

حل مراجعة وفق الهيكل الوزاري

موقع المناهج ← المناهج الإماراتية ← الصف العاشر المتقدم ← كيمياء ← الفصل الثاني ← الملف

المزيد من الملفات بحسب الصف العاشر المتقدم والمادة كيمياء في الفصل الثاني	
أسئلة الامتحان النهائي	1
حل مراجعة أسئلة وفق الهيكل الوزاري	2
حل تجميعة أسئلة وفق الهيكل الوزاري - انسباير	3
حل مراجعة وفق الهيكل الوزاري	4
أسئلة الامتحان النهائي	5

G10 ADV EOT 2 Coverage ppt 2022 - 2023

تم تحصل هذا الملف من Chemistry اهج الإماراتية

https://t.me/+Bsnl6d0uTVthNDY8 anahj.com/ae 1. Identify the Evidence of chemical change

Evidence of a chemical reaction

- Change in temperature
- Change in color
- > Odor, gas, or bubbles may form.

1. Identify the Evidence of chemical change

Which figures illustrates evidence of a chemical reaction?

مثل دليلاً على حدوث تفاعل كيمياني؟

1	2	3	4
Learning Outcomes Covered			
 CHM.5.3.01.013 CHM.5.3.01.014 			

a.	ا الملف من 1 and 3 only	تم تحميل هذ 1و 3 فقط ممقع المناهم
b.	1 and 2 only	1 و 2 فقط
с.	3 and 4 only	hj.com/ae 3 و 4 فقط
d.	2 and 3 only	2 و 3 فقط

2. Balance chemical equations

2. Balance chemical equations

Write chemical equations for each of the following reactions.

- 4. In water, iron (III) chloride reacts with sodium hydroxide, producing solid iron(III) hydroxide and sodium chloride.
- 5. Liquid carbon disulfide reacts with oxygen gas, producing carbon dioxide gas and sulfur dioxide gas.
- CHALLENGE A piece of zinc metal is added to a solution of dihydrogen sulfate. This reaction produces a gas and a solution of zinc sulfate.

مر تحميل هذا الملف من 🚽 💳

4. $\operatorname{FeCl}_3(\operatorname{aq}) + \operatorname{3NaOH}(\operatorname{aq}) \rightarrow \operatorname{Fe}(\operatorname{OH})_3(\operatorname{s}) + \operatorname{3NaCl}(\operatorname{aq})$ 5. $\operatorname{CS}_2(\operatorname{I}) + \operatorname{3O}_2(\operatorname{g}) \rightarrow \operatorname{CO}_2(\operatorname{g}) + 2\operatorname{SO}_2(\operatorname{g})$ 6. $\operatorname{Zn}(\operatorname{s}) + \operatorname{H}_2\operatorname{SO}_4(\operatorname{aq}) \rightarrow \operatorname{H}_2(\operatorname{g}) + \operatorname{ZnSO}_4(\operatorname{aq})$

alManahj.com/ae

Table 2 Steps for Balancing Equations

tep	Process	Example	
1	Write the skeleton equation for the reaction. Make sure that the chemical formulas correctly represent the substances. An arrow separates the reactants from the products, and a plus sign separates multiple reactants and products. Show the physical states of all reactants and products.	$\begin{array}{cccc} H_2(g) & + & CI_2(g) & \longrightarrow & HCI(g) \\ \hline \bullet & + & & & \rightarrow & \\ \hline \bullet & & & & & \bullet \\ \hline Two \ hydrogen & Two \ chlorine & One \ hydrogen \ atoms & One \ chlorine \ atom \end{array}$	
2	Count the atoms of the elements in the reactants. If a reaction involves identical polyatomic ions in the reactants and products, count each polyatomic ion as a single element. This reaction does not involve any polyatomic ions. Two atoms of hydrogen and two atoms of chlorine are reacting.	$H_2 + CI_2 \rightarrow$ 2 atoms H 2 atoms CI	
3	Count the atoms of the elements in the products. One atom of hydrogen and one atom of chlorine are produced.	HCI 1 atom H + 1 atom CI	
4	Change the coefficients to make the number of atoms of each element equal on both sides of the equation, showing that atoms are conserved. Never change a subscript in a chemical formula to balance an equation because doing so changes the identity of the substance.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5	Write the coefficients in their lowest possible ratio. The coefficients should be the smallest possible whole numbers. The ratio 1 hydrogen to 1 chlorine to 2 hydrogen chloride (1:1:2) is the lowest-possible ratio because the coefficients cannot be reduced further and still remain whole numbers.	$H_2(g) + Cl_2(g) \rightarrow 2HCI(g)$ 1:1:2 1 H_2 to 1 Cl_2 to 2 HCI	
6	Check your work. Make sure that the chemical formulas are written correctly. Then, check that the number of atoms of each element is equal on both sides of the equation.	$\begin{array}{ccc} H_2 & + & CI_2 & \rightarrow & 2HCI\\ 2 \text{ atoms H} & 2 \text{ atoms CI} & 2 \text{ atoms H} + 2 \text{ atoms CI} \end{array}$ There are two hydrogen atoms and two chlorine atoms on both sides of the equation.	

TABLE 4 PREDICTING PRODUCTS OF CHEMICAL REACTIONS

Type of Reaction	Reactants	Probable Products	Generic Equation
Synthesis	 two or more substances 	one compound	$A + B \rightarrow AB$
Combustion	 a metal and oxygen a nonmetal and oxygen a compound and oxygen 	 the oxide of the metal the oxide of the nonmetal two or more oxides 	$A + O_2 \rightarrow AO$
من Decomposition	• one compound تم تحميل هذا الملف	 two or more elements and/or compounds 	$AB \rightarrow A + B$
تية Single-replacement	 a metal and a compound a nonmetal and a compound 	 a new compound and the replaced metal a new compound and the replaced non-metal 	$A + BX \rightarrow AX + B$
Double-replacement	two compounds	 two different compounds, one of which is a solid, water, or a gas 	$AX + BY \rightarrow AY + BX$

- In a <u>combustion reaction</u>, oxygen combines with a substance and releases energy in the form of heat and light.
- Heated hydrogen reacts with oxygen to produce heat and water in a combustion reaction. This is also a synthesis reaction.

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$$

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

The synthesis reaction between sulfur dioxide and oxygen can also be classified as a **combustion reaction**.

 $2\mathrm{SO}_2\left(g\right) + \mathrm{O}_2\left(g\right) \to 2\mathrm{SO}_3\left(g\right)$

Figure 8 The light produced by a sparkler is the result of a combustion reaction between oxygen and different metals. Nora

1	earning Outcomes Covered		
	 CHM53.01.016 		
1.00	Decomposition reaction	تفكك	لفاء
i.	Combustion reaction	`حتراق	فاعا
	Single Replacement reaction	سيبل من الملف من	فاعل
	Double Replacement reaction	سيالمرزاجهج الإماراتية	قاء:

- A <u>synthesis reaction</u> is a reaction in which two or more substances react to produce a single product.
- When two elements react, the reaction is always a synthesis reaction.

Two compounds can also combine to form one compound. For example, the reaction between calcium oxide (CaO) and water (H_2O) to form calcium hydroxide (Ca(OH)₂) is a synthesis reaction.

 $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

Another type of synthesis reaction involves a reaction between a compound and an element, as happens when sulfur dioxide gas (SO_2) reacts with oxygen gas (O_2) to form sulfur trioxide (SO_3) .

 $2SO_{2}\left(g\right)+O_{2}\left(g\right)\rightarrow2SO_{3}\left(g\right)$

Which one of the following chemical reaction equations represents a synthesis reaction?

التفاعلات الكيميانية التالية تُمثَّل تفاعل تكوين؟ Learning Outcomes Covered o CHM.5.3.01/016 а. $2\text{KCl}_{(s)} + 3O_{2(g)} \rightarrow 2\text{KClO}_{3(s)}$ $C_5H_{12(4)} + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(g)$ $2Pb(NO_3)_{2(s)} \rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ $2AI(NO_3)_{3 (aq)} + 3H_2SO_{4 (aq)} \rightarrow AI_2(SO_4)_{3 (aq)} + 6HNO_{3 (aq)}$

Note that the combustion reactions just mentioned are also synthesis reactions. However, not all combustion reactions are synthesis reactions. For example, the reaction involving methane gas (CH_4) and oxygen illustrates a combustion reaction in which one substance replaces another in the formation of products.

 $CH_{4}\left(g\right)+2O_{2}\left(g\right)\rightarrow CO_{2}\left(g\right)+2H_{2}O\left(g\right)$

Methane, which belongs to a group of substances called hydrocarbons, is the major component of natural gas. A fireplace that uses natural gas as fuel is shown in **Figure 10**. All hydrocarbons contain carbon and hydrogen and burn in oxygen to yield carbon dioxide and water.

وقع المناهج الإماراتية ADDITIONAL PRACTICE

Write chemical equations for the following reactions. Classify each reaction into as many categories as possible.

14. The solids aluminum and sulfur react to produce aluminum sulfide.

water.

- **15.** Water and dinitrogen pentoxide gas react to produce aqueous hydrogen nitrate.
- 16. The gases nitrogen dioxide and oxygen react to produce dinitrogen pentoxide gas.
- 17. CHALLENGE Sulfuric acid (H₂SO₄) and sodium hydroxide solutions react to produce aqueous sodium sulfate and

- 14. $2AI(s) + 3S(s) \rightarrow AI_2S_3(s)$; synthesis
- 15. $H_2O(I) + N_2O_5(g) \rightarrow 2HNO_3(aq)$; synthesis
- 16. $4NO_2(g) + O_2(g) \rightarrow 2N_2O_5(g)$; synthesis and combustion
- 17. $H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I);$ synthesis

EXAMPLE Problem 2

SINGLE-REPLACEMENT REACTIONS

Predict the products that will result when these reactants combine, and write a balanced chemical equation for each reaction.

- a. Fe(s) + CuSO₄(aq) \rightarrow
- **b.** $Br_2(l) + MgCl_2(aq) \rightarrow$
- c. Mg(s) + AICI₂(aq) \rightarrow
- a. Iron is listed above copper in the activity series. Therefore, the first reaction will occur because iron is more reactive than copper. In this case, iron will replace copper. The skeleton equation for this reaction is $Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(s)$ موقع المناهج الامازائير
 - This equation is balanced.
- b. In the second reaction, chlorine is more reactive than bromine because bromine is listed below chlorine in the activity series. Therefore, the reaction will not occur. The skeleton equation for this situation is $Br(l) + MgCl_2(aq) \rightarrow NR$ No balancing is required.
- c. Magnesium is listed above aluminum in the activity series. Therefore, the third reaction will occur because magnesium is more reactive than aluminum. In this case, magnesium will replace aluminum. The skeleton equation for this reaction is This equation is not balanced. The balanced equation is

 $Mg(s) + AlCl_3(aq) \rightarrow Al(s) + MgCl_2(aq)$

This equation is not balanced. The balanced equation is $3Mg(s) + 2AlCl_3(aq) \rightarrow 2Al(s) + 3MgCl_2(aq)$

Most active

Least

active

Most

active

Least

active

METALS Lithium Rubidium Potassium Calcium Sodium Magnesium Aluminum Manganese Zinc Iron Nickel Tin Lead Copper Silver Platinum Gold HALOGENS Fluorine Chlorine Bromine

lodine

Nora

ADDITIONAL PRACTICE

Predict whether the following single-replacement reactions will occur. If a reaction occurs, write a balanced equation for the reaction.

- $\textbf{21. K(s) + ZnCl}_2(aq) \rightarrow$
- $\textbf{22. Cl}_2(g) + \text{HF(aq)} \rightarrow$
- **23.** Fe(s) + Na₃PO₄(aq) \rightarrow
- 24. CHALLENGE AI(s) + Pb(NO_3)_2(aq) \rightarrow
- 21. Yes. K is above Zn in the activity series. $2K(s) + ZnCl_2(aq) \rightarrow Zn(s) + 2KCl(aq)$
- 22. No. CI is below F in the activity series.
- 23. No. Fe is below Na in the activity series.
- 24. Yes. All is above Pb in the activity series. $2AI(s) + 3Pb(NO_3)_2(s) \rightarrow 3Pb(s) + 2AI(NO_3)_3(aq)$

activity series. 2K(s) + Cl(aq) activity series. activity series.	Question Predict if the following reactions will occur and indicate products formed. Li(s) + NaOH(aq) \rightarrow F ₂ (g) + HCl(aq) \rightarrow Ag(s) + AIC L (aq) \rightarrow	Least active
e activity series. 2AI(s) + 2AI(NO ₃) ₃ (aq)	Answer Li(s) + NaOH(aq) \rightarrow Na(s) + LiOH(aq) F ₂ (g) + 2HCl(aq) \rightarrow Cl ₂ (g) + 2HF(aq) Ag(s) + AlCl (ag) \rightarrow po reaction	Most active
	$Ag(s) + AlCl_3(aq) \rightarrow no reaction$	active

METALS Lithium Rubidium Potassium Calcium Sodium Magnesium Aluminum Manganese Zinc Iron Nickel Tin Lead Copper Silver Platinum Gold HALOGENS Fluorine Chlorine Bromine lodine

Most

active

REACTIONS THAT FORM A PRECIPITATE

Write the chemical, complete ionic, and net ionic equations for the reaction between aqueous solutions of barium nitrate and sodium carbonate that forms the precipitate barium carbonate.

 $Ba(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow BaCO_3(s) + NaNO_3(aq)$

 $Ba(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow BaCO_3(s) + 2NaNO_3(aq)$ Balance the skeleton equation.

 $Ba^{2+} (aq) + 2NO_3^{-} (aq) + 2Na^{+} (aq) + CO_3^{2-} (aq) \rightarrow BaCO_3 (s) + 2Na^{+} (aq) + 2NO_3^{-} (aq)$

Show the ions of the reactants and the products.

 $Ba^{2+}(aq) + 2NO_{3}^{-}(aq) + 2Na^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow$ $BaCO_{3}(s) + 2Na^{+}(aq) + 2NO_{3}^{-}(aq)$

 $Ba^{2} + (aq) + CO_{3}^{2-} (aq) \rightarrow BaCO_{3} (s)$

Cross out the spectator ions from the complete ionic equation.

Write the net ionic equation.

ADDITIONAL PRACTICE

موقع المناهج الام

Write chemical, complete ionic, and net ionic equations for each of the following reactions that might produce a precipitate. Use *NR* to indicate that no reaction occurs.

- 35. Aqueous solutions of potassium iodide and silver nitrate are mixed, forming the precipitate silver iodide.
- 36. Aqueous solutions of ammonium phosphate and sodium sulfate are mixed. No precipitate forms and no gas is produced.
- Aqueous solutions of aluminum chloride and sodium hydroxide are mixed, forming the precipitate aluminum hydroxide.
- 38. Aqueous solutions of lithium sulfate and calcium nitrate are mixed, forming the precipitate calcium sulfate.
- **39. CHALLENGE** When aqueous solutions of sodium carbonate and manganese(V) chloride are mixed, a precipitate forms. The precipitate is a compound containing manganese.

35. chemical equation: Kl(aq) + AgNO₂(aq) → KNO₂(aq) + Agl(s); complete ionic equation: K (ag) + I (ag) + Ag $(aq) + NO_1(aq) \rightarrow K^1(aq) + NO_1(aq) + Agl(s); net$ ionic equation: $\Gamma(aq) + Aq'(aq) \rightarrow Aql(s)$ 36. chemical equation: 2(NH,),PO,(aq) + 3Na,SO,(aq) → 3(NH,),SO,(aq) + 2Na,PO,(aq); complete ionic equation: 6NH; (aq) + 2PO 3 (aq) + $6Na^{+}(aq) + 3SO^{-2}(aq) \rightarrow 6NH^{+}(aq) + 3SO^{-2}(aq) +$ 6Na (aq) + 2PO; 2 (aq) No reaction occurs; therefore, there is no net ionic equation. chemical equation: AICL(aq) + 3NaOH(aq) → AI(OH)₂(s) + 3NaCl(aq); complete ionic equation; Al 31 (aq) + $3CI_{(aq)} + 3Na^{1}(aq) + 3OH^{-}(aq) \rightarrow AI(OH)_{(s)} +$ 3Na+(aq) + 3CI-(aq) net ionic equation: Al3+(aq) + $3OH^{-}(aq) \rightarrow AI(OH)_{,}(s)$ 38. chemical equation: Li_SO_(aq) + Ca(NO_)_(aq) → 2LiNO_(aq) + CaSO_(s); complete ionic equation: $2\text{Li}(aq) + SO_a^{2-}(aq) + Ca^{2+}(aq) + 2NO_a^{-}(aq) \rightarrow$ 2Li (aq) + 2NO₂ (aq) + CaSO₄(s); net ionic equation: $SO_4^{2-}(aq) + Ca^{2+}(aq) \rightarrow CaSO_4(s)$ 39. chemical equation: 5Na,CO,(aq) + 2MnCl,(aq) → 10NaCl(aq) + Mn₂(CO₂)₆(s); complete ionic equation: $10Na^{+}(aq) + 5CO_{2}^{2-}(aq) + 2Mn^{5+}(aq) + 10CL^{-}(aq) \rightarrow$ 10Na (eq) + 10Cl (eq) + Mn (CO.) (s); net ionic equation: $5CO_3^{2-}(aq) + 2Mn^{51}(aq) \rightarrow$ Mn.(CO.).(s)

REACTIONS THAT FORM WATER

Write the chemical, complete ionic, and net ionic equations for the reaction between hydrochloric acid and aqueous lithium hydroxide. This reaction produces water and aqueous lithium chloride.

$$\begin{split} & \operatorname{HCl}\left(\operatorname{aq}\right) + \operatorname{LiOH}\left(\operatorname{aq}\right) \to \operatorname{H_2O}\left(\operatorname{l}\right) + \operatorname{LiCl}\left(\operatorname{aq}\right) \\ & \operatorname{H^+}\left(\operatorname{aq}\right) + \operatorname{Cl^-}\left(\operatorname{aq}\right) + \operatorname{Li^+}\left(\operatorname{aq}\right) + \operatorname{OH^-}\left(\operatorname{aq}\right) \to \\ & \operatorname{H_2O}\left(\operatorname{l}\right) + \operatorname{Li^+}\left(\operatorname{aq}\right) + \operatorname{Cl^-}\left(\operatorname{aq}\right) \end{split}$$

H⁺ (aq) + CI (aq) + Li⁺ (aq) + OH⁻ (aq) → H₂O (l) + Li⁺ (aq) + CI (aq)

 $\mathrm{H^{+}}\left(\mathrm{aq}\right) + \mathrm{OH^{-}}\left(\mathrm{aq}\right) \rightarrow \mathrm{H_{2}O}\left(\mathrm{l}\right)$

Show the ions of the reactants and the products.

Cross out the spectator ions from the complete ionic equation.

Write the net ionic equation.

تم تحميل هذا الملف من

Write chemical, complete ionic, and net ionic equations for the reactions between the following substances, which produce water.

40. Mixing sulfuric acid (H₂SO₄) and aqueous potassium hydroxide produces water and aqueous potassium sulfate.
41. Mixing hydrochloric acid (HCI) and aqueous calcium hydroxide produces water and aqueous calcium chloride.
42. Mixing nitric acid (HNO₃) and aqueous ammonium hydroxide produces water and aqueous ammonium nitrate.
43. Mixing hydrosulfuric acid (H₂S) and aqueous calcium hydroxide produces water and aqueous calcium sulfide.
44. CHALLENGE When benzoic acid (C₆H₅COOH) and magnesium hydroxide are mixed, water and magnesium benzoate are produced.

40. chemical equation: H₂SO₄(aq) + 2KOH(aq) → 2H₂O(I) + K₂SO₄(aq); complete ionic equation: 2H⁺(aq) + SO₄⁻⁻(aq) + 2K⁺(aq) + 2OH⁻(aq) → 2H₂O(I) + 2K⁺(aq) + SO₄⁻⁻(aq); net ionic equation: 2H⁺(aq) + 2OH⁻(aq) → 2H₂O(I), simplified to H⁺(aq) + OH⁻(aq) → H₂O(I)

- 41. chemical equation: $2HCl(aq) + Ca(OH)_2(aq) \rightarrow 2H_2O(I)$ + $CaCl_2(aq)$; complete ionic equation: $2H^+(aq) + 2Cl^-(aq) + Ca^{2+}(aq) + 2OH^-(aq) \rightarrow 2H_2O(I) + Ca^{2+}(aq) + 2Cl^-(aq)$ net ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$
- 42. chemical equation: $HNO_3(aq) + NH_4OH(aq) \rightarrow H_2O(I) + NH_4NO_3(aq)$ complete ionic equation: $H^+(aq) + NO^3$ (aq) $+ NH_4^+(aq) + OH^-(aq) \rightarrow H_2O(I) + NH_4^+(aq) + NO_3^-(aq)$; net ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_3O(I)$
- $\begin{array}{l} \text{43. chemical equation: } H_2S(aq) + Ca(OH)_2(aq) \rightarrow 2H_2O(I) \\ + CaS(aq); \text{ complete ionic equation: } 2H^+(aq) + S^2^-(aq) \\ + Ca^{2+}(aq) + 2OH^-(aq) \rightarrow 2H_2O(I) + Ca^{2+}(aq) + S^2^-(aq); \\ \text{ net ionic equation: } H^+(aq) + OH^-(aq) \rightarrow H_2O(I) \end{array}$
- 44. chemical equation: $2C_6H_5COOH(aq) + Mg(OH)_2(aq) \rightarrow Mg(C_6H_5COO)_2(aq) + 2H_2O(I)$; complete ionic equation: $2C_6H_5COO (aq) + 2H^+(aq) + Mg^+(aq) + 2OH^-(aq) \rightarrow 2C_6H_5COO (aq) + Mg^+(aq) + 2H_2O(I)$; net ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

7 & 8. Convert of moles to number of representative

Moles

particles and vice versa

1 mole is the number of atoms in 12 g of pure carbon-12, or 6.02 × 10²³ representative particles

Moles to Particles

- Use Avogadro's number as a conversion factor.
- Number of molecules in 3.50 mol of sucrose:

 $3.50 \text{ mol sucrose} \times \frac{6.02 \times 10^{23} \text{ molecules}}{1 \text{ mol sucrose}} = 2.11 \times 10^{24} \text{ molecules}$

Avogadro's number as a conversion factor.

Number of representative particles $\times \frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ particles}}$

alManahj.com/ae. Express 2.11 × 10²⁴ molecules of sucrose in moles:

 2.11×10^{24} molecules sucrose $\times \frac{1 \text{ mol sucrose}}{6.02 \times 10^{23} \text{ molecules}} = 3.50 \text{ mol sucrose}$

7 & 8. Convert of moles to number of representative particles and vice versa $\div 6.02$, $\div 6.02$

- Zinc (Zn) is used to form a corrosion-inhibiting surface on galvanized steel. Determine the number of Zn atoms in 2.50 mol of Zn.
- 2. Calculate the number of molecules in 11.5 mol of water (H_2O) .
- 3. Silver nitrate (AgNO₃) is used to make several different silver halides used in photographic films. How many formula units of AgNO₃ are there in 3.25 mol of AgNO₃?
- 4. CHALLENGE Calculate the number of oxygen atoms in 5.00 mol of oxygen molecules. Oxygen is a diatomic molecule, O_2

موقع المناهج الإمارانية

- 1. 1.51 × 10²⁴ atoms al Manahj.com/ae
 2. 6.92 × 10²⁴ molecules
- 3. 1.96 \times 10²⁴ formula units
- 4. 6.02 × 10²⁴ atoms

7 & 8. Convert of moles to number of representative particles and vice versa

- 5. How many moles contain each of the following?
- a. 5.75×10^{24} atoms Al
- b. 2.50×10^{20} atoms Fe

6. CHALLENGE Identify the representative particle for each formula, and convert the given number of representative particles to moles. a. 3.75 x 10²⁴ CO₂

b. 3.58×10^{23} ZnCl₂

5. a. 9.55 mol b. 4.15 × 10⁻⁴ mol 6. a. a molecule; 6.23 mol CO, b. a formula unit; 0.595 mol ZnCl, Nora

7 & 8. Convert of moles to number of representative particles and vice versa

How many molecules are in 60.0 g of glucose (C₆H₁₂O₆)?

Molar mass of glucose $(C_6H_{12}O_6) = 180 \text{ g/mol}$ Avogadro's number = 6.02×10^{23}

What is the number of atoms in a 0.645 mol sample of argon gas (Ar)?	، الموجودة في 0.645 mol من حينة من (Ar)؟
Avogadro's number = 6.02 x 10 ²³	6.02 × 10 ²³
Learning Outcomes Covered	
 CHM.5.1.01.003 	
a. 3.88 x 10 ²³ atom	نرة 3.88 x 10 ²³
ь. 4.62 x 10 ²³ atom	4.62 x 10 ²³ ذرة
c. 1.07 x 10 ²³ atom	1.07 x 10 ²³ ذرة
^{d.} 9.33 x 10 ²³ atom	9.33 x 10 ²³ ذرة

7 & 8. Convert of moles to number of representative particles and vice versa

vogadro's number - 6.02 × 10	23	6.
Learning Outcomes Covered	P.,	1
e CHM,5.3.01.004		
	ميل هذا الملف من	تمر تح
	s المناهج المعطية الع	موقع
	al Manahj.con	n/ae
	a	

Which of the following does NOT describe the mole?

1	earning Outcomes Covered	
	 CHM.5.3(01/003 	
a.	A unit used to count particles directly	
ь.	Avogadro's number of molecules of a compound	
c	The number of atoms in exactly 12 g of pure C-12	جرام
d.	The SI base unit used to measure the amount of a substance	S التي

Moles to Mass

• Suppose you need 3.00 mol of copper for a chemical reaction

number of moles $\times \frac{\text{mass in grams}}{1 \text{ mole}} = \text{mass}$

 $3.00 \text{ mol Cu} \times \frac{63.546 \text{ g Cu}}{1 \text{ mol Cu}} = 191 \text{ g Cu}$

 3.00 mol of copper has a mass of 191 g.

	15. Determine the mass in grams of each of the following.		
	a. 3.57 mol Al		
	ь. 4.26 mol Si		
	16. CHALLENGE Convert each given quantity in scientific not	ation to mass in grams expressed in scientific notation.	
	a. 3.45×10^2 mol Co	15 a 963 a Al	
	b. 2.45×10^{-2} mol Zn	b. 1.20 x 10 ³ a Si	
		16 a 2.03 × 10 ⁴ g Co	
S		b 160 g 7g	
		5. 1.00 g 211	
	Determine the number of moles in each o	f the following.	
	a. 25.5 g Ag		
	b. 300.0 g S		
	18. CHALLENGE Convert each mass to mole	s. Express the answer in scientific notation	
	1.05 - 103 - 77		
fe	a. 1.25 × 10° g Zn		
	b. 1.00 kg re	17. a. 0.236 mol Ag	
		b. 9.355 mol S	
		18. a. 1.91 × 101 mol Zn	
		b. 1.79 × 10 ¹ mol Fe	

Nora

EXAMPLE Problem 2

MOLE-TO-MASS CONVERSION Chromium (Cu), a transition element, is a component of chrome plating. Chrome plating used on metals and in steel alloys to control corrosion. Calculate the mass in grams of 0.0450 mol Cr.

1. ANALYZE THE PROBLEM

You are given the number of moles of chromium and must convert it to an equivalent mass using the molar mass of chromium from the periodic table. Because the sample is less than one-tenth of a mole, the answer should be less than one-tenth of the molar mass.

Known

Unknown

number of moles = 0.0450 mol Cr

molar mass Cr = 52.00 g/mol Cr

2. SOLVE FOR THE UNKNOWN

Use a conversion factor—the molar mass—that relates grams of chromium to moles of chromium. Write the conversion factor with moles of chromium in the denominator and grams of chromium in the numerator. Substitute the known values into the equation and solve.

moles
$$Cr \times \frac{\text{grams } Cr}{1 \text{ mol } Cr} = \text{grams } Cr$$

mass Cr = ?g

0.0450 mol Cr
$$\times \frac{52.00 \text{ g Cr}}{1 \text{ mol Cr}} = 2.34 \text{ g Cr}$$

Apply the conversion factor.

Substitute 0.0450 mol for moles Cr and 52.00 g/mol for molar mass of Cr. Multiply and divide numbers and units. Nora

EXAMPLE Problem 3

MASS-TO-MOLE CONVERSION Calcium (Ca), the fifth most-abundant element on Earth, is always found combined with other elements because of its high reactivity. How many moles of calcium are in 525 g Ca?

1. ANALYZE THE PROBLEM

You must convert the mass of calcium to moles of calcium. The mass of calcium is more than ten times larger than the molar mass. Therefore, the answer should be greater than 10 mol.

Known

Unknown

mass = 525 g Ca

number of moles Ca = ? mol

molar mass Ca = 40.08 g/mol Ca

2. SOLVE FOR THE UNKNOWN

Use a conversion factor—the inverse of molar mass—that relates moles of calcium to grams of calcium. Substitute the known values and solve.

mass $Ca \times \frac{1 \text{ mol } Ca}{\text{grams } Ca} = \text{moles } Ca$

525 gea
$$\times \frac{1 \text{ mol Ca}}{40.08 \text{ gea}} = 13.1 \text{ mol Ca}$$

Substitute mass Ca = 525 g, and inverse molar mass of Ca = 1 mol/40.08 g. Multiply and divide numbers and units.

Apply the conversion factor.

Use with Example Problem 7.

Problem

The characteristic odor of garlic is due to allyl sulfide $[(C_3H_5)_2S]$. What is the mass of 2.50 mol of $(C_3H_5)_2S$?

SOLVE FOR THE UNKNOWN

Calculate the molar mass of $(C_3H_5)_2S$.

• Multiply the moles of S in the compound by the molar mass of S.

 $1 \frac{\text{mol S}}{1 \frac{\text{mol S}}{$

• Multiply the moles of C in the compound by the molar mass of C.

$$6 \frac{\text{mol C}}{1 \frac{\text{mol C}}{$$

 Multiply the moles of H in the compound by the molar mass of H.

$$10 \text{ mol H} \times \frac{1.008 \text{ g H}}{1 \text{ mol H}} = 10.08 \text{ g H}$$

SOLVE FOR THE UNKNOWN

Total the mass values.

molar mass = (32.07 g + 72.06 g + 10.08 g) =114.21 g/mol (C₃H₅)₂S

Use a conversion factor—the molar mass that relates grams to moles.

• Apply the conversion factor.

moles
$$(C_3H_5)_2S \times \frac{\text{grams}(C_3H_5)_2S}{1 \text{ mol}(C_3H_5)_2S}$$

= mass(C_3H_5)_2S

• Substitute moles $(C_3H_5)_2S = 2.5$ mol, molar mass $(C_3H_5)_2S = 114.21$ g/mol, and solve.

2.50 mol $(C_3H_5)_2S \times \frac{114.21 \text{ g} (C_3H_5)_2S}{1 \text{ mol} (C_3H_5)_2S}$ = 286 g (C₃H₅)₂S

34. Determine the molar mass of each ionic compound.

a. NaOH

b. CaCl₂

c. $KC_2H_3O_2$

35. Calculate the molar mass of each molecular compound.

a. C_2H_5OH

b. HCN

موقع المناهج الإماراتية

c. CCl₄

34. a. 40.00 g/mol
b. 110.98 g/mol
c. 98.14 g/mol
35. a. 46.07 g/mol
b. 27.03 g/mol
c. 153.81 g/mol
36. a. ionic; 211.64 g/mol
b. ionic; 149.10 g/mol
c. molecular; 342.30 g/mol

36. CHALLENGE Identify each substance as a molecular compound or an ionic compound, and then calculate its molar mass.

a. $Sr(NO_3)_2$

- b. (NH₄)₃PO₄
- $\textbf{c}.\, C_{12} H_{22} O_{11}$

37. The United States chemical industry produces more sulfuric acid (H₂SO₄), in terms of mass, than any other chemical. What is the mass of 3.25 mol of H₂SO₄?

38. What is the mass of 4.35×10^{-2} mol of zinc chloride (ZnCl₂)?

39. CHALLENGE Write the chemical formula for potassium permanganate, and then calculate the mass in grams of 2.55 mol of the compound.

يمر تحميل هذا الملف من موقع المناهج الإماراتية

alManahj.com/ae

37. 319 g 38. 5.93 g 39. KMnO₄; 403 g

How many moles of carbon dioxide CO₂ will be produced if 100.0 g of potassium hydrogen carbonate KHCO₃ have decomposed?

 $2KHCO_{3(s)} \rightarrow K_2CO_{3(s)} + CO_{2(g)} +$

earning Outcomes Covered		
• CHM.53.01,013		
	1 mol	
	2 mol	
	0.5 mol	
	0.25 mol	

How many moles are in 22.0 g of CO₂? Molar mass $CO_2 = 44 \text{ g/mol}$ Learning Outcomes Covered O CHM5301004 0.50 mol 0.60 mol 1.25 mol 2.00 molanahi.com/ ae

 Which of the following statements are correct related to mass and the mole?
 الكتلة والمول؟

 1
 A mole always contains the same number of particles

 2
 Moles of different substances have different masses

 3
 Converting from mass to mole we use a fixed ratio for all elements

ng Outcomes covere	Lovered
CHM.5.3.01.003 CHM.5.3.01.013)3 13
CHM.5.3.01.014	14

	2 and 3	2 و 3	
	1 and 3	1 و3	
*******	1 and 2	1 و 2	*******
	1 ,2 and 3	1 و2 و3	

Predict whether reactions in aqueous solutions will produce gas

REACTIONS THAT FORM GASES

Write the chemical, complete ionic, and net ionic equations for the reaction between hydrochloric acid and aqueous sodium sulfide, which produces hydrogen sulfide gas.

 $\begin{array}{ll} HCl(aq) + Na_2S(aq) \rightarrow H_2S(g) + NaCl(aq) \\ \\ 2HCl(aq) + Na_2S(aq) \rightarrow H_2S(g) + 2NaCl(aq) \\ \\ 2HCl(aq) + Na_2S(aq) \rightarrow H_2S(g) + 2NaCl(aq) \\ \\ 2H^+(aq) + 2Cl^-(aq) + 2Na^+(aq) + S^{2-}(aq) \rightarrow \\ \\ H_2S(g) + 2Na^+(aq) + 2Cl^-(aq) \\ \\ \\ H_2S(g) + 2Na^+(aq) + S^{2-}(aq) \rightarrow \\ \\ H_2S(g) + 2Na^+(aq) + 2Cl^-(aq) \\ \\ \end{array}$

Write chemical, complete ionic, and net ionic equations for these reactions.

45. Perchloric acid (HClO₄) reacts with aqueous potassium carbonate, forming carbon dioxide gas and water.

- 46. Sulfuric acid (H₂SO₄) reacts with aqueous sodium cyanide, forming hydrogen cyanide gas and aqueous sodium sulfate.
- 47. Hydrobromic acid (HBr) reacts with aqueous ammonium carbonate, forming carbon dioxide gas and water.
 48. Nitric acid (HNO₃) reacts with aqueous potassium rubidium sulfide, forming hydrogen sulfide gas.

49. CHALLENGE Aqueous potassium iodide reacts with lead nitrate in solution. forming solid lead iodide.

45. chemical equation: 2HCIO (aq) + K CO (aq) → H O(I) + CO_(g) + 2KClO_(aq); complete ionic equation: 2H+(aq) + 2CIO, (aq) $+ 2K^{\pm}(aq) + CO_{2}^{2-}(aq) \rightarrow H_{2}O(I) + CO_{2}(g) + 2K^{\pm}(aq)$ + 2CIO, (aq); net ionic equation: 2H⁺(aq) + CO.²⁻(aq) \rightarrow H₂O(I) + CO₂(g) 46. chemical equation: H₂SO₄(aq) + 2NaCN(aq) → 2HCN(g) + Na_SO_(aq); complete ionic equation: 2H⁺(aq) + SO₂⁻(aq) + 2Na*(aq) + 2CN-(aq) → 2HCN(g) + 2Na*(aq) + SO, (aq); net ionic equation: $2H^{+}(ag) + 2CN^{-}(ag) \rightarrow 2HCN(g)$, simplified to $H^+(aq) + CN^-(aq) \rightarrow HCN(q)$ chemical equation: 2HBr(aq) + (NH,),CO,(aq) → H,O(I) + CO_(g) + 2NH_Br(ag); complete ionic equation: 2H+(ag) + 2Br (ag) + $2NH_{4}^{+}(aq) + CO_{2}^{2-}(aq) \rightarrow H_{2}O(l) + CO_{2}(g) + 2NH_{4}^{+}(aq)$ + 28r (aq); net ionic equation: 2H⁺(aq) + CO₂^{2−}(aq) → H₂O(I) + CO,(g) chemical equation: 2HNO₃(aq) + KRbS(aq) → H₂S(g) + KRb(NO_),(aq); complete ionic equation: 2H⁺(aq) $+ 2NO_{-}(aq) + K^{+}(aq) + Rb^{+}(aq) + S^{2-}(aq) \rightarrow H_{2}S(g)$ + K[±](aq) + Rb[±](aq) + 2NO₃ (aq); net ionic equation: $2H^+(aq) + S^{2-}(aq) \rightarrow H_3(g)$ 49. chemical equation: 2Kl(aq) + Pb(NO,),(aq) → 2KNO,(aq) + Pbl.(s); complete ionic equation: 2K*(aq) + 2l-(aq) + $Pb^{2+}(aq) + 2NO_{2}(aq) \rightarrow 2K^{1}(aq) + 2NO_{2}(aq) + PbL(s)$ net ionic equation: $Pb^{2+}(aq) + 2l^{-}(aq) \rightarrow Pbl_{s}(s)$ Nora

Predict whether reactions in aqueous solutions will produce gas

Predict whether reactions in aqueous solutions will produce water

REACTIONS THAT FORM WATER

Write the chemical, complete ionic, and net ionic equations for the reaction between hydrochloric acid and aqueous lithium hydroxide. This reaction produces water and aqueous lithium chloride.

 $HCl(aq) + LiOH(aq) \rightarrow H_2O(l) + LiCl(aq)$

 H^+ (aq) + Cl^- (aq) + Li^+ (aq) + OH^- (aq) → $H_2O(l) + Li^+$ (aq) + Cl^- (aq)

H⁺ (aq) + CI taq) + Li⁺ taq) + OH⁻ (aq) → H₂O (l) + Li⁺ taq) + CI taq)

 $\mathrm{H^{+}}(\mathrm{aq}) + \mathrm{OH^{-}}(\mathrm{aq}) \rightarrow \mathrm{H_{2}O}(\mathrm{l})$

Show the ions of the reactants and the products.

Cross out the spectator ions from the complete ionic equation.

Write the net ionic equation.

Write chemical, complete ionic, and net ionic equations for the reactions between the following substances, which produce water.

```
40. Mixing sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) and aqueous potassium hydroxide produces water and aqueous potassium sulfate.
```

- Mixing hydrochloric acid (HCI) and aqueous calcium hydroxide produces water and aqueous calcium chloride.
 Mixing nitric acid (HNO₃) and aqueous ammonium hydroxide produces water and aqueous ammonium nitrate.
- 43. Mixing hydrosulfuric acid (H2S) and aqueous calcium hydroxide produces water and aqueous calcium sulfide.
- 44. CHALLENGE When benzoic acid (C₆H₅COOH) and magnesium hydroxide are mixed, water and magnesium benzoate are produced.

40. chemical equation: $H_2SO_4(aq) + 2KOH(aq) \rightarrow 2H_2O(l)$ + K_SO_4(aq); complete ionic equation: $2H^+(aq) + SO_4^{-2}(aq) + 2K^+(aq) + 2OH^-(aq) \rightarrow 2H_2O(l) + 2K^+(aq) + SO_4^{-2}(aq)$; net ionic equation: $2H^+(aq) + 2OH^-(aq) \rightarrow 2H_2O(l)$, simplified to $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$

- 41. chemical equation: $2HCl(aq) + Ca(OH)_2(aq) \rightarrow 2H_2O(I)$ + $CaCl_2(aq)$; complete ionic equation: $2H^+(aq) + 2Cl^-(aq) + Ca^{2+}(aq) + 2OH^-(aq) \rightarrow 2H_2O(I) + Ca^{2+}(aq) + 2Cl^-(aq)$ net ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$
- 42. chemical equation: $HNO_3(aq) + NH_4OH(aq) \rightarrow H_2O(l) + NH_4NO_3(aq)$ complete ionic equation: $H^+(aq) + NO^3$ (aq) $+ NH_4^+(aq) + OH^-(aq) \rightarrow H_2O(l) + NH_4^+(aq) + NO_3^-(aq)$; net ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$
- 43. chemical equation: H₂S(aq) + Ca(OH)₂(aq) → 2H₂O(I) + CaS(aq); complete ionic equation: 2H⁺(aq) + S² (aq) + Ca²⁺(aq) + 2OH⁻(aq) → 2H₂O(I) + Ca²⁺(aq) + S²⁻(aq); net ionic equation: H⁺(aq) + OH⁻(aq) → H₂O(I)
- 44. chemical equation: $2C_6H_5COOH(aq) + Mg(OH)_2(aq) \rightarrow Mg(C_6H_5COO)_2(aq) + 2H_2O(I)$; complete ionic equation: $2C_6H_5COO^-(aq) + 2H^+(aq) + Mg^+(aq) + 2OH^-(aq) \rightarrow 2C_6H_5COO^-(aq) + Mg^+(aq) + 2H_2O(I)$; net ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

5 & 6. Predict whether reactions in aqueous solutions will produce precipitate

Show the ions of the reactants and the products.

Cross out the spectator ions from the complete ionic

REACTIONS THAT FORM A PRECIPITATE

Write the chemical, complete ionic, and net ionic equations for the reaction between aqueous solutions of barium nitrate and sodium carbonate that forms the precipitate barium carbonate.

 $Ba(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow BaCO_3(s) + NaNO_3(aq)$

 $Ba(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow BaCO_3(s) + 2NaNO_3(aq)$ Balance the skeleton equation.

 $Ba^{2+}(aq) + 2NO_3^{-}(aq) + 2Na^{+}(aq) + CO_3^{2-}(aq) \rightarrow$ $BaCO_3(s) + 2Na^+(aq) + 2NO_3^-(aq)$

 $Ba^{2+}(aq) + 2NO_3(aq) + 2Na^{+}(aq) + CO_3^{2-}(aq) \rightarrow$ $BaCO_3(s) + 2Na^{\pm}(aq) + 2NO_3^{\pm}(aq)$ $Ba^2 + (aq) + CO_3^{2-} (aq) \rightarrow BaCO_3 (s)$

ADDITIONAL PRACTICE

Write the net ionic equation.

equation.

موقع المناهج الإماراتية

Write chemical, complete ionic, and net ionic equations for each of the following reactions that might produce a precipitate. Use NR to indicate that no reaction occurs.

- Aqueous solutions of potassium iodide and silver nitrate are mixed, forming the precipitate silver iodide.
- 36. Aqueous solutions of ammonium phosphate and sodium sulfate are mixed. No precipitate forms and no gas is produced.
- 37. Aqueous solutions of aluminum chloride and sodium hydroxide are mixed, forming the precipitate aluminum hydroxide.
- 38. Aqueous solutions of lithium sulfate and calcium nitrate are mixed, forming the precipitate calcium sulfate.
- 39. CHALLENGE When aqueous solutions of sodium carbonate and manganese(V) chloride are mixed, a precipitate forms. The precipitate is a compound containing manganese.

- 35. chemical equation: Kl(aq) + AgNO₂(aq) → KNO₂(aq) + Agl(s); complete ionic equation: K (ag) + I (ag) + Ag $(aq) + NO_1 (aq) \rightarrow K (aq) + NO_1 (aq) + Agl(s); net$ ionic equation: I⁻(aq) + Ag⁺(aq) → Agl(s) 36. chemical equation: 2(NH,),PO,(aq) + 3Na,SO,(aq) → 3(NH,),SO,(aq) + 2Na,PO,(aq); complete ionic equation: 6NH; (aq) + 2PO 3= (aq) + $6Na^{+}(aq) + 3SO^{-2}(aq) \rightarrow 6NH^{+}(aq) + 3SO^{-2}(aq) +$ 6Na (aq) + 2PO; 2 (aq) No reaction occurs; therefore, there is no net ionic
- chemical equation: AICL(aq) + 3NaOH(aq) → AI(OH).(s) + 3NaCl(aq); complete ionic equation: Al ³⁺(aq) + $3CI_{(aq)} + 3Na^{1}(aq) + 3OH^{-}(aq) \rightarrow AI(OH)_{(s)} +$ 3Na⁺(ag) + 3Cl⁻(ag) net ionic equation: Al³⁺(ag) + $3OH^{-}(aq) \rightarrow AI(OH)_{,}(s)$

equation.

- 38. chemical equation: Li_SO_(aq) + Ca(NO_)_(aq) → 2LiNO_(aq) + CaSO_(s); complete ionic equation: $2Li^{(aq)} + SO_{2}^{2}(aq) + Ca^{2}(aq) + 2NO_{2}(aq) \rightarrow$ 2Li (aq) + 2NO, (aq) + CaSO, (s); net ionic equation: $SO_4^{2-}(aq) + Ca^{2+}(aq) \rightarrow CaSO_4(s)$
- 39. chemical equation: 5Na,CO,(aq) + 2MnCl,(aq) → 10NaCl(aq) + Mn₂(CO₃)₅(s); complete ionic equation: $10Na^{+}(aq) + 5CO_{2}^{2-}(aq) + 2Mn^{5+}(aq) + 10CE^{-}(aq) \rightarrow$ 10Na (eq) + 10Cl (eq) + Mn (CO) (s); net ionic equation: 5CO₃^{2−}(aq) + 2Mn⁵¹(aq) → Mn.(CO.).(s)

5 & 6. Predict whether reactions in aqueous solutions will produce precipitate

What is the net ionic equation for the following reaction?

 $CaCl_{2 (aq)} + 2NaOH_{(aq)} \rightarrow 2NaCl_{(aq)} + C$

11. Identify the mole relationships shown by a chemical

formula

EXAMPLE Problem 6

MOLE RELATIONSHIPS FROM A CHEMICAL FORMULA Aluminum oxide (Al_2O_3) , often called alumina, is the principal raw material for the production of aluminum (Al). Alumina occurs in the minerals corundum and bauxite. Determine the moles of aluminum ions (Al^{3+}) in 1.25 mol of Al_2O_3 .

1. ANALYZE THE PROBLEM

You are given the number of moles of Al_2O_3 and must determine the number of moles of Al^{3+} ions. Use a conversion factor based on the chemical formula that relates moles of Al^{3+} ions to moles of Al_2O_3 . Every mole of Al_2O_3 contains 2 mol of Al^{3+} ions. Thus, the answer should be two times the number of moles of Al_2O_3 .

Known

Unknown

number of moles = $1.25 \text{ mol } Al_2O_3$

number of moles = $? \mod Al^{3+}$ ions

2. SOLVE FOR THE UNKNOWN

Use the relationship that $1 \mod of Al_2O_3$ contains $2 \mod of Al^{3+}$ ions to write a conversion factor.

2 mol Al³⁺ions

1 mol Al₂O₃

Create a conversion factor relating moles of Al^{3+} ions to moles of Al_2O_3 .

To convert the known number of moles of Al_2O_3 to moles of Al^{3+} ions, multiply by the ions-to-moles conversion factor.

moles $Al_2O_3 \times \frac{2 \mod Al^{3+} \operatorname{ions}}{1 \mod Al_2O_3} = \operatorname{moles} Al^{3+} \operatorname{ions}$ Apply the conversion factor.

 $1.25 \underline{\text{mol} \text{Al}_2 \text{O}_3} \times \frac{2 \text{ mol} \text{Al}^{3+} \text{ ions}}{1 \underline{\text{mol} \text{Al}_2 \text{O}_3}} = 2.50 \text{ mol} \text{Al}^3 \text{Signstitute moles Al}_2 \text{O}_3 = 1.25 \text{ mol} \text{Al}_2 \text{O}_3$ and solve.

11. Identify the mole relationships shown by a chemical formula

- 29. Zinc chloride (ZnCl₂) is used in soldering flux, an alloy used to join two metals together. Determine the moles of Cl⁻ ions in 2.50 mol ZnCl₂.
- **30.** Plants and animals depend on glucose ($C_6H_{12}O_6$) as an energy source. Calculate the number of moles of each element in 1.25 mol $C_6H_{12}O_6$.
- 31. Iron(III) sulfate $[Fe_2 (SO_4)_3]$ is sometimes used in the water purification process. Determine the number of moles of sulfate ions present in 3.00 mol of $Fe_2 (SO_4)_3$.
- **32.** How many moles of oxygen atoms are present in 5.00 mol of diphosphorus pentoxide (P_2O_5) ?
- موقع المناهج الإماراتية 33. CHALLENGE Calculate the number of moles of hydrogen atoms in 1.15 × 10¹ mol of water. Express the answer in scientific notation.

29. 5.00 mol Cl⁻
30. 7.50 mol C; 15.0 mol H; 7.50 mol O
31. 9.00 mol SO₄²⁻
32. 25.0 mol O
33. 2.30 × 10¹ mol H

13. Explain what is meant by the percentage composition of the compound

EXAMPLE Problem 10

CALCULATING PERCENT COMPOSITION

Sodium hydrogen carbonate (NaHCO₃), also called baking soda, is an active ingredient in some antacids used for the relief of indigestion. Determine the percent composition of NaHCO₃.

2. SOLVE FOR THE UNKNOWN

Determine the molar mass of NaHCO3 and each element's contribution.

1 $mod Na \times \frac{22.99 \text{ g Na}}{1 \text{ mod Na}} = 22.99 \text{ g Na}$ Multiply the molar mass of Na by the number of Na atoms in the
compound.1 $mod M \times \frac{1.008 \text{ g H}}{1 \text{ mod M}} = 1.008 \text{ g H}$ Multiply the molar mass of H by the number of H atoms in the compound.1 $mod C \times \frac{12.01 \text{ g C}}{1 \text{ mod C}} = 12.01 \text{ g C}$ Multiply the molar mass of C by the number of C atoms in the compound.3 $mod C \times \frac{16.00 \text{ g O}}{1 \text{ mod O}} = 48.00 \text{ g O}$ Multiply the molar mass of O by the number of O atoms in the
compound.

Use the percent by mass equation.

$$= \frac{\text{mass of element in 1 mole of compound}}{\text{molar mass of compound}} \times 100$$

percent Na = $\frac{22.99 \text{ g}}{\text{mol/84.01 g/mol}} \times 100 = 27.37\%$ Na

percent H =
$$\frac{1.008 \text{ g}}{\text{mol/84.01 g/mol}} \times 100 = 1.200\% \text{ H}$$

percent C =
$$\frac{12.01 \text{ g}}{\text{mol/84.01 g/mol}} \times 100 = 14.30\% \text{ C}$$

percent O =
$$\frac{48.00 \text{ g}}{\text{mol/84.01 g/mol}} \times 100 = 57.14\% \text{ O}$$

molar mass = (22.99 g + 1.008 g + 12.01 g + 48.00 g)

Total the mass values.

= 84.01 g/mol NaHCO₃

13. Explain what is meant by the percentage composition of the compound

ADDITIONAL PRACTICE

- **54.** What is the percent composition of phosphoric acid (H_3PO_4) ?
- **55.** Which has the larger percent by mass of sulfur, H_2SO_3 or $H_2S_2O_8$?
- 56. Calcium chloride (CaCl₂) is sometimes used as a de-icer. Calculate the percent by mass of each element in CaCl₂.
- 57. CHALLENGE Sodium sulfate is used in the manufacture of detergents.
 - a. Identify each of the component elements of sodium sulfate, and write the compound's chemical formula.
 - b. Identify the compound as ionic or covalent.
 - c. Calculate the percent by mass of each element in sodium sulfate.

تمر تحميل هذا الملف من 54. 3.08% H; 31.61% P; 65.31% O موقع المناهج الإماريي 55. H₂SO₃

- 56. 36.11% Ca; 63.89% CI
- 57. a. sodium, sulfur, and oxygen; Na2SO4/ae
 - b. ionic
 - c. 32.37% Na; 22.58% S; 45.05% O

13. Explain what is meant by the percentage composition of the compound

ليوم في What is the percent by mass of sodium (Na) in sodium sulfate (Na₂SO₄)?		
Molar mass: Na = 23 g/mol Na2SO4 = 119 g/mol		
e CHM.53.01.009		
a.	ا الملف من	تم <i>ر</i> تح <u>میل هذ</u>
ь.	ج الإمارات% ² 3.1	موقع المناه
C.	38.7%	
d.	77.3%	ij.com /ae

14. determine of the empirical and molecular formulas for a compound from mass percent

molecule is 60.00% carbon, 4.44% hydrogen, and 35.56% oxygen. Determine the empirical formula for aspirin.

61. C₉H₈O

14. determine of the empirical and molecular formulas for a compound from mass percent

Which one of the following is the empirical formula for N₂O₄?

Learn	ng Outcomes Covered	
0	CHM 53.01.006	
a.	NO	
b.	N ₂ O	
c	NO2	
d.	N ₂ O ₅	

14. determine of the empirical and molecular formulas for a compound from mass percent

Which statement of the following is correct concerning molecular formula?

ا يتعلق بالصيغة الجزّ يلية؟

1	It is the formula with the smallest whole-number mole ratio of the elements in a compound	فناصر المكرنة للمركب بأيسط نسية مولية بينها
2	It the same as empirical formula for some compounds	ية ليعض المركبات
3	It specifies the actual number of atoms of each element in one molecule or formula unit of the substance	، كل عنصر في الجزيء الولحد أو وحده الصيغة من الماده

earning Outcomes Covered	· · · · · · · · · · · · · · · · · · ·	
 CHM.5.3.01.006 		
	1 only	تمر ت ^ي قطيل هذا الملف من
	3 only	موقهالمناهج الإماراتية
	1 & 2 only	1 و2 فقط alManahi.com/ae
	2 & 3 only	2 و3 فقط

https://t.me/+U_FO6Tmjx1E5ODFk Nora

15. Identify the relationships can be derived from a

balanced chemical equation SOLVE FOR THE UNKNOWN

Use with Example Problem 1.

Problem

The combustion of propane (C_3H_8) provides energy for heating homes, cooking food, and soldering metal parts. Interpret the equation for the combustion of propane in terms of representative particles, moles, and mass. Show that the law of conservation of mass is observed.

SOLVE FOR THE UNKNOWN

The coefficients in the chemical equation indicate the number of molecules.

```
1 molecule C_3H_8 + 5 molecules O_2 \rightarrow
3 molecules CO_2 + 4 molecules H_2O
```

The coefficients in the chemical equation also indicate the number of moles.

1 mol $C_3H_8 + 5$ mol $O_2 \rightarrow 3$ mol $CO_2 + 4$ mol H_2O

To verify that mass is conserved, first convert moles of reactant and product to mass by multiplying by a conversion factor—the molar mass—that relates grams to moles.

moles of reactant or product $\times \frac{\text{grams reactant or product}}{1 \text{ mol reactant or product}}$

= grams of reactant or product

• Calculate the mass of the reactant C_3H_8 .

$$1 \frac{\text{mol C}_3 \text{Hg}}{1 \frac{\text{mol C}_3 \text{Hg}$$

• Calculate the mass of the reactant O₂.

$$5 \text{ mol } O_2 \times \frac{32.00 \text{ g } O_2}{1 \text{ mol } O_2} = 160.0 \text{ g } O_2$$

• Calculate the mass of the reactant CO₂.

$$3 \mod CO_2 \times \frac{44.01 \text{ g CO}_2}{1 \mod CO_2} = 132.0 \text{ g CO}_2$$

$$4 \text{ mol H}_{2} \Theta \times \frac{18.02 \text{ g H}_{2} \Theta}{1 \text{ mol H}_{2} \Theta} = 72.08 \text{ g H}_{2} \Theta$$

Add the masses of the reactants.

44.09 g C_3H_8 + 160.0 g O_2 = **204.1 g reactants**

Add the masses of the products.

132.0 g CO₂ + 72.08 g H₂O = **204.1 g products**

• The law of conservation of mass is observed.

Calculate the mass of the reactant H_2O .

204.1 g reactants = 204.1 g products

15. Identify the relationships can be derived from a

 Interpret the following balanced chemical equations in terms of particles, moles, and mass. Show that the law of conservation of mass is observed.

$$\begin{split} \textbf{a}.~N_2\left(g\right) + 3H_2\left(g\right) &\rightarrow 2NH_3\left(g\right) \\ \textbf{b}.~HCl\left(aq\right) + KOH\left(aq\right) \rightarrow KCl\left(aq\right) + H_2O\left(l\right) \\ \textbf{c}.~2Mg\left(s\right) + O_2\left(g\right) \rightarrow 2MgO\left(s\right) \end{split}$$

2. CHALLENGE For each of the following, balance the chemical equation; interpret the equation in terms of particles, moles, and mass; and show that the law of conservation of mass is observed.

a.
$$Na(s) + H_2O(l) \rightarrow NaOH(aq) + H_2(g)$$

b. $Zn(s) + HNO_3(aq) \rightarrow Zn(NO_3)_2(aq) + N_2O(g) + H_2O(l)$

alManahj.com/ae

- a. 34.062 g reactants = 34.062 g products
 - b. 92.566 g reactants = 92.566 g products
 - c. 80.608 g reactants = 80.608 g products
- 2. a. $2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + 1H_2(g)$ 82.01 g reactants = 82.01 g products
 - b. $4Zn(s) + 10HNO_3(aq) \rightarrow 4Zn(NO_3)_2(aq) + 1N_2O(g) + 5H_2O(l)$

891.68 g reactants = 891.68 g products

16. Write the mole ratios from a balanced chemical equation

 Ratio between the numbers of moles of any two substances in a balanced chemical equation

• $2AI(s) + 3Br_2(I) \rightarrow 2AIBr_3(s)$

• Possible to write 3 unique mole ratios:

• AI:Br₂ (2:3) AI: AIBr₃ (2:2) Br₂:AIBr₃ (3:2)

 Get 3 more ratios from inverses of above for a total of 6 for this reaction

16. Write the mole ratios from a balanced chemical

equation

Determine all possible mole ratios for the following balanced chemical equations.

 $\textbf{a.}~4Al\left(s\right)+3O_{2}\left(g\right)\rightarrow2Al_{2}O_{3}\left(s\right)$

 $\textbf{b. 3Fe}\left(s\right) + 4H_{2}O\left(l\right) \rightarrow Fe_{3}O_{4}\left(s\right) + 4H_{2}\left(g\right)$

 $\textbf{c. 2HgO}\left(s\right) \rightarrow 2Hg\left(l\right) + O_{2}\left(g\right)$

4. CHALLENGE Balance the following equations, and determine the possible mole ratios.

a. ZnO (s) + HCl (aq) \rightarrow ZnCl₂ (aq) + H₂O (l)

 $\text{b.butane } (C_4H_{10}) + oxygen \rightarrow carbon \ dioxide + water$

 a. ZnO + 2HCI → ZnCl, + H₂O 1 mol ZnO 1 mol ZnO 1 mol ZnO 2 mol HCI 1 mol ZnCi, 1 mol H,O 2 mol HCI 2 mol HCI 2 mol HCI 1 mol ZnO 1 mol ZnCl, 1 mol H,O 1 mol ZnCl, 1 mol ZnCl, 1 mol ZnCl, 1 mol ZnO 2 mol HCl 1 mol H,O 1mol H,O 1mol H,O 1mol H,O 1 mol ZnO 2 mol HCI 1 mol ZnCI, b. 2C₄H_m + 130, → 8CO, + 10H,0 2 mol C H 2 mol C H 2 mol C H 13 mol O, 8 mol CO, 10 mol H,0 13 mol O, 8 mol CO, 10 mol H., 2 mol C₄H_m 2 mol C₄H_m 2 mol C₄H_m 10 mol H, 10 mol H, 8 mol CO., 13 mol O₂ 8 mol CO₂ 13 mol O₂ 13 mol O, 8 mol CO, 13 mol O, 10 mol H₂O 10 mol H₂O 8 mol CO₂

a.	4 mol Al 3 mol O ₂ 2 mol Al ₂ O ₃ 4 mol Al
	3 mol O2 2 mol Al2O3 4 mol Al
	4 mol Al 3 mol O ₂ 2 mol Al ₂ O ₃
h	3 mol Fe 3 mol Fe 3 mol Fe
υ.	4 mol H ₂ O 4 mol H ₂ 1 mol Fe ₃ O ₄
	4 mol H ₂ O 4 mol H ₂ 1 mol Fe ₃ O ₄
	3 mol Fe 3 mol Fe 3 mol Fe
	1 mol Fe ₃ O ₄ 1 mol Fe ₃ O ₄ 4 mol H ₂ O
	4 mol H ₂ 4 mol H ₂ 0 4 mol H ₂
	4 mol H ₂ 4 mol H ₂ O 4 mol H ₂
	1 mol Fe ₃ O ₄ 1 mol Fe ₃ O ₄ 4 mol H ₂ O
	2 mol HgO 1 mol O ₂ 1 mol O ₂
	2 mol Hg 2 mol Hg 2 mol HgO
	2 mol Hg 2 mol Hg 2 mol HgO
	2 mol HgO 1 mol O ₂ 1 mol O ₂

3.

Concel ALCO

16. Write the mole ratios from a balanced chemical equation

What is the correct balanced skeleton equation that غ الصحيحة التي تُمثل represents the chemical reaction below? Hydrochloric acid (HCI) reacts with solid Aluminum (AI) metal (HCl) مع قلز الالمتيوم الصلب (Al) to yield aqueous Aluminum chloride (AICI3) and Hydrogen gas (H2) م (AICls) وغاز الهيدروجين (H2 Learning Outcomes Covered o CHM.53.01.013 o CHM 53.01.014 $2AI_{(s)} + 6HCI_{(aq)} \rightarrow 2AICI_{3(aq)} + 3H_{2(q)}$ $2AI_{(s)} + 6HCI_{(g)} \rightarrow 2AICI_{3(i)} + 3H_{2(aq)}$ $2AICI_{3(aq)} + 3H_{2(g)} \rightarrow 2AI_{(s)} + 6HCI_{(aq)}$ $3AI_{(aq)} + 3HCI_{(aq)} \rightarrow 3AICI_{3(aq)} + 3H_{2(g)}$

16. Write the mole ratios from a balanced chemical equation

17 & 18. Apply the steps to solve stoichiometric problems

EXAMPLE Problem 2

MOLE-TO-MOLE STOICHIOMETRY One disadvantage of burning propane (C_3H_8) is that carbon dioxide (CO_2) is one of the products. The released carbon dioxide increases the concentration of CO_2 in the atmosphere. How many moles of CO_2 are produced when 10.0 mol of C_3H_8 are burned in excess oxygen in a gas grill?

1. ANALYZE THE PROBLEM

You are given moles of the reactant, C_3H_8 and must find the moles of the product, CO_2 . First write the balanced chemical equation, then convert from moles of C_3H_8 to moles of CO_2 . The correct mole ratio has moles of unknown substance in the numerator and moles of known substance in the denominator.

Unknown

Known

moles $C_3H_8 = 10.0 \text{ mol } C_3H_8$

2. SOLVE FOR THE UNKNOWN

Write the balanced chemical equation for the combustion of C_3H_8 . Use the correct mole ratio to convert moles of known (C_3H_8) to moles of unknown (CO_2) .

```
10.0 mol ? mol

C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)
Mole ratio: \frac{3 \mod CO_{2}}{1 \mod C_{3}H_{8}}

10.0 mol C_{3}H_{8} \times \frac{3 \mod CO_{2}}{1 \mod C_{3}H_{8}} = 30.0 \mod CO_{2}
```

/lanahj.com/ae

تم تحميل moles CO₂ =? mol CO₂ من

 $\begin{array}{c} \mbox{11. Methane and sulfur react to produce carbon disulfide (CS_2), a liquid often used in the production of cellophane. \\ \label{eq:cH4} \underline{CH_4}\left(g\right) + \underline{S_8}\left(s\right) \rightarrow \underline{CS_2}\left(l\right) + \underline{H_2S}\left(g\right) \end{array}$

a. Balance the equation.

b. Calculate the moles of CS_2 produced when $1.50 \ mol \ S_8$ is used.

c. How many moles of $H_2 S$ are produced?

12. CHALLENGE Sulfuric acid $(H_2 SO_4)$ is formed when sulfur dioxide (SO_2) reacts with oxygen and water.

a. Write the balanced chemical equation for the reaction.

b. How many moles of $H_2\ SO_4$ are produced from $12.5\ moles\ of\ SO_2?$

c. How many moles of O_2 are needed?

11. a. 2CH₄(g) + S_g(s) → 2CS₂(l) + 4H₂S(g) b. 1.50 mol S₈ × $\frac{2 \text{ mol CS}_2}{1 \text{ mol S}_8}$ = 3.00 mol CS₂ c. 1.50 mol S₈ × $\frac{4 \text{ mol H}_2S}{1 \text{ mol S}_8}$ = 6.00 mol H₂S 12.a. 2SO₂(g) + O₂(g) + 2H₂O(l) → 2H₂SO₄(aq) b. 12.5 mol SO₂ × $\frac{2 \text{ mol H}_2SO_4}{2 \text{ mol SO}_2}$ = 12.5 mol H₂SO₄ produced c. 12.5 mol SO₂ × $\frac{1 \text{ mol O}_2}{2 \text{ mol SO}_2}$ = 6.25 mol O₂ needed Nora

Burning 10.0 moles of C_3H_8 produces 30.0 moles CO_2 .

17 & 18. Apply the steps to solve stoichiometric problems

EXAMPLE Problem 3

 $\label{eq:Mole-to-MASS STOICHIOMETRY} \ensuremath{\text{Determine the mass of sodium chloride (NaCl), commonly called table salt, produced when 1.25 mol of chlorine gas (Cl_2) reacts vigorously with excess sodium.}$

1. ANALYZE THE PROBLEM

You are given the moles of the reactant, Cl_2 , and must determine the mass of the product, NaCl. You must convert from moles of Cl_2 to moles of NaCl using the mole ratio from the equation. Then, you need to convert moles of NaCl to grams of NaCl using the molar mass as the conversion factor.

Known

Unknown

moles of chlorine = $1.25 \text{ mol } \text{Cl}_2$

2. SOLVE FOR THE UNKNOWN

 $\begin{array}{cc} 1.25 \text{ mol} & \textbf{?g} \\ 2\text{Na}(s) + \text{Cl}_2(g) \rightarrow 2\text{NaCl}(s) \end{array}$

Mole ratio: 2 mol NaCl 1 mol Cl₂


```
2.50 \text{ mol-NaCl} \times \frac{58.44 \text{ g NaCl}}{1 \text{ mol-NaCl}} = 146 \text{ g NaCl}
```

mass of sodium chloride =? g NaCl

لمر تحميل هذا الملف

Write the balanced chemical equation, and identify the known and the unknown values.

Multiply moles of Cl₂ by the mole ratio to get moles

Multiply moles of NaCl by the molar mass to get grams of NaCl

13. Sodium chloride is decomposed into the elements sodium and chlorine by means of electrical energy. How much chlorine gas, in grams, is obtained from the process diagrammed at right?

14. CHALLENGE Titanium is a transition metal used in many alloys because it is extremely strong and lightweight. Titanium tetrachloride $(TiCl_4)$ is extracted from titanium oxide (TiO_2) using chlorine and coke (carbon).

 $\mathrm{TiO}_{2}\left(s\right)+\mathrm{C}\left(s\right)+2\mathrm{Cl}_{2}\left(g\right)\rightarrow\mathrm{TiCl}_{4}\left(s\right)+\mathrm{CO}_{2}\left(g\right)$

a. What mass of Cl_2 gas is needed to react with $1.25\ mol$ of $TiO_2?$

b. What mass of C is needed to react with $1.25\ mol\ of\ TiO_2?$

c. What is the mass of all of the products formed by reaction with $1.25\ mol\ of\ TiO_2$?

17 & 18. Apply the steps to solve stoichiometric problems

EXAMPLE Problem 4

 $\begin{array}{l} \mbox{MASS-TO-MASS STOICHIOMETRY} \ \mbox{Ammonium nitrate} \ (NH_4 \ NO_3), \mbox{ an important fertilizer, produces dinitrogen monoxide} \\ (N_2 O) \ \mbox{gas and} \ H_2 O \ \mbox{when it decomposes. Determine the mass of} \ H_2 O \ \mbox{produced from the decomposition of} \ 25.0 \ \mbox{g of solid} \ NH_4 \ NO_3. \end{array}$

1. ANALYZE THE PROBLEM

Write the balanced equation and convert the known mass of the reactant to moles of the reactant. Next, use a mole ratio to relate moles of the reactant to moles of the product. Then, use the molar mass to convert from moles of the product to the mass of the product.

Known	Unknown
mass of ammonium nitrate = $25.0 \text{ g NH}_4 \text{ N}$	O_3 mass of water = $? g H_2 O$
2. SOLVE FOR THE UNKNOWN	
25.0 g ? g	Write the balanced chemical equation, and identify
$NH_4NO_3 (s) \rightarrow N_2O(g) + 2H_2O(g)$	the known and unknown values.
$25.0 \text{ g NH}_4 \text{NO}_3 \times \frac{1 \text{ mol NH}_4 \text{NO}_3}{80.04 \text{ g NH}_4 \text{NO}_3} = 0.3$	12 moMNHaNGams of NH4 NO3 by the inverse of molar mass to get moles of NH4 NO3.
Mole ratio: $\frac{2 \text{ mol } H_2 O}{1 \text{ mol } NH_4 NO_3}$	
$0.312 \text{ mol NH}_4 \text{NO}_3 \times \frac{2 \text{ mol H}_2 \text{O}}{1 \text{ mol NH}_4 \text{NO}_3} = 0$	$0.624 \text{ model}(\mathrm{H}_2\mathrm{IO})$ moles of $\mathrm{NH}_4 \ \mathrm{NO}_3$ by the mole ratio to get moles of $\mathrm{H}_2\mathrm{O}$.
$0.624 \text{ mol}H_2O \times \frac{18.02 \text{ g} \text{ H}_2O}{1 \text{ mol}H_2O} = 11.2 \text{ g} \text{ H}_2$	0 Multiply moles of H_2O by the molar mass to get grams.

15. One of the reactions used to inflate automobile air bags involves sodium azide (NaN_3) : $2NaN_3$ (s) $\rightarrow 2Na$ (s) $+ 3N_2$ (g). Determine the mass of N_2 produced from the decomposition of NaN_3 shown below.

16. CHALLENGE In the formation of acid rain, sulfur dioxide (SO_2) reacts with oxygen and water in the air to form sulfuric acid $(H_2 SO_4)$. Write the balanced chemical equation for the reaction. If 2.50 g of SO_2 reacts with excess oxygen and water, how much $H_2 SO_4$, in grams, is produced?

15. 64.64 g N₂ 16. 2SO₂(g) + O₂(g) + 2H₂O(l) → 2H₂SO₄(aq); 3.83 g H₂SO₄

19. Determine the limiting reactant In a chemical reaction

• The limiting reactant is the reactant that is completely consumed during a chemical reaction. Reactants that remain after the reaction stops are called excess reactants.

19. Determine the limiting reactant In a chemical reaction

23. The reaction between solid sodium and iron(III) oxide is one in a series of reactions that inflates an automobile airbag: $6Na(s) + Fe_2O_3(s) \rightarrow 3Na_2O(s) + 2Fe(s)$. If 100.0 g of Na and 100.0 g of Fe_2O_3 are used in this reaction, determine the following.

a. limiting reactant

b. reactant in excess

c. mass of solid iron produced

d. mass of excess reactant that remains after the reaction is complete

24. CHALLENGE Photosynthesis reactions in green plants use carbon dioxide and water to produce glucose (C₆H₁₂O₆) and oxygen. A plant has 88.0 g of carbon dioxide and 64.0 g of water available for photosynthesis. Be sure to report the correct level of accuracy based on measurements given in the question.

a. Write the balanced chemical equation for the reaction.

b. Determine the limiting reactant and the excess reactant. j.com/ae

c. Determine the mass in excess.

d. Determine the mass of glucose produced.

Go through example problem 5 from the textbook page number 227

23. a. Fe₂O₃ b. Na c. 69.92 g Fe d. 13.6 g Na 24. a. 6CO₂(g) + 6H₂O(l) → C₆H₁₂O₆(aq) + 6O₂(g) b. CO₂ is limiting; H₂O is in excess. c. 28.0 g d. 60.0 g

20. Calculate of the theoretical yield of a chemical reaction

EXAMPLE Problem 6

PERCENT YIELD Solid silver chromate (Ag_2CrO_4) forms when excess potassium chromate (K_2CrO_4) is added to a solution containing 0.500 g of silver nitrate $(AgNO_3)$. Determine the theoretical yield of Ag_2CrO_4 . Find the percent yield if the reaction yields 0.455 g of Ag_2CrO_4 .

1. ANALYZE THE PROBLEM

You know the mass of a reactant and the actual yield of the product. Write the balanced chemical equation, and calculate theoretical yield by converting grams of $AgNO_3$ to moles of $AgNO_3$, moles of $AgNO_3$ to moles of Ag_2CrO_4 , and moles of Ag_2CrO_4 to grams of Ag_2CrO_4 . Calculate the percent yield from the actual yield and the theoretical yield.

Known	Unknown
mass of silver nitrate = $0.500 \text{ g} \text{ AgNO}_3$	theoretical yield = $? g Ag_2CrO_4$
actual yield = $0.455 \text{ g Ag}_2 \text{CrO}_4$	percent yield = $? \% Ag_2 CrO_4$
د Solve For THE UNKNOWN	تمر تحميل هذا الملف
0.500 g ? g	Write the balanced chemical equation, and identify
$2AgNO_3(aq) + K_2CrO_4(aq) \rightarrow Ag_2CrO_4(s) + 2$	KNQs (ag)vn and the unknown.
$0.500 \underline{g} \underline{AgNO_3} \times \frac{1 \text{ mol } AgNO_3}{169.9 \underline{g} \underline{AgNO_3}} = 2.94 \times 1$	موقع المناهج الإمار 0-CmileAtgNO3s of AgNO3 to motes.
$2.94 \times 10^{-3} \text{ molAgNO}_3 \times \frac{1 \text{ molAg}_2 \text{CrO}_4}{2 \text{ molAgNO}_3} =$	1.470 xett0 e ³ nmote Agg@rOgnvert moles of AgNO ₃ to moles of Ag ₂ CrO ₄ .
$1.47 \times 10^{-3} \mod \text{Ag}_2 \text{CrO}_4 \times \frac{331.7 \text{ g Ag}_2 \text{CrO}_4}{1 \mod \text{Ag}_2 \text{CrO}_4}$	= 0.488igrAy_CnOvretical yield.
$\frac{0.455 \text{ g Ag}_2 \text{erO}_4}{0.488 \text{ g Ag}_2 \text{erO}_4} \times 100 = 93.2\% \text{ Ag}_2 \text{CrO}_4$	Calculate the percent yield.

20. Calculate of the theoretical yield of a chemical reaction

28. Aluminum hydroxide $(Al(OH)_3)$ is often present in antacids to neutralize stomach acid (HCl). The reaction occurs as follows: $Al(OH)_3$ (s) + 3HCl (aq) $\rightarrow AlCl_3$ (aq) + $3H_2O$ (l). If 14.0 g of $Al(OH)_3$ is present in an antacid tablet, determine the theoretical yield of $AlCl_3$ produced when the tablet reacts with HCl. 29, 22.9 a of AlCl_3 is the theoretical yield.

29. Zinc reacts with iodine in a synthesis reaction: $Zn + I_2 \rightarrow ZnI_2$.

a. Determine the theoretical yield if $1.912 \ mol$ of zinc is used.

b. Determine the percent yield if 515.6 g of product is recovered.

28. 23.9 g of AlCl₃ is the theoretical yield. 29. a. 610.3 g Znl₂ b. 84.48% yield of Znl₂ 30. a. Cu(s) + 2AgNO₃(aq) \rightarrow 2Ag(s) + Cu(NO₃)₂(aq) b. 68.0 g of Ag c. 88.2% yield

30. CHALLENGE When copper wire is placed into a silver nitrate solution $(AgNO_3)$, silver crystals and copper(II) nitrate $(Cu(NO_3)_2)$ solution form.

a. Write the balanced chemical equation for the reaction.

b. If a 20.0-g sample of copper is used, determine the theoretical yield of silver.

c. If 60.0 g of silver is recovered from the reaction, determine the percent yield of the reaction.

