تم تحميل هذا الملف من موقع المناهج الإماراتية

الملف مراجعة وحدة الحسابات الكيميائية للغازات وفق الهيكل الوزاري

موقع المناهج ← المناهج الإماراتية ← الصف العاشر المتقدم ← كيمياء ← الفصل الثالث

روابط مواقع التواصل الاجتماعي بحسب الصف العاشر المتقدم

روابط مواد الصف العاشر المتقدم على تلغرام

التربية الاسلامية اللغة العربية الانجليزية الرياضيات

المزيد من الملفات بحسب الصف العاشر المتقدم والمادة كيمياء في الفصل الثالث	
مراجعة وحدة المخاليط والمحاليل وفق الهيكل الوزاري	1
مراجعة وحدة حالات المادة وفق الهيكل الوزاري	2
مراجعة قوانين وحدة الغازات قانون الغاز المثالي	3
مراجعة قوانين وحدة الغازات وفق الهيكل الوزاري	4
نموذج الهيكل الوزاري الجديد انسباير	5

هيكل امتحان الكيمياء الحسابات الكيميائية للغازات الفصل الثالث 2022- 2022 الصف العاشر المتقدم

alManahj.com/ae

ينص قانون أفوجادرو:

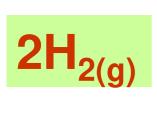
الحجوم المتساوية من الغازات المختلفة عند نفس درجة الحرارة والضغط تحتوي على نفس عدد الجسيمات .

تمر تحميل هذا الملف من موقع المناهج الإماراتية alManahj.com/ae

يفيد قانون أفوجادرو:

حجم الغاز يتناسب طردياً مع كميته، عند ثبات الضغط ودرجة الحرارة

تحت نفس الشروط، يمكن استخدام النسب الحجمية.


وبنفس طريقة استخدام النسب المولية التي مرت سابقاً

تم تحميل هذا الملف من موقع المناهج الإماراتية

alManahj.com/ae

O_{2(g)}

2 H₂O_(g)

جزيئان

جزيء واحد

جزيئان

الجزيئات

الملف الملف الم<mark>ال 2 mol</mark> مذا الملف المال المال

2|Manahi.com/ae 1

2 mol

المولات

2 حجم

الحجم

2 حجم

ما النسب الحجمية المتوقعة ؟

2 حجم من CO

1حجم 02 تم تحميل هذا الملف من

alManaco عجم من 2

2 حجم من 2

 O_2 حجم

2 حجم من 2

الغازات في التفاعل تكون تحت نفس الظروف.

النسب الحجمية تساوي النسب المولية في التفاعل.

تمر تحميل هذا الملف من موقع المناهج الإماراتية alManahj.com/ae

$2 H_2 + Cl_2 \longrightarrow 2HCl$

وهكذا

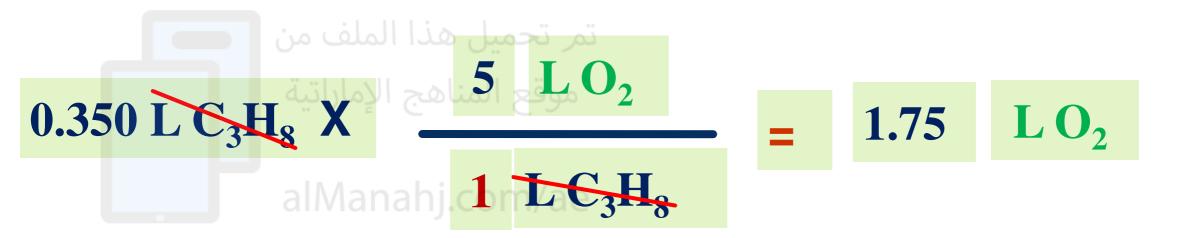
2 mol H₂

1 mol Cl₂

تمر تحميل موقع الم

H₂ حجم من

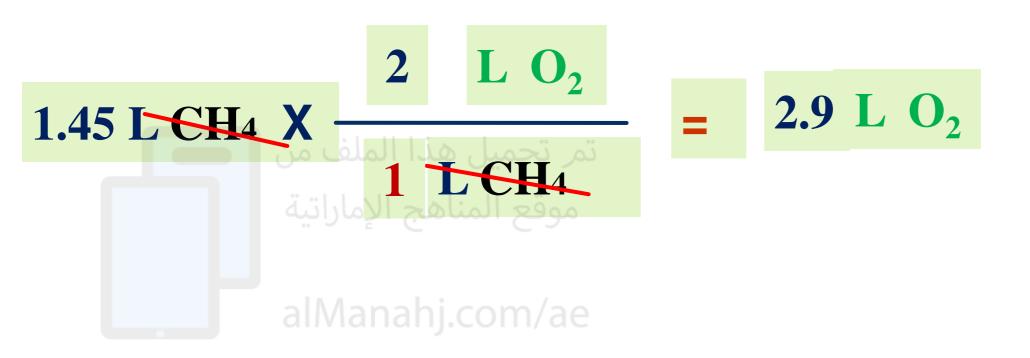
alManahj.com/ae Cl₂ حجم


النسب المولية:

النسب الحجمية:

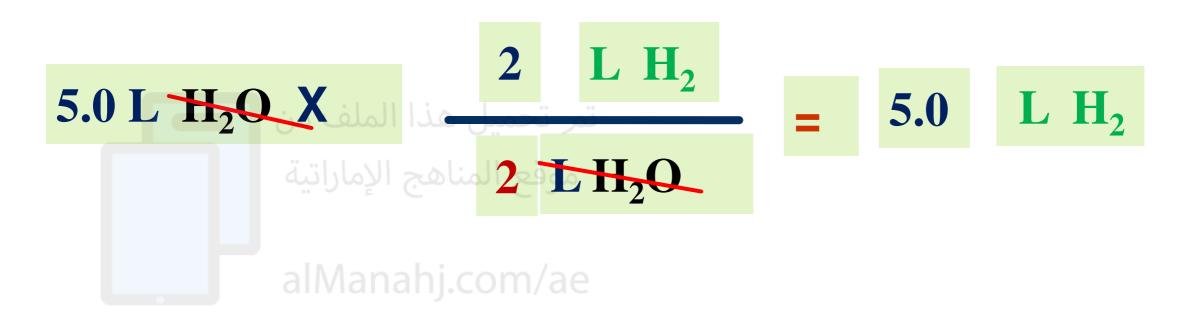
يستخدم غاز البروبان أحياناً كوقود للطهي والتدفئة ويحترق البروبان احتراقاً تاماً حسب المعادلة التالية

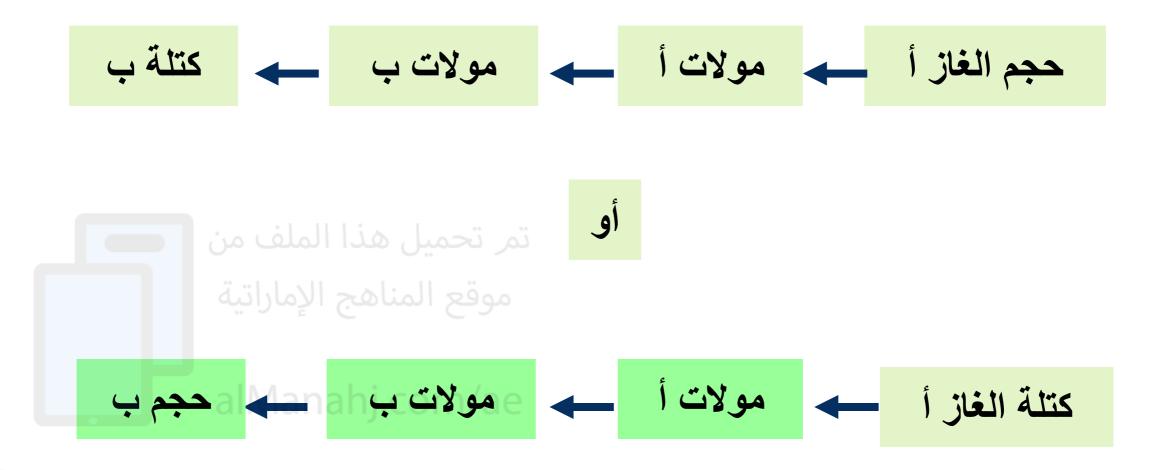
 $C_3H_8+5~O_2\longrightarrow 3CO_2+4~H_2O$ من البروبان بصورة تامة _ ما حجم الأكسجين باللتر اللازم لاحتراق 0.350L من البروبان بصورة تامة


عند احتراق الهيدروجين ينتج بخار الماء وفقا للمعادلة فما حجم الهيدروجين إذا استهلك £ 2.50 من الأكسجين عند درجة حرارة و ضغط ثابتين ؟

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

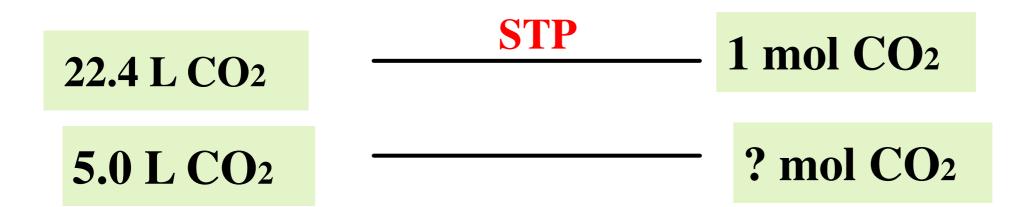
ما حجم غاز الأكسجين اللازم لاحتراق 1.45 L من غاز الميثان CH4؟


$$CH_{4(g)}+2O_{2(g)}\longrightarrow CO_{2(g)}+2H_2O(g)$$


- احسب حجم الهيدروجين اللازم لتكوين L 5.0 من الماء.

$$2H_2(g)+O_2(g) \longrightarrow 2H_2O(g)$$

حسابات الحجم - الكتلة




 $CaCO_3 = 100 \text{ g/mol}$

5.0 L CO₂ → ? mol CaCO₃ →

? g CaCO3

1 mol CO₂

1 mol CaCO₃

0.22 mol CO₂

? mol CaCO3

 $0.22 \times 1 =$

0.22 mol CaCO₃

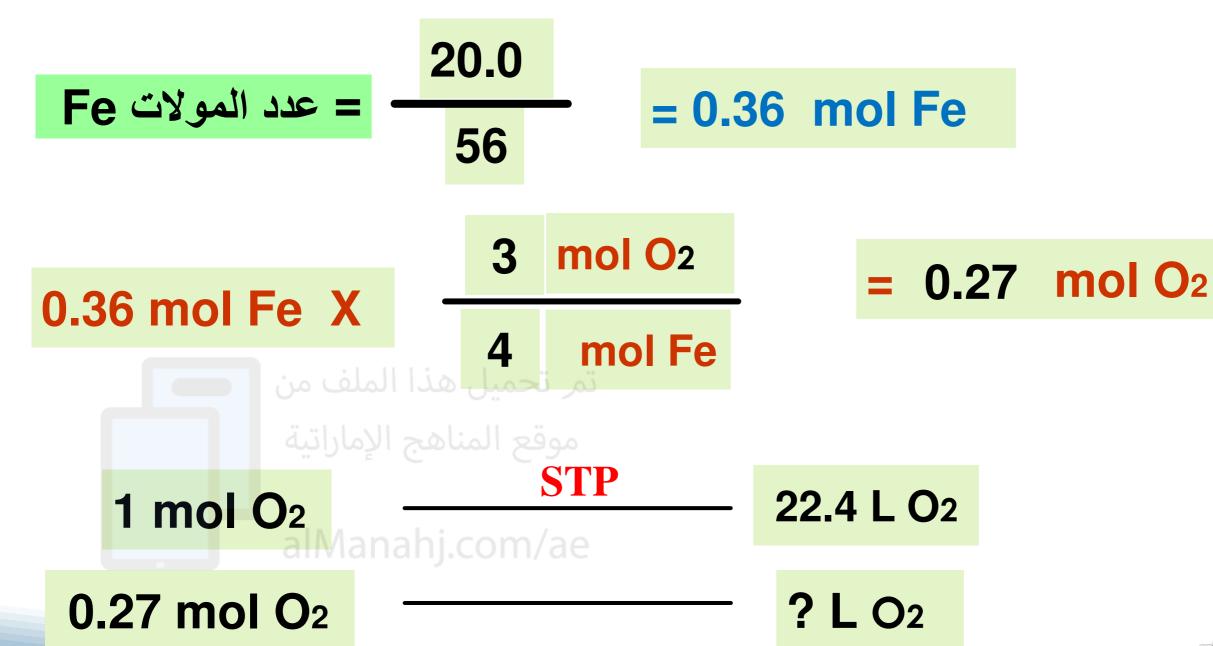
= الكتلة

الكتلة المولية *عدد المولات الم

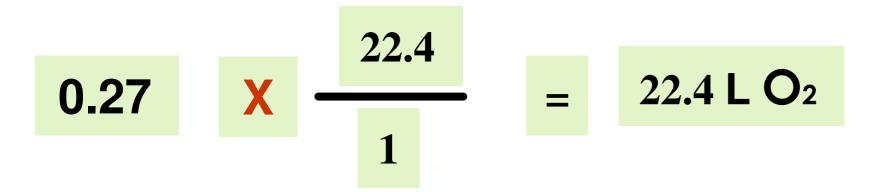
= الكتلة

0.22 X 100

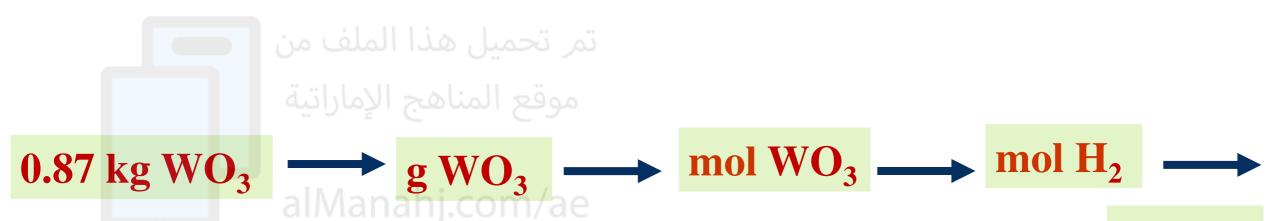
= 22 g CaCO₃


 $4Fe+3~O_2 \longrightarrow 2~Fe_2O_3$ المعادلة الآتية تمثل صدأ الحديد عند درجة الحرارة والضغط القياسيين STP اللازم Fe=56~,~O=16 بيتفاعل مع 9~0.0~g من الحديد علماً بأن 1~0.0~g

المجهول: حجم غاز الأكسجين


المعطى: 20.0 g Fe

20.0g Fe al Manahi mol Fe — mol O₂ — L O₂



يستخدم التنجستن W في فتيل المصابيح الكهربائية وهو ينتج صناعياً من تفاعل أكسيد التنجستن مع الهيدروجين

كم لتراً يلزم من غاز $WO_3+3H_2 \longrightarrow W+3H_2O$ كم لتراً يلزم من غاز STP التفاعل التام مع 0.87~kg من أكسيد التنجستن ؟

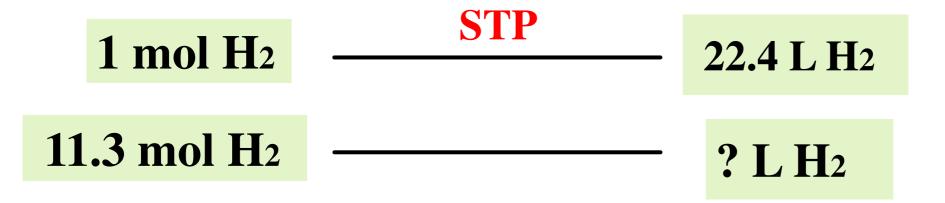
? L H₂

$$0.87 \text{ kg} = 870 \text{ g WO}_3$$

 $= 3.75 \text{ mol WO}_3$

1 mol WO₃

تم تحميل هذا الملف من 4.7 mol WO3


3.75 X 3

 $= 11.3 \text{ mol H}_2$

3 mol H₂

? mol H2

- ادرس التفاعل التالي: $2CO + 2NO \longrightarrow N_2 + 2CO_2$ إذا تفاعل N_2 عند CO عند CO وتحت ضغط N_2 فما كتلة N_2 الناتجة ؟ $N_2 = 28$

تم تحميل هذا الماف من من الماف عير قياسية موقع المن ظروف غير قياسية موقع المن طوف غير قياسية موقع المن قياسية عدد الماف عير قياسية موقع المن طوف ال

$$T = 25+273 = 298 K$$

$$V = 62.5 L$$

$$\mathbf{P} \quad \mathbf{V} \quad = \quad \mathbf{n} \quad \mathbf{R} \quad \mathbf{T}$$

1.1
$$X 62.5 = n X 0.0821$$

X 298

2 mol CO

1 mol N₂

2.8 mol CO

? mol N₂

2.8 X 1

 $= 1.4 \mod N_2$

2

تمر تحميل هذا الملف من موقع المناهج الإماراتية

= الكتلة

 $1.4 \times 28 = 39.2 \text{ g N}_2$

