative minima occur.
5. $f(x)=-2 x^{3}+12 x^{2}-8 x$
6. $f(x)=2 x^{3}-4 x^{2}-3 x+4$

Graph each function by using a table of values. Then, estimate the x-coordinates at which each zero and relative extrema occur, and state the domain and range.
16. $f(x)=x^{3}-3 x+1$
17. $f(x)=2 x^{3}+9 x^{2}+12 x+2$
18. $f(x)=2 x^{3}-3 x^{2}+2$
19. $f(x)=x^{4}-2 x^{2}-2$
20. Determine the key features for $y=\left\{\begin{array}{lr}x^{2} & \text { if } x \leq-4 \\ 5 & \text { if }-4<x \leq 0 . \\ x^{3} & \text { if } x>0\end{array}\right.$

Examples 4, 5 and 6

Multiply.

13. $3 p(n p-z)$
14. $4 x\left(2 x^{2}+y\right)$
15. $-5\left(2 c^{2}-d^{2}\right)$
16. $x^{2}(2 x+9)$
17. $(a-5)^{2}$
18. $(2 x-3)(3 x-5)$
19. $(x-y)\left(x^{2}+2 x y+y^{2}\right)$
20. $(a+b)\left(a^{3}-3 a b-b^{2}\right)$
21. $(x-y)(x+y)(2 x+y)$
22. $(a+b)(2 a+3 b)(2 x-y)$
23. $(r-2 t)(r+2 t)$
24. $(3 y+4)(2 y-3)$
25. $\left(x^{3}-3 x^{2}+1\right)\left(2 x^{2}-x+2\right)$
26. $\left(4 x^{5}+x^{3}-7 x^{2}+2\right)(3 x-1)$

Examples 2 and 3

Add or subtract.

5. $\left(6 a^{2}+5 a+10\right)-\left(4 a^{2}+6 a+12\right)$
6. $\left(7 b^{2}+6 b-7\right)-\left(4 b^{2}-2\right)$
7. $(g+5)+(2 g+7)$
8. $(5 d+5)-(d+1)$
9. $\left(x^{2}-3 x-3\right)+\left(2 x^{2}+7 x-2\right)$
10. $\left(-2 f^{2}-3 f-5\right)+\left(-2 f^{2}-3 f+8\right)$
11. $(2 x-3)-(5 x-6)$
12. $\left(x^{2}+2 x-5\right)-\left(3 x^{2}-4 x+7\right)$

Examples 2 and 3

Simplify by using long division.
5. $\left(n^{2}+7 n+10\right) \div(n+5)$
6. $\left(d^{2}+4 d+3\right)(d+1)^{-1}$
7. $\left(2 t^{2}+13 t+15\right) \div(t+6)$
8. $\left(6 y^{2}+y-2\right)(2 y-1)^{-1}$
9. $\left(4 g^{2}-9\right) \div(2 g+3)$
10. $\left(2 x^{2}-5 x-4\right) \div(x-3)$

Examples 4 and 5

Simplify using synthetic division.
11. $\left(3 v^{2}-7 v-10\right)(v-4)^{-1}$
12. $\left(3 t^{4}+4 t^{3}-32 t^{2}-5 t-20\right)(t+4)^{-1}$
13. $\frac{y^{3}+6}{y+2}$
14. $\frac{2 x^{3}-x^{2}-18 x+32}{2 x-6}$
15. $\left(4 p^{3}-p^{2}+2 p\right) \div(3 p-1)$
16. $\left(3 c^{4}+6 c^{3}-2 c+4\right)(c+2)^{-1}$

Examples 1-3

Factor completely. If the polynomial is not factorable, write prime.

1. $8 c^{3}-27 d^{3}$
2. $64 x^{4}+x y^{3}$
3. $a^{8}-a^{2} b^{6}$
4. $x^{6} y^{3}+y^{9}$
5. $18 x^{6}+5 y^{6}$
6. $w^{3}-2 y^{3}$
7. $g x^{2}-3 h x^{2}-6 f y^{2}-g y^{2}+6 f x^{2}+3 h y^{2}$
8. $12 a x^{2}-20 c y^{2}-18 b x^{2}-10 a y^{2}+15 b y^{2}+24 c x^{2}$
9. $a^{3} x^{2}-16 a^{3} x+64 a^{3}-b^{3} x^{2}+16 b^{3} x-64 b^{3}$
10. $8 x^{5}-25 y^{3}+80 x^{4}-x^{2} y^{3}+200 x^{3}-10 x y^{3}$

Example 4

Solve each equation.
11. $a^{3}-9 a^{2}+14 a=0$
12. $x^{3}=3 x^{2}$
13. $t^{4}-3 t^{3}-40 t^{2}=0$
14. $b^{3}-8 b^{2}+16 b=0$

Example 5

15. FURNITURE A modern table is constructed with four legs made of concrete cubes with cube-shaped notches.
a. Define one or more variables and write an expression that represents the volume of one table leg.
b. Marisol determined that she will use 12,636 cubic inches of concrete to construct the four table legs. If the sides of the
 notches are 40% of the sides of the legs, how long are the sides of the legs?

Write each expression in quadratic form, if possible.
16. $x^{4}+12 x^{2}-8$
17. $-15 x^{4}+18 x^{2}-4$
18. $8 x^{6}+6 x^{3}+7$
20. $9 x^{8}-21 x^{4}+12$
21. $16 x^{10}+2 x^{5}+6$

Example 7

Solve each equation.
22. $x^{4}+6 x^{2}+5=0$
23. $x^{4}-3 x^{2}-10=0$
24. $4 x^{4}-14 x^{2}+12=0$
25. $9 x^{4}-27 x^{2}+20=0$
26. $4 x^{4}-5 x^{2}-6=0$
27. $24 x^{4}+14 x^{2}-3=0$

Use synthetic substitution to find $f(2)$ and $f(-1)$ for each function.
9. $f(x)=x^{2}+6 x+5$
10. $f(x)=x^{2}-x+1$
11. $f(x)=x^{2}-2 x-2$
12. $f(x)=x^{3}+2 x^{2}+5$
13. $f(x)=x^{3}-x^{2}-2 x+3$
14. $f(x)=x^{3}+6 x^{2}+x-4$
15. $f(x)=x^{3}-3 x^{2}+x-2$
16. $f(x)=x^{3}-5 x^{2}-x+6$
17. $f(x)=x^{4}+2 x^{2}-9$
18. $f(x)=x^{4}-3 x^{3}+2 x^{2}-2 x+6$
19. $f(x)=x^{5}-7 x^{3}-4 x+10$
20. $f(x)=x^{6}-2 x^{5}+x^{4}+x^{3}-9 x^{2}-20$

Example 3

Given a polynomial and one of its factors, find the remaining factors of the polynomial.
23. $x^{3}-3 x+2 ; x+2$
24. $x^{4}+2 x^{3}-8 x-16 ; x+2$
25. $x^{3}-x^{2}-10 x-8 ; x+2$
26. $x^{3}-x^{2}-5 x-3 ; x-3$
27. $2 x^{3}+17 x^{2}+23 x-42 ; x-1$
28. $2 x^{3}+7 x^{2}-53 x-28 ; x-4$
29. $x^{4}+2 x^{3}+2 x^{2}-2 x-3 ; x-1$
30. $x^{3}+2 x^{2}-x-2 ; x+2$

Example 1

Solve each equation. State the number and type of roots.

1. $5 x+12=0$
2. $x^{2}-4 x+40=0$
3. $x^{5}+4 x^{3}=0$
4. $x^{4}-625=0$
5. $4 x^{2}-4 x-1=0$
6. $x^{5}-81 x=0$
7. $2 x^{2}+x-6=0$
8. $4 x^{2}+1=0$
9. $x^{3}+1=0$
10. $2 x^{2}-5 x+14=0$
11. $-3 x^{2}-5 x+8=0$
12. $8 x^{3}-27=0$
13. $16 x^{4}-625=0$
14. $x^{3}-6 x^{2}+7 x=0$
15. $x^{5}-8 x^{3}+16 x=0$
16. $x^{5}+2 x^{3}+x=0$

Example 2

State the possible number of positive real zeros, negative real zeros, and imaginary zeros of each function.
17. $g(x)=3 x^{3}-4 x^{2}-17 x+6$
18. $h(x)=4 x^{3}-12 x^{2}-x+3$
19. $f(x)=x^{3}-8 x^{2}+2 x-4$
20. $p(x)=x^{3}-x^{2}+4 x-6$
21. $q(x)=x^{4}+7 x^{2}+3 x-9$
22. $f(x)=x^{4}-x^{3}-5 x^{2}+6 x+1$
23. $f(x)=x^{4}-5 x^{3}+2 x^{2}+5 x+7$
24. $f(x)=2 x^{3}-7 x^{2}-2 x+12$
25. $f(x)=-3 x^{5}+5 x^{4}+4 x^{2}-8$
26. $f(x)=x^{4}-2 x^{2}-5 x+19$
27. $f(x)=4 x^{6}-5 x^{4}-x^{2}+24$
28. $f(x)=-x^{5}+14 x^{3}+18 x-36$

Mixed Exercises

Write a polynomial function of least degree with integral coefficients that has the given zeros.
46. $5,-2,-1$
47. $-4,-3,5$
48. $-1,-1,2 i$
49. $-3,1,-3 i$
50. $0,-5,3+i$
51. $-2,-3,4-3 i$

Sketch the graph of each function using its zeros.
52. $f(x)=x^{3}-5 x^{2}-2 x+24$
53. $f(x)=4 x^{3}+2 x^{2}-4 x-2$
54. $f(x)=x^{4}-6 x^{3}+7 x^{2}+6 x-8$
55. $f(x)=x^{4}-6 x^{3}+9 x^{2}+4 x-12$

Examples 1 and 2

Find $(f+g)(x),(f-g)(x),(f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$.

1. $f(x)=2 x$
$g(x)=-4 x+5$
2. $f(x)=x-1$
$g(x)=5 x-2$

3. $f(x)=x-2$
 $g(x)=2 x-7$

4. $f(x)=x^{2}$
$g(x)=x-5$
5. $f(x)=-x^{2}+6$
6. $f(x)=3 x^{2}-4$
$g(x)=2 x^{2}+3 x-5$
$g(x)=x^{2}-8 x+4$

Example 4
For each pair of functions, find $f \circ g$ and $g \circ f$, if they exist. State the domain and range for each.
9. $f=\{(-8,-4),(0,4),(2,6),(-6,-2)\}$
10. $f=\{(-7,0),(4,5),(8,12),(-3,6)\}$
$g=\{(4,-4),(-2,-1),(-4,0),(6,-5)\}$
$g=\{(6,8),(-12,-5),(0,5),(5,1)\}$
11. $f=\{(5,13),(-4,-2),(-8,-11),(3,1)\}$ $g=\{(-8,2),(-4,1),(3,-3),(5,7)\}$
12. $f=\{(-4,-14),(0,-6),(-6,-18),(2,-2)\}$
$g=\{(-6,1),(-18,13),(-14,9),(-2,-3)\}$

Example 5

Find $[f \circ g](x)$ and $[g \circ f](x)$. State the domain and range for each.

$$
\text { 13. } f(x)=2 x, ~ \begin{aligned}
& g(x)=x+5
\end{aligned}
$$

14. $f(x)=-3 x$
$g(x)=-x+8$
15. $f(x)=x^{2}+6 x-2$
$g(x)=x-6$
16. $f(x)=2 x^{2}-x+1$
$g(x)=4 x+3$

Example 1

For each polygon, find the inverse of the relation. Then, graph both the original relation and its inverse.

1. $\triangle M N P$ with vertices at $\{(-8,6),(6,-2),(4,-6)\}$
2. $\triangle X Y Z$ with vertices at $\{(7,7),(4,9),(3,-7)\}$
3. trapezoid $Q R S T$ with vertices at $\{(8,-1),(-8,-1),(-2,-8),(2,-8)\}$
4. quadrilateral $F G H J$ with vertices at $\{(4,3),(-4,-4),(-3,-5),(5,2)\}$

Examples 2 and 3

Find the inverse of each function. Then graph the function and its inverse. If necessary, restrict the domain of the inverse so that it is a function.
5. $f(x)=x+2$
6. $g(x)=5 x$
7. $f(x)=-2 x+1$
8. $h(x)=\frac{x-4}{3}$
9. $f(x)=-\frac{5}{3} x-8$
10. $g(x)=x+4$
11. $f(x)=4 x$
12. $f(x)=-8 x+9$
13. $f(x)=5 x^{2}$
14. $h(x)=x^{2}+4$

Determine whether each pair of functions are inverse functions. Write yes or no.

31. $f(x)=4 x^{2}$
 $$
g(x)=\frac{1}{2} \sqrt{x}
$$

32. $f(x)=\frac{1}{3} x^{2}+1$
$g(x)=\sqrt{3 x-3}$
33. $f(x)=x^{2}-9$

$$
g(x)=x+3
$$

34. $f(x)=\frac{2}{3} x^{3}$
$g(x)=\sqrt[3]{\frac{2}{3} x}$
35. $f(x)=(x+6)^{2}$

$$
g(x)=\sqrt{x}-6
$$

36. $f(x)=2 \sqrt{x-5}$
$g(x)=\frac{1}{4} x^{2}-5$

Restrict the domain of $f(x)$ so that its inverse is also a function. State the restricted domain of $f(x)$ and the domain of $f^{-1}(x)$.
37. $f(x)=x^{2}+5$
38. $f(x)=3 x^{2}$
39. $f(x)=\sqrt{x+6}$
40. $f(x)=\sqrt{x+3}$

Examples 1 and 2

Simplify.

1. $\pm \sqrt{121 x^{4} y^{16}}$
2. $\pm \sqrt{225 a^{16} b^{36}}$
3. $\pm \sqrt{49 x^{4}}$
4. $-\sqrt{16 c^{4} d^{2}}$
5. $-\sqrt{81 a^{16} b^{20} c^{12}}$
6. $-\sqrt{400 x^{32} y^{40}}$
7. $\sqrt[4]{16(x-3)^{12}}$
8. $\sqrt[8]{x^{16} y^{8}}$
9. $\sqrt[4]{81(x-4)^{4}}$
10. $\sqrt[6]{x^{18}}$
11. $\sqrt[4]{a^{12}}$
12. $\sqrt[3]{a^{12}}$

Examples 3

Write each expression in radical form, or write each radical in exponential form.
13. $8^{\frac{1}{5}}$
14. $4^{\frac{2}{7}}$
15. $\left(x^{3}\right)^{\frac{3}{2}}$
16. $\sqrt{17}$
17. $\sqrt[3]{5 x y^{2}}$
18. $\sqrt[4]{625 x^{2}}$

Examples 4

19. ORBITING The distance in millions of miles a planet is from the Sun in terms of t, the number of Earth days it takes for the planet to orbit the Sun, can be modeled by the expression $\sqrt[3]{6 t^{2}}$. Write the expression in exponential form.
20. DEPRECIATION The depreciation rate is calculated by the expression $1-\left(\frac{T}{P}\right)^{\frac{1}{n}}$, where n is the age of the item in years, T is the resale price in dollars, and P is the original price in dollars. Write the expression in radical form for an 8 year old car that was originally purchased for $\$ 52,425$.

Example 5

Evaluate each expression.

21. $27^{\frac{1}{3}}$
22. $256^{\frac{1}{4}}$
23. $16^{-\frac{3}{2}}$
24. $81^{-\frac{1}{4}}$
25. $1024^{\frac{3}{5}}$
26. $16^{-\frac{5}{4}}$

Graph each inequality.

14. $y<\sqrt{x-5}$
15. $y>\sqrt{x+6}$
16. $y \geq-4 \sqrt{x+3}$
17. $y \leq-2 \sqrt{x-6}$
18. $y>2 \sqrt{x+7}-5$
19. $y \geq 4 \sqrt{x-2}-12$

Example 3

Simplify.

11. $\sqrt{2}+\sqrt{8}+\sqrt{50}$
12. $\sqrt{12}-2 \sqrt{3}+\sqrt{108}$
13. $8 \sqrt{5}-\sqrt{45}-\sqrt{80}$
14. $2 \sqrt{48}-\sqrt{75}-\sqrt{12}$
15. $\sqrt{28 x}-\sqrt{14}+\sqrt{63 x}$
16. $\sqrt{135}+5 \sqrt{10 d}-3 \sqrt{60}$

Example 4

Simplify.

17. $3 \sqrt{5 y} \cdot 8 \sqrt{10 y z}$
18. $2 \sqrt{32 a^{3} b^{5}} \cdot \sqrt{8 a^{7} b^{2}}$
19. $6 \sqrt{3 a b} \cdot 4 \sqrt{24 a b^{3}}$
20. $5 \sqrt{x^{8} y^{3}} \cdot 5 \sqrt{2 x^{5} y^{4}}$
21. $5 \sqrt{2 x} \cdot 3 \sqrt{7 x^{2} y^{3}}$
22. $3 \sqrt{a^{5} b^{7}} \cdot 2 \sqrt{5 a^{7} b^{3}}$

Example 5

23. TRAMPOLINE There are two trampoline runways at a gymnastics practice facility. Both runways are $\sqrt{3}$ meters wide. One is $6 \sqrt{3}$ meters long and the other is $5 \sqrt{2}$ meters long. What is the total area of the trampoline runways?
24. DISTANCE Jayla walks 5 blocks north, then 8 blocks east to get to the library. Each block is $5 \sqrt{10}$ yards long. If Jayla could walk in a straight line to the library instead, how far would the walk be, in yards?

Examples 6 and 7

Simplify.

29. $\frac{\sqrt{5 a^{5}}}{\sqrt{b^{13}}}$
30. $\frac{3 \sqrt[3]{6 x^{2}}}{3 \sqrt[3]{5 y}}$
31. $\frac{\sqrt{7 x}}{\sqrt{10 x^{3}}}$
32. $\sqrt[4]{\frac{7 x^{3}}{4 b^{2}}}$
33. $\frac{6}{\sqrt{3}-\sqrt{2}}$
34. $\frac{\sqrt{2}}{\sqrt{5}-\sqrt{3}}$
35. $\frac{9-2 \sqrt{3}}{\sqrt{3}+6}$
36. $\frac{2 \sqrt{2}+2 \sqrt{5}}{\sqrt{5}+\sqrt{2}}$
37. $\frac{3 \sqrt{7}}{\sqrt{5}-1}$
38. $\frac{7 x}{3-\sqrt{2}}$

Example 1

Solve each equation.

1. $5 \sqrt{j}=1$
2. $\sqrt{b-5}=4$
3. $\sqrt{3 n+1}=5$
4. $2+\sqrt{3 p+7}=6$
5. $\sqrt{k-4}-1=5$
6. $5=\sqrt{2 g-7}$

Example 2

Solve each equation.

7. $\sqrt[3]{3 r-6}=3$
8. $(2 d+3)^{\frac{1}{3}}=2$
9. $(t-3)^{\frac{1}{3}}=2$
10. $4-(1-7 u)^{\frac{1}{3}}=0$
11. $\sqrt[3]{2 v-7}=-2$
12. $4(5 n-1)^{\frac{1}{3}}-1=0$

Examples 3 and 4

Solve each equation. Identify any extraneous solutions.
13. $\sqrt{x-15}=3-\sqrt{x}$
14. $(5 q+1)^{\frac{1}{4}}+7=5$
15. $(3 x+7)^{\frac{1}{4}}-3=1$
16. $(3 y-2)^{\frac{1}{5}}+5=6$
17. $(4 z-1)^{\frac{1}{5}}-1=2$
18. $\sqrt{x-10}=1-\sqrt{x}$
19. $\sqrt[6]{y+2}+9=14$
20. $(2 x-1)^{\frac{1}{4}}-2=1$

