

حل مراجحة وفق الهيكل الوزاري

المزيد هن الملفات بحسـب الصف الحاشر المتقم والمادة كيماء في الفصل الثاني	
أسئلة الاهتحان النهائي)	1
حل مراحعة أسئلة وفق الهيكل الوزاري	2
حل تحميعة أسئلة وفق الهِيكل الوزلري - انسباير	3
حل مراحعة وفق الهيكل الوزلري	4
أسئلة الاهتحان النهائيي	5

G10 ADV EOT 2 Coverage ppt 2022-2023 Chemistry
 https://t.me/+Bsnl6d0uTVthNDY8

1. Identify the Evidence of chemical change

Evidence of a chemical reaction

$>$ Change in temperature
$>$ Change in color
$>$ Odor, gas, or bubbles may form.

1. Identify the Evidence of chemical change

Which figures illustrates evidence of a chemical reaction?
ميلل دليال على حدوث ثناعل كيمبائي?

1

2

3

Learning Outcomes Covered

- CHM5.3.01013
- CHM5.301.014

2. Balance chemical equations

Two aluminum
atoms

+	
+	\rightarrow

Six bromine atoms
$2 \mathrm{AlBr}_{3}(\mathrm{~s})$

Two aluminum atoms
Six bromine atoms

2. Balance chemical equations

Write chemical equations for each of the following reactions.

4. In water, iron (III) chloride reacts with sodium hydroxide, producing solid iron(III) hydroxide and sodium chloride.
5. Liquid carbon disulfide reacts with oxygen gas, producing carbon dioxide gas and sulfur dioxide gas.
6. CHALLENGE A piece of zinc metal is added to a solution of dihydrogen sulfate. This reaction produces a gas and a solution of zinc sulfate.

Table 2 Steps for Balancing Equations
reaction. Make sure that the chemical formulas correctly represent the
1 substances. An arrow separates the reactants from the products, and a plus sign separates multiple reactants and products. Show the physical states of all reactants and products. Count the atoms of the elements in the reactants. If a reaction involves identical polyatomic ions in the reactants and products, count each polyatomic ion as a single element. This reaction does not involve any polyatomic ions. Two atoms of hydrogen and two atoms of chlorine are reacting.
Count the atoms of the elements in and one atom of chlorine are produced.
Change the coefficients to make the number of atoms of each element equal on both sides of the equation, showing that atoms are conserved. Never change a subscript in a chemical formula to balance an equation because doing so changes the identity of the substance.
 because the coefficients cannot be reduced further and still remain whole numbers.

Check your work. Make sure that

 the chemical formulas are written
3. Classify of chemical reactions

TABLE 4 PREDICTING PRODUCTS OF CHEMICAL REACTIONS

Type of Reaction	Reactants	Probable Products	Generic Equation
Synthesis	- two or more substances	- one compound	$A+B \rightarrow A B$
Combustion	- a metal and oxygen - a nonmetal and oxygen - a compound and oxygen	- the oxide of the metal - the oxide of the nonmetal - two or more oxides	$\mathrm{A}+\mathrm{O}_{2} \rightarrow \mathrm{AO}$
Decomposition	- one compound	- two or more elements and/or compounds	$A B \rightarrow A+B$
Single-replacement	- a metal and a compound - a nonmetal and a compound	- a new compound and the replaced metal - a new compound and the replaced non-metal	$\mathrm{A}+\mathrm{BX} \rightarrow \mathrm{AX}+\mathrm{B}$
Double-replacement	- two compounds	- two different compounds, one of which is a solid, water, or a gas	$\mathrm{AX}+\mathrm{BY} \rightarrow \mathrm{AY}+\mathrm{BX}$

3. Classify of chemical reactions

- In a combustion reaction, oxygen combines with a substance and releases energy in the

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$ form of heat and light.

- Heated hydrogen reacts with oxygen to produce heat and water in a combustion reaction. This is also a synthesis reaction.

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

The synthesis reaction between sulfur dioxide and oxygen can also be classified as a combustion reaction.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Figure 8 The light produced by a sparkler is the result of a combustion reaction between oxygen and different metals.

3. Classify of chemical reactions

3. Classify of chemical reactions

- A synthesis reaction is a reaction in which two or more substances react to produce a single product.
- When two elements react, the reaction is always a synthesis reaction.

Two compounds can also combine to form one compound. For example, the reaction between calcium oxide (CaO) and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to form calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ is a synthesis reaction.

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})
$$

Another type of synthesis reaction involves a reaction between a compound and an element, as happens when sulfur dioxide gas $\left(\mathrm{SO}_{2}\right)$ reacts with oxygen gas $\left(\mathrm{O}_{2}\right)$ to form sulfur trioxide $\left(\mathrm{SO}_{3}\right)$.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

3. Classify of chemical reactions

Which one of the following chemical reaction equations represents a synthesis reaction?

3. Classify of chemical reactions

Note that the combustion reactions just mentioned are also synthesis reactions. However, not all combustion reactions are synthesis reactions. For example, the reaction involving methane gas $\left(\mathrm{CH}_{4}\right)$ and oxygen illustrates a combustion reaction in which one substance replaces another in the formation of products.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Methane, which belongs to a group of substances called hydrocarbons, is the major component of natural gas. A fireplace that uses natural gas as fuel is shown in Figure 10. All hydrocarbons contain carbon and hydrogen and burn in oxygen to yield carbon dioxide and water.

ADDITIONAL PRACTICE

Write chemical equations for the following reactions. Classify each reaction into as many categories as possible.
14. The solids aluminum and sulfur react to produce aluminum sulfide.
15. Water and dinitrogen pentoxide gas react to produce aqueous hydrogen nitrate.
16. The gases nitrogen dioxide and oxygen react to produce dinitrogen pentoxide gas.
17. CHALLENGE Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and sodium hydroxide solutions react to produce aqueous sodium sulfate and
14. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s})$; synthesis
15. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{HNO}_{3}$ (aq); synthesis
16. $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})$; synthesis and combustion
17. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(l)$; synthesis water.

3 \& 4. Classify of chemical reactions

EXAMPLE Problem 2

SINGLE-REPLACEMENT REACTIONS

Predict the products that will result when these reactants combine, and write a balanced chemical equation for each reaction.

$$
\begin{aligned}
& \text { a. } \mathrm{Fe}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \\
& \text { b. } \mathrm{Br}_{2}(\mathrm{l})+\mathrm{MgCl}_{2}(\mathrm{aq}) \rightarrow \\
& \text { c. } \mathrm{Mg}(\mathrm{~s})+\mathrm{AlCl}_{3}(\mathrm{aq}) \rightarrow
\end{aligned}
$$

a. Iron is listed above copper in the activity series. Therefore, the first reaction will occur because iron is more reactive than copper. In this case, iron will replace copper. The skeleton equation for this reaction is $\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{Cu}$ (s)
This equation is balanced.
b. In the second reaction, chlorine is more reactive than bromine because bromine is listed below chlorine in the activity series. Therefore, the reaction will not occur. The skeleton equation for this situation is $\mathrm{Br}(\mathrm{l})+\mathrm{MgCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{NR}$ No balancing is required.
c. Magnesium is listed above aluminum in the activity series. Therefore, the third reaction will occur because magnesium is more reactive than aluminum. In this case, magnesium will replace aluminum. The skeleton equation for this reaction is This equation is not balanced. The balanced equation is
$\mathrm{Mg}(\mathrm{s})+\mathrm{AlCl}_{3}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{s})+\mathrm{MgCl}_{2}(\mathrm{aq})$
This equation is not balanced. The balanced equation is $3 \mathrm{Mg}(\mathrm{s})+2 \mathrm{AlCl}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{MgCl}_{2}(\mathrm{aq})$

Most active

METALS
Lithium
Rubidium
Potassium
Calcium
Sodium
Magnesium
Aluminum
Manganese
Zinc
Iron
Nickel
Tin
Lead
Copper
Silver
Least active

Most active

Least active

Platinum Gold

HALOGENS

Fluorine
Chlorine
Bromine Iodine

3 \& 4. Classify of chemical reactions

(1) ADDITIONAL PRACTICE

Predict whether the following single-replacement reactions will occur. If a reaction occurs, write a balanced equation for the reaction.
21. $\mathrm{K}(\mathrm{s})+\mathrm{ZnCl}_{2}(\mathrm{aq}) \rightarrow$
22. $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{HF}(\mathrm{aq}) \rightarrow$
23. $\mathrm{Fe}(\mathrm{s})+\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow$
24. CHALLENGE Al(s) $+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$
21. Yes. K is above $Z n$ in the activity series. $2 \mathrm{~K}(\mathrm{~s})+$ $\mathrm{ZnCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{s})+2 \mathrm{KCl}(\mathrm{aq})$
22. No. Cl is below F in the activity series.
23. No. Fe is below Na in the activity series.
24. Yes. . Al is above Pb in the activity series. $2 \mathrm{Al}(\mathrm{s})+$ $3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 3 \mathrm{~Pb}(\mathrm{~s})+2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$

Question Predict if the following reactions will occur and indicate products formed.
$\mathrm{Li}(\mathrm{s})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow$
$\mathrm{F}_{2}(\mathrm{~g})+\mathrm{HCl}(\mathrm{aq}) \rightarrow$
$\mathrm{Ag}(\mathrm{s})+\mathrm{AlCl}_{3}(\mathrm{aq}) \rightarrow$
Answer
$\mathrm{Li}(\mathrm{s})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}(\mathrm{s})+\mathrm{LiOH}(\mathrm{aq})$
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{aq})$
$\mathrm{Ag}(\mathrm{s})+\mathrm{AlCl}_{3}(\mathrm{aq}) \rightarrow$ no reaction

Most active
active

Most
active

Least active

METALS
Lithium
Rubidium
Potassium
Calcium
Sodium
Magnesium
Aluminum
Manganese
Zinc
Iron
Nickel
Tin
Lead
Copper
Silver
Platinum
Gold
HALOGENS
Fluorine
Chlorine
Bromine
lodine

3 \& 4. Classify of chemical reactions

Using the reactivity series of metals, what would yield the single replacement reaction of calcium (Ca) with
zinc nitrate $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$?

$$
\mathrm{Ca}_{(\mathrm{s})}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{ma})} \rightarrow
$$

$$
\begin{aligned}
& \text { ¢ }
\end{aligned}
$$

Most active

METALS
Lithium
Rubidium
Potassium
Calcium
Sodium
Magnesium
Aluminum
Manganese
Zinc
Iron
Nickel
Tin
Lead
Copper
Silver
Platinum
Gold
HALOGENS
Fluorine
Chlorine
Bromine lodine

3. Classify of chemical reactions

REACTIONS THAT FORM A PRECIPITATE

Write the chemical, complete ionic, and net ionic equations for the reaction between aqueous solutions of barium nitrate and sodium carbonate that forms the precipitate barium carbonate.

$$
\begin{aligned}
& \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq}) \\
& \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq}) \\
& \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \\
& \mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{aligned} \text { Show the ions of the reactants and the products. }
$$

$\mathrm{Ba}^{2}+(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s}) \quad$ Write the net ionic equation.

ADDITIONAL PRACTICE

Write chemical, complete ionic, and net ionic equations for each of the following reactions that might produce a precipitate. Use NR to indicate that no reaction occurs.
35. Aqueous solutions of potassium iodide and silver nitrate are mixed, forming the precipitate silver iodide.
36. Aqueous solutions of ammonium phosphate and sodium sulfate are mixed. No precipitate forms and no gas is produced.
37. Aqueous solutions of aluminum chloride and sodium hydroxide are mixed, forming the precipitate aluminum hydroxide.
38. Aqueous solutions of lithium sulfate and calcium nitrate are mixed, forming the precipitate calcium sulfate.
39. CHALLENGE When aqueous solutions of sodium carbonate and manganese(V) chloride are mixed, a precipitate forms. The precipitate is a compound containing manganese.
35. chemical equation: $\mathrm{Kl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})$ + Agl(s); complete ionic equation: $\mathcal{K}(a q)+1^{-}(a q)+$ $\mathrm{Ag}^{\prime}(\mathrm{aq})+\mathrm{NO}_{3}(\vec{a}) \rightarrow \mathrm{K}(\mathrm{aq})^{\prime}+\mathrm{NO}_{3}(\mathrm{aq})+\mathrm{Agl}(\mathrm{s})$; net ionic equation: $1(\mathrm{aq})+\mathrm{Ag}^{\prime}(\mathrm{aq}) \rightarrow \mathrm{Ag}$ l(s)
36. chemical equation: $2\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$ $3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) ;$
complete ionic equation: $6 \mathrm{NH}_{4}^{-}$(aq) $+2 \mathrm{PO}_{4}^{3}-(\mathrm{aq})+$ $6 \mathrm{Na}^{\prime}(a q)+3 \mathrm{SO}_{4}^{2}$ (aq) $\rightarrow 6 \mathrm{NH}_{4}^{4}$ (aq) $+3 \mathrm{SO}_{4}^{4}$ (aq) + $6 \mathrm{Na}^{\prime}$ (aq) $+2 \mathrm{PO}_{4}^{3}$ (वव)
No reaction occurs; therefore, there is no net ionic equation.
37. chemical equation: $\mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$ $+3 \mathrm{NaCl}(\mathrm{aq})$; complete ionic equation: $\mathrm{Al}^{34}(\mathrm{aq})+$ 3 Cl -(aq) $+3 \mathrm{Na}^{-}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+$ $3 \mathrm{Na}^{\prime}(\mathrm{aq})+3 \mathrm{Cl}$ (aq) net ionic equation: $\mathrm{Al}^{-1}(\mathrm{aq})+$ $3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
38. chemical equation: $\mathrm{Li}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$ $2 \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{CaSO}_{4}(\mathrm{~s})$; complete ionic equation: $2 \mathrm{Li}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Ca}^{21}(\mathrm{aq})+2 \mathrm{NO}_{3}(\mathrm{aq}) \rightarrow$ $2 \mathrm{Li}(\mathrm{aq})+2 \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{CaSO}_{4}(\mathrm{~s})$; net ionic equation: $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Ca}^{21}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})$
39. chemical equation: $5 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{MnCl}_{6}(\mathrm{aq}) \rightarrow$ $10 \mathrm{NaCl}(\mathrm{aq})+\mathrm{Mn}_{2}\left(\mathrm{CO}_{3}\right)_{5}(\mathrm{~s})$; complete ionic equation: $10 \mathrm{Na}^{-}(\mathrm{aq})+5 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+2 \mathrm{Mn}^{5}(\mathrm{aq})+10 \mathrm{Cl}$ (aq) \rightarrow $10 \mathrm{Na} 4(\mathrm{aq})+10 \mathrm{Cl}=(\mathrm{aq})+\mathrm{Mn}_{2}\left(\mathrm{CO}_{3}\right)_{5}(\mathrm{~s})$;
net ionic equation: $5 \mathrm{CO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{Mn}^{51}(\mathrm{aq}) \rightarrow$ $\mathrm{Mn}_{2}\left(\mathrm{CO}_{3}\right)_{5}(\mathrm{~s})$

3. Classify of chemical reactions

REACTIONS THAT FORM WATER

Write the chemical, complete ionic, and net ionic equations for the reaction between hydrochloric acid and aqueous lithium hydroxide. This reaction produces water and aqueous lithium chloride.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{HCl}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{LiCl}(\mathrm{aq}) \\
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
\end{array} \text { Show the ions of the reactants and the products. } \\
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
\end{aligned} \text { Cross out the spectator ions from the complete ionic equation. }
$$

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Write chemical, complete ionic, and net ionic equations for the reactions between the following substances, which

 produce water.40. Mixing sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and aqueous potassium hydroxide produces water and aqueous potassium sulfate.
41. Mixing hydrochloric acid (HCl) and aqueous calcium hydroxide produces water and aqueous calcium chloride.
42. Mixing nitric acid $\left(\mathrm{HNO}_{3}\right)$ and aqueous ammonium hydroxide produces water and aqueous ammonium nitrate.
43. Mixing hydrosulfuric acid $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ and aqueous calcium hydroxide produces water and aqueous calcium sulfide.
44. CHALLENGE When benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ and magnesium hydroxide are mixed, water and magnesium benzoate are produced.
45. chemical equation: $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $+\mathrm{K}, \mathrm{SO}$, (aq); complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+$ $\mathrm{SO}_{4}^{2}(\mathrm{aq})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{~K}^{+}(\mathrm{aq})+$ SO_{4}^{2} (aq); net ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$ $2 \mathrm{H}_{2} \mathrm{O}(l)$, simplified to $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
46. chemical equation: $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $+\mathrm{CaCl}_{2}(\mathrm{aq})$; complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+$ $2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ca}^{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+$ Ga^{2} (aq) +2 Cl (aq) net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+$ $\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
47. chemical equation: $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+$ $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$ complete ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}^{3}(\mathrm{aq})$ $+\mathrm{NH}_{4}^{+}$(aq) $+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NH}_{4}^{+}(a q)+\mathrm{NO}_{3}{ }^{-}$(aq); net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
48. chemical equation: $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $+\mathrm{CaS}(\mathrm{aq})$; complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{S}^{2}$ (aq) $+\mathrm{Ca}^{2}+(a q)+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\eta)+\mathrm{Ca}^{2}+(a q)+\mathrm{S}^{2}(a q)$. net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
49. chemical equation: $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$ $\mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$; complete ionic equation: $2 \mathrm{CH}_{5} \mathrm{COO}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Mg}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$ $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}$ (aq) +Mg (aq) $+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$; net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

7 \& 8. Convert of moles to number of representative

particles and vice versa

1 mole is the number of atoms in 12 g of pure carbon-12, or 6.02×10^{23} representative particles

Moles to Particles

- Use Avogadro's number as a conversion factor.
- Number of molecules in 3.50 mol of sucrose:
3.50 mol sterose $\times \frac{6.02 \times 10^{23} \text { molecules }}{1 \text { molstecrose }}=2.11 \times 10^{24}$ molecules
- Express 2.11×10^{24} molecules of sucrose in moles:
2.11×10^{24} molecules sucrose $\times \frac{1 \mathrm{~mol} \text { sucrose }}{6.02 \times 10^{23} \text { molecules }}=3.50 \mathrm{~mol}$ sucrose
Nora

1. 1.51×10^{24} atoms
2. 6.92×10^{24} molecules
3. 1.96×10^{24} formula units
4. 6.02×10^{24} atoms

7 \& 8. Convert of moles to number of representative particles and vice versa

6. CHALLENGE Identify the representative partide for each formula, and convert the given number of representative particles to moles.
a. $3.75 \times 10^{24} \mathrm{CO}_{2}$
b. $3.58 \times 10^{23} \mathrm{ZnCl}_{2}$

$$
\begin{aligned}
& \text { 5. a. } 9.55 \mathrm{~mol} \\
& \text { b. } 4.15 \times 10^{-1} \mathrm{~mol} \\
& \text { 6. a. a molecule; } 6.23 \mathrm{~mol} \mathrm{CO}_{2} \\
& \text { b. a formula unit; } 0.595{\mathrm{~mol} \mathrm{ZnCl}_{2_{\text {Nora }}}}^{\text {a }} \text {. }
\end{aligned}
$$

7 \& 8. Convert of moles to number of representative particles and vice versa

7 \& 8. Convert of moles to number of representative particles and vice versa

Which of the following does NOT describe the mole?

9, $10 \& 12$. Convert the number of moles to the mass of a
compound and vice versa

Moles to Mass

- Suppose you need 3.00 mol of copper for a chemical reaction

$$
\text { number of moles } \times \frac{\text { mass in grams }}{1 \text { mole }}=\text { mass }
$$

$$
3.00 \mathrm{motCu} \times \frac{63.546 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}}=191 \mathrm{~g} \mathrm{Cu}
$$

- 3.00 mol of copper has a mass of 191 g.

15. Determine the mass in grams of each of the following
a. 3.57 mol Al
b. 4.26 mol Si
16. CHALLENGE Convert each given quantity in scientific notation to mass in grams expressed in scientific notation.
a. $3.45 \times 10^{2} \mathrm{~mol} \mathrm{C}_{0}$
b. $2.45 \times 10^{-2} \mathrm{~mol} \mathrm{Zn}$
```
15. a. }96.3\textrm{g Al
    b. 1.20 }\times1\mp@subsup{0}{}{3}\textrm{g Si
16. a. }2.03\times1\mp@subsup{0}{}{4}\textrm{g Co
    b. 1.60 g Zn
```

17. Determine the number of moles in each of the following.
a. 25.5 g Ag
b. 300.0 g S
18. CHALLENGE Convert each mass to moles. Express the answer in scientific notation.
a. $1.25 \times 10^{3} \mathrm{~g} \mathrm{Zn}$
b. 1.00 kg Fe

> 17. a. 0.236 mol Ag
> b. 9.355 mol S
18. a. $1.91 \times 10^{1} \mathrm{~mol} \mathrm{Zn}$
b. $1.79 \times 10^{1} \mathrm{~mol} \mathrm{Fe}$

$9,10 \& 12$. Convert the number of moles to the mass of a compound and vice versa

EXAMPLE Problem 2

MOLE-TO-MASS CONVERSION Chromium (Cu) , a transition element, is a component of chrome plating. Chrome platinc used on metals and in steel alloys to control corrosion. Calculate the mass in grams of 0.0450 mol Cr

1. ANALYZE THE PROBLEM

You are given the number of moles of chromium and must convert it to an equivalent mass using the molar mass of chromium from the periodic table. Because the sample is less than one-tenth of a mole, the answer should be less thar one-tenth of the molar mass.

Known	Unknown
number of moles $=0.0450 \mathrm{~mol} \mathrm{Cr}$	mass $\mathrm{Cr}=? \mathrm{~g}$

2. SOLVE FOR THE UNKNOWN

Use a conversion factor-the molar mass-that relates grams of chromium to moles of chromium. Write the conversion factor with moles of chromium in the denominator and grams of chromium in the numerator. Substitute the known values into the equation and solve.
moles $\mathrm{Cr} \times \frac{\text { grams } \mathrm{Cr}}{1 \mathrm{~mol} \mathrm{Cr}}=$ grams $\mathrm{Cr} \quad$ Apply the conversion factor.
0.0450 mot $\mathrm{Cr} \times \frac{52.00 \mathrm{~g} \mathrm{Cr}}{1 \text { mot } \mathrm{Cr}^{2}}=2.34 \mathrm{~g} \mathrm{Cr}$

Substitute 0.0450 mol for moles Cr and
$52.00 \mathrm{~g} / \mathrm{mol}$ for molar mass of Cr. Multiply and divide numbers and units.

$9,10 \& 12$. Convert the number of moles to the mass of a compound and vice versa

EXAMPLE Problem 3

MASS-TO-MOLE CONVERSION Calcium (Ca), the fifth most-abundant element on Earth, is always found combined with other elements because of its high reactivity. How many moles of calcium are in 525 g Ca ?

1. ANALYZE THE PROBLEM

You must convert the mass of calcium to moles of calcium. The mass of calcium is more than ten times larger than the molar mass. Therefore, the answer should be greater than 10 mol

Known Unknown		
mass $=525 \mathrm{~g} \mathrm{Ca}$	number of moles $\mathrm{Ca}=$? mol	
molar mass $\mathrm{Ca}=40.08 \mathrm{~g} / \mathrm{mol} \mathrm{Ca}$		
2. SOLVE FOR THE UNKNOWN		
	$\begin{aligned} & \text { Use a conversion factor-the inverse of molar mas } \\ & \text { known values and solve. } \end{aligned}$	tes moles of calcium to grams of calcium. Substitute the
	$\text { mass } \mathrm{Ca} \times \frac{1 \mathrm{~mol} \mathrm{Ca}}{\text { grams } \mathrm{Ca}}=\text { moles } \mathrm{Ca}$	Apply the conversion factor.
	$525 \mathrm{gla} \times \frac{1 \mathrm{~mol} \mathrm{Ca}}{40.08 \mathrm{gla}^{\text {da }}}=13.1 \mathrm{~mol} \mathrm{Ca}$	Substitute mass $\mathrm{Ca}=525 \mathrm{~g}$, and inverse molar mass of $\mathrm{Ca}=1 \mathrm{~mol} / 40.08 \mathrm{~g}$. Multiply

$9,10 \& 12$. Convert the number of moles to the mass of a compound and vice versa

Use with Example Problem 7.

Problem

The characteristic odor of garlic is due to allyl sulfide
$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}\right]$. What is the mass of 2.50 mol of $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}$?

SOLVE FOR THE UNKNOWN

Calculate the molar mass of $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}$.

- Multiply the moles of S in the compound by the molar mass of S .

$$
1 \mathrm{mols} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{mols}}=32.07 \mathrm{~g} \mathrm{~S}
$$

- Multiply the moles of C in the compound by the molar mass of C.

$$
6 \mathrm{molc} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{molC}}=72.06 \mathrm{~g} \mathrm{C}
$$

- Multiply the moles of H in the compound by the molar mass of H .

$$
10 \mathrm{molH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{molH}}=10.08 \mathrm{~g} \mathrm{H}
$$

SOLVE FOR THE UNKNOWN

- Total the mass values.
molar mass $=(32.07 \mathrm{~g}+72.06 \mathrm{~g}+10.08 \mathrm{~g})=$ $114.21 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}$

Use a conversion factor-the molar massthat relates grams to moles.

- Apply the conversion factor.

$$
\begin{gathered}
\text { moles }\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S} \times \frac{\operatorname{grams}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}}{1 \mathrm{~mol}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}} \\
=\operatorname{mass}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}
\end{gathered}
$$

- Substitute moles $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}=2.5 \mathrm{~mol}$, molar mass $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}=114.21 \mathrm{~g} / \mathrm{mol}$, and solve.

$$
\begin{gathered}
2.50 \mathrm{~mol}_{\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}} \times \frac{114.21 \mathrm{~g}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}}{1 \mathrm{~mol}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}} \\
=\mathbf{2 8 6 \mathrm { g } (\mathrm { C } _ { 3 } \mathrm { H } _ { 5 }) _ { 2 } \mathrm { S }}
\end{gathered}
$$

$9,10 \& 12$. Convert the number of moles to the mass of a compound and vice versa

34. Determine the molar mass of each ionic compound.
a. NaOH
b. CaCl_{2}
c. $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
35. Calculate the molar mass of each molecular compound.
a. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b. HCN
c. CCl_{4}
36. CHALLENGE Identify each substance as a molecular compound or an ionic compound, and then calculate its molar mass.
a. $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
b. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
c. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

$9,10 \& 12$. Convert the number of moles to the mass of a compound and vice versa

37. The United States chemical industry produces more sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, in terms of mass, than any other chemical. What is the mass of 3.25 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
38. What is the mass of $4.35 \times 10^{-2} \mathrm{~mol}$ of zinc chloride $\left(\mathrm{ZnCl}_{2}\right)$?
39. CHALLENGE Write the chemical formula for potassium permanganate, and then calculate the mass in grams of 2.55 mol of the compound.

$9,10 \& 12$. Convert the number of moles to the mass of a compound and vice versa

What is the molar mass for the compound $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?

How many moles of carbon dioxide CO_{2} will be produced if 100.0 g of potassium hydrogen carbonate KHCO_{3} have decomposed?
$2 \mathrm{KHCO}_{3(\mathrm{~s})} \rightarrow \mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{~g})}+$
(MAnlarAAnce of Vurn. - 1 nn a/mal
Learning Outcomes Covered

- CHMS301013

$9,10 \& 12$. Convert the number of moles to the mass of a compound and vice versa

Which of the following statements are correct related to mass and the mole?

لكطلة والمول؟

1	A mole always contains the same number of particles	ل
2	Moles of different substances have different masses	\%
3	Converting from mass to mole we use a fixed ratio for all elements	

6. Predict whether reactions in aqueous solutions will produce gas

REACTIONS THAT FORM GASES

Write the chemical, complete ionic, and net ionic equations for the reaction between hydrochloric acid and aqueous sodium sulfide, which produces hydrogen sulfide gas

$$
\begin{aligned}
& \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{NaCl}(\mathrm{aq}) \\
& 2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq}) \\
& 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \\
& \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \\
& 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \\
& \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
\end{aligned}
$$

$2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
(3) ADDITIONAL PRACTICE

Write chemical, complete ionic, and net ionic equations for these reactions.
45. Perchloric acid $\left(\mathrm{HClO}_{4}\right)$ reacts with aqueous potassium carbonate, forming carbon dioxide gas and water.
46. Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ reacts with aqueous sodium cyanide, forming hydrogen cyanide gas and aqueous sodium sulfate.
47. Hydrobromic acid (HBr) reacts with aqueous ammonium carbonate, forming carbon dioxide gas and water. 48. Nitric acid $\left(\mathrm{HNO}_{3}\right)$ reacts with aqueous potassium rubidium sulfide, forming hydrogen sulfide gas.
49. CHALLENGE Aqueous potassium iodide reacts with lead nitrate in solution. forming solid lead iodide.
45. chemical equation: $2 \mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{KClO}_{4}(\mathrm{aq}) ;$ complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{ClO}_{4}$ (aq) $+2 \mathrm{~K}^{+}$(aq) $+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{~K}^{+}$(aq) $+2 \mathrm{Cl}_{-}$-(aq); net ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ $\rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{i})+\mathrm{CO}_{2}(\mathrm{~g})$
46. chemical equation: $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaCN}(\mathrm{aq}) \rightarrow$ $2 \mathrm{HCN}(\mathrm{g})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$;
complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2}$-(aq)
$+2 \mathrm{Na}^{-}(\mathrm{aq})+2 \mathrm{CN}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{HCN}(\mathrm{g})+2 \mathrm{Na}^{+}(a q)$
$+\mathrm{SO}_{4}^{2}$ (aq);
net ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{CN}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{HCN}(\mathrm{g})$. simplified to $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \rightarrow \mathrm{HCN}(\mathrm{g})$
47. chemical equation: $2 \mathrm{HBr}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NH}_{4} \mathrm{Br}(\mathrm{aq}) ;$
complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{~B}$-(aq) + $2 \mathrm{NH}_{4}{ }^{+}$(aq) $+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$ $+2 \mathrm{Br}^{-}(\mathrm{aq})$).
net ionic equation: $2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+$ CO_{2} (g)
48. chemical equation: $2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KRbS}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$+\mathrm{KRb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$: complete ionic equation: $2 \mathrm{H}^{\prime}(\mathrm{aq})$
$+2 \mathrm{NO}_{3}-(\mathrm{aq})+\mathrm{K}^{+}(\mathrm{aq})+\Omega \mathrm{b}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$+\mathrm{K}+(a q)+\mathrm{Rb}^{+}(a q)+2 \mathrm{NO}_{3}(a q)$; net ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
49. chemical equation: $2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})$ $+\mathrm{Pbl}_{2}(\mathrm{~s})$; complete ionic equation: $2 \mathrm{~K}^{-}(\mathrm{aq})+21^{-}(\mathrm{aq})+$ $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{PbL}_{2}(\mathrm{~s})$ net ionic equation: $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{Pb}_{2}(\mathrm{~s})$

Nora

6. Predict whether reactions in aqueous solutions will produce gas

Which one of the following reactions in aqueous solution produce gases?

What is the meaning of spectator ions?

6. Predict whether reactions in aqueous solutions will produce water

REACTIONS THAT FORM WATE

Write the chemical, complete ionic, and net ionic equations for the reaction between hydrochloric acid and aqueous lithium hydroxide. This reaction produces water and aqueous lithium chloride

$$
\begin{aligned}
& \mathrm{HCl}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{LiCl}(\mathrm{aq}) \\
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
\end{aligned} \quad \text { Show the ions of the reactants and the products. }
$$

$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Write chemical, complete ionic, and net ionic equations for the reactions between the following substances, which produce water.
40. Mixing sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and aqueous potassium hydroxide produces water and aqueous potassium sulfate,
41. Mixing hydrochloric acid (HCl) and aqueous calcium hydroxide produces water and aqueous calcium chloride.
42. Mixing nitric acid $\left(\mathrm{HNO}_{3}\right)$ and aqueous ammonium hydroxide produces water and aqueous ammonium nitrate.
43. Mixing hydrosulfuric acid $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ and aqueous calcium hydroxide produces water and aqueous calcium sulfide
44. CHALLENGE When benzoic acid ($\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$) and magnesium hydroxide are mixed, water and magnesium
benzoate are produced
40. chemical equation: $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $+\mathrm{K}, \mathrm{SO}_{4}$ (aq); complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+$ $\mathrm{SO}_{4}^{2}(\mathrm{aq})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{~K}^{+}(\mathrm{aq})+$ SO_{4}^{-}(aq); net ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$ $2 \mathrm{H}_{2} \mathrm{O}(l)$, simplified to $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
41. chemical equation: $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ +CaCl (aq); complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+$ $2 \mathrm{Cl}^{(\mathrm{aq})}+\mathrm{Ca}^{22}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H} \mathrm{O}(\mathrm{l})+$ $\mathrm{Ga}^{2+}(\mathrm{aq})+2 \mathrm{C}(\mathrm{aq})$ net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+$ $\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
42. chemical equation: $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+$ $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$ complete ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}^{2}$ (aq) $+\mathrm{NH}_{4}^{+}$(aq) $+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}\left(()+\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}\right.$(aq); net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
43. chemical equation: $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(1)$ $+\mathrm{CaS}(\mathrm{aq})$; complete ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{S}^{2}$ (aq) $+\mathrm{Ca}^{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2}(\eta)+\mathrm{Ca}^{2} \mathrm{H}(\mathrm{aq})+\mathrm{S}^{2}-(\mathrm{aq})$ net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
44. chemical equation: $2 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$ $\mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{m})$; complete ionic equation: $2 \mathrm{CH} \mathrm{COO}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Mg}^{+}$(aq) $+2 \mathrm{H}^{-}(\mathrm{aq}) \rightarrow$ $2 \mathrm{C}_{\mathrm{H}} \mathrm{H}_{5} \mathrm{COO}$ (aq) +Mg Haq $+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$; net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

5 \& 6. Predict whether reactions in aqueous solutions will produce precipitate
 \author{ REACTIONS THAT FORM A PRECIPITATE

}Write the chemical, complete ionic, and net ionic equations for the reaction between aqueous solutions of barium nitrate and sodium carbonate that forms the precipitate barium carbonate.
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})$
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$ Balance the skeleton equation
$\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow$ $\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$

Show the ions of the reactants and the products
$\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow$ $\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}=$ (aq)

Cross out the spectator ions from the complete ionic equation

Write the net ionic equation
$\mathrm{Ba}^{2}+(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})$
(1) ADDITIONAL PRACTICE

Write chemical, complete ionic, and net ionic equations for each of the following reactions that might produce a precipitate. Use NR to indicate that no reaction occurs.
35. Aqueous solutions of potassium iodide and silver nitrate are mixed, forming the precipitate silver iodide.
36. Aqueous solutions of ammonium phosphate and sodium sulfate are mixed. No precipitate forms and no gas is produced.
37. Aqueous solutions of aluminum chloride and sodium hydroxide are mixed, forming the precipitate aluminum hydroxide.
38. Aqueous solutions of lithium sulfate and calcium nitrate are mixed, forming the precipitate calcium sulfate.
39. CHALLENGE When aqueous solutions of sodium carbonate and manganese(V) chloride are mixed, a precipitate forms. The precipitate is a compound containing manganese.
35. chemical equation: $\mathrm{Kl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})$ $+\mathrm{Agl}(\mathrm{s})$; complete ionic equation: $K(\mathrm{aq})+1^{-}(\mathrm{aq})+$ $\mathrm{Ag}^{\prime}(\mathrm{aq})+\mathrm{NO}_{3}(\mathrm{aq}) \rightarrow \mathrm{K}(\mathrm{aq})+\mathrm{NO}_{3}(\mathrm{aq})+\mathrm{Agl}(\mathrm{s})$; net ionic equation: $1-(\mathrm{aq})+\mathrm{Ag}^{\prime}(\mathrm{aq}) \rightarrow \mathrm{Ag}(\mathrm{s})$
36. chemical equation: $2\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$ $3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) ;$
complete ionic equation: $6 \mathrm{NH}_{4}$ (aq) $+2 \mathrm{PO}_{4}^{3}$-(aq) + $6 \mathrm{Na}^{4}(\mathrm{aq})+3 \mathrm{SO}_{4}^{2}$ (aq) $\rightarrow 6 \mathrm{NH}_{4}^{-}(\mathrm{aq})+3 \mathrm{SO}_{4}^{2}(\mathrm{aq})+$ $6 \mathrm{Na}^{-}(\mathrm{aq})+2 \mathrm{PO}_{4}^{4}$ (aवा
No reaction occurs; therefore, there is no net ionic equation.
37. chemical equation: $\mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$ $+3 \mathrm{NaCl}(\mathrm{aq})$; complete ionic equation: $\mathrm{Al}^{34}(\mathrm{aq})+$ $3 \mathrm{CH}(\mathrm{aq})+3 \mathrm{Na}^{(}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+$ $3 \mathrm{Na}^{2}(\mathrm{aq})+3 \mathrm{Cl}$ (aq) net ionic equation: $\mathrm{Al}^{3}(\mathrm{aq})+$ $3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
38. chemical equation: $\mathrm{Li}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$ $2 \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{CaSO}_{4}$ (s); complete ionic equation: $2 \mathrm{Li}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Ca}^{21}(\mathrm{aq})+2 \mathrm{NO}_{3}(\mathrm{aq}) \rightarrow$ 2 Li (aq) $+2 \mathrm{NO}_{3}\left(\right.$ (aq) $+\mathrm{CaSO}_{4}$ (s); net ionic equation: $\mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{Ca}^{2-1}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})$
39. chemical equation: $5 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{MnCl}_{4}(\mathrm{aq}) \rightarrow$ $10 \mathrm{NaCl}(\mathrm{aq})+\mathrm{Mn}_{2}\left(\mathrm{CO}_{3}\right)_{5}$ (s); complete ionic equation: $10 \mathrm{Na}^{-}(\mathrm{aq})+5 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+2 \mathrm{Mn}^{5}(\mathrm{aq})+10 \mathrm{Cl}(\mathrm{aq}) \rightarrow$ $10 \mathrm{Na} 4(\mathrm{aq})+10 \mathrm{Cl}^{3}-(\mathrm{aq})^{2}+\mathrm{Mn}_{2}\left(\mathrm{CO}_{3}\right)_{5}(\mathrm{~s})$; net ionic equation: $5 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+2 \mathrm{Mn}^{51}(\mathrm{aq}) \rightarrow$ $\mathrm{Mn}_{2}\left(\mathrm{CO}_{3}\right)_{5}(\mathrm{~s})$

5 \& 6. Predict whether reactions in aqueous solutions will produce precipitate

What is the net ionic equation for the following reaction?

```
CaCl}\mp@subsup{2}{(aq)}{}+2\mp@subsup{\textrm{NaOH}}{(aq)}{}->2\mp@subsup{\textrm{NaCl}}{(aq)}{}+\textrm{C
```

Learning Outcomes Covered

- CHMS301.003
e CHME5301.011
- CHM5 301.013
- CHMS3.01014
$2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}_{(\mathrm{aq})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{aq})}$
$\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}$
$\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}_{(\mathrm{aq})} \rightarrow \mathrm{Ca}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~s})}$
$\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{(\mathrm{aq})}+2 \mathrm{Na}_{(\mathrm{aq})}^{+}+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}_{(\mathrm{aq})}+\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}$

11. Identify the mole relationships shown by a chemical

EXAMPLE Problem 6

MOLE RELATIONSHIPS FROM A CHEMICAL FORMULA Aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, often called alumina, is the principal raw material for the production of aluminum (Al). Alumina occurs in the minerals corundum and bauxite. Determine the moles of aluminum ions $\left(\mathrm{Al}^{3+}\right)$ in 1.25 mol of $\mathrm{Al}_{2} \mathrm{O}_{3}$

1. ANALYZE THE PROBLEM

You are given the number of moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and must determine the number of moles of Al^{3+} ions. Use a conversion factor based on the chemical formula that relates moles of Al^{3+} ions to moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$. Every mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$ contains 2 mol of Al^{3+} ions. Thus, the answer should be two times the number of moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Known
number of moles $=1.25 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$

Unknown

number of moles $=? \mathrm{~mol} \mathrm{Al}{ }^{3+}$ ions

2. SOLVE FOR THE UNKNOWN

Use the relationship that 1 mol of $\mathrm{Al}_{2} \mathrm{O}_{3}$ contains 2 mol of Al^{3+} ions to write a conversion factor.

To convert the known number of moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to moles of Al^{3+} ions, multiply by the ions-to-moles conversion factor.
moles $\mathrm{Al}_{2} \mathrm{O}_{3} \times \frac{2 \mathrm{~mol} \mathrm{Al}^{3+} \text { ions }}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}=$ moles Al^{3+} ions Apply the conversion factor.
$1.25 \frac{\mathrm{~mol}^{2} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}=\frac{2 \mathrm{~mol} \mathrm{Al}}{}{ }^{3+}$ ions $.50 \mathrm{~mol} \mathrm{Al}{ }^{3}$ Sidnatitute moles $\mathrm{Al}_{2} \mathrm{O}_{3}=1.25 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$ and solve.

11. Identify the mole relationships shown by a chemical formula

29. Zinc chloride $\left(\mathrm{ZnCl}_{2}\right)$ is used in soldering flux, an alloy used to join two metals together. Determine the moles of Cl^{-}ions in 2.50 mol ZnCl 2 .
30. Plants and animals depend on glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ as an energy source. Calculate the number of moles of each element in $1.25 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
31. Iron(III) sulfate $\left[\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]$ is sometimes used in the water purification process. Determine the number of moles of sulfate ions present in 3.00 mol of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
32. How many moles of oxygen atoms are present in 5.00 mol of diphosphorus pentoxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$?
33. CHALLENGE Calculate the number of moles of hydrogen atoms in $1.15 \times 10^{1} \mathrm{~mol}$ of water. Express the answer in scientific notation.
alManahj.com/ae
```
29. }5.00\textrm{mol Cl
30. 7.50 mol C; 15.0 mol H; 7.50 mol O
31. }9.00 \mp@subsup{\textrm{mol SO}}{4}{2
32. 25.0 mol O
33. 2.30 }\times1\mp@subsup{0}{}{1}\textrm{mol H
```


13. Explain what is meant by the percentage composition of the compound

EXAMPLE Problem 10

CALCULATING PERCENT COMPOSITION

Sodium hydrogen carbonate $\left(\mathrm{NaHCO}_{3}\right)$, also called baking soda, is an active ingredient in some antacids used for the
relief of indigestion. Determine the percent composition of NaHCO_{3}.

2. SOLVE FOR THE UNKNOWN

Determine the molar mass of NaHCO_{3} and each element's contribution.

1 mot $\mathrm{Na} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \text { mot } \mathrm{Na}}=22.99 \mathrm{~g} \mathrm{Na} \begin{aligned} & \text { Multiply the molar mass of } \mathrm{Na} \text { by the number of } \mathrm{Na} \text { atoms in the } \\ & \text { compound. }\end{aligned}$
1 moth $\times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \text { mot }}=1.008 \mathrm{~g} \mathrm{H} \quad$ Multiply the molar mass of H by the number of H atoms in the compound.
1 mot $\mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \text { mot } \mathrm{C}}=12.01 \mathrm{~g} \mathrm{C} \quad$ Multiply the molar mass of C by the number of C atoms in the compound.
3 moto $\times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \text { mot } \sigma}=48.00 \mathrm{~g} \mathrm{O} \quad \begin{aligned} & \text { Multiply the molar mass of } \mathrm{O} \text { by the number of } \mathrm{O} \text { atoms in the } \\ & \text { compound. }\end{aligned}$
Use the percent by mass equation.
$=\frac{\text { mass of element in } 1 \text { mole of compound }}{\text { molar mass of compound }} \times 100$ percent $\mathrm{Na}=\frac{22.99 \mathrm{~g}}{\mathrm{~mol} / 84.01 \mathrm{~g} / \mathrm{mol}} \times 100=27.37 \% \mathrm{Na}$

$$
\text { percent } \mathrm{H}=\frac{1.008 \mathrm{~g}}{\mathrm{~mol} / 84.01 \mathrm{~g} / \mathrm{mol}} \times 100=\mathbf{1 . 2 0 0 \%} \mathbf{H}
$$

$$
\text { percent } \mathrm{C}=\frac{12.01 \mathrm{~g}}{\mathrm{~mol} / 84.01 \mathrm{~g} / \mathrm{mol}} \times 100=\mathbf{1 4 . 3 0} \% \mathrm{C}
$$

$$
\text { percent } \mathrm{O}=\frac{48.00 \mathrm{~g}}{\mathrm{~mol} / 84.01 \mathrm{~g} / \mathrm{mol}} \times 100=\mathbf{5 7 . 1 4 \%} \mathrm{O}
$$

$$
\begin{aligned}
\text { molar mass } & =(22.99 \mathrm{~g}+1.008 \mathrm{~g}+12.01 \mathrm{~g}+48.00 \mathrm{~g}) \\
& =84.01 \mathrm{~g} / \mathrm{mol} \mathrm{NaHCO}_{3}
\end{aligned}
$$

13. Explain what is meant by the percentage composition of the compound

(1) ADDITIONAL PRACTICE
54. What is the percent composition of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$?
55. Which has the larger percent by mass of sulfur, $\mathrm{H}_{2} \mathrm{SO}_{3}$ or $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$?
56. Calcium chloride $\left(\mathrm{CaCl}_{2}\right)$ is sometimes used as a de-icer. Calculate the percent by mass of each element in CaCl_{2}.
57. CHALLENGE Sodium sulfate is used in the manufacture of detergents.
a. Identify each of the component elements of sodium sulfate, and write the compound's chemical formula.
b. Identify the compound as ionic or covalent.
c. Calculate the percent by mass of each element in sodium sulfate.
54. $3.08 \% \mathrm{H} ; 31.61 \% \mathrm{P} ; 65.31 \% \mathrm{O}$
55. $\mathrm{H}_{2} \mathrm{SO}_{3}$
56. $36.11 \% \mathrm{Ca} ; 63.89 \% \mathrm{Cl}$
57. a. sodium, sulfur, and oxygen; $\mathrm{Na}_{2} \mathrm{SO}_{4}$ /ae
b. ionic
c. $32.37 \% \mathrm{Na} ; 22.58 \% \mathrm{~S} ; 45.05 \% \mathrm{O}$
13. Explain what is meant by the percentage composition of the compound

	of sodium (Na) in	-يوم في.
	19.3\%	
	23.1\%	
	38.7\%	
${ }^{\text {d. }}$	77.3\%	π

14. determine of the empirical and molecular formulas for a compound from mass percent

Empirical formula - the simplest whole number ratio of atoms
 of each element present in a compound

shown in Figure 13, where 100.00 g of the compound contains 40.05 g of S and 59.95 g of O . Each mass is then converted to moles.
$40.05 \mathrm{gS} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{gS}}=1.249 \mathrm{~mol} \mathrm{~S}$
$59.95 \mathrm{~g} \sigma \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \sigma}=3.747 \mathrm{~mol} \mathrm{O}$

Thus, the mole ratio of S atoms to O atoms in the oxide is $1.249: 3.747$. Since the values are not whole numbers, you convert the ratio to whole numbers by dividing by the smallest value. This does not change the ratio between the two elements because both are divided by the same number.

$$
\frac{1.249 \mathrm{~mol} \mathrm{~S}}{1.249}=1 \mathrm{~mol} \mathrm{~S} \quad \frac{3.747 \mathrm{~mol} \mathrm{O}}{1.249}=3 \mathrm{~mol} \mathrm{O}
$$

Thus, the empirical formula is SO_{3}.
14. determine of the empirical and molecular formulas for a compound from mass percent Molecular formula - the actual number of and type of atoms
of each element in a molecule

Go through example problem 11 from the textbook page number

molecular formula $=($ empirical formula) $)$

e.g. $\mathrm{C}_{4} \mathrm{H}_{8}=(\mathrm{CH} 2) 2$.

58. The circle graph at the right gives the percent composition for a blue solid. What is the empirical formula for this solid?
59. Determine the empirical formula for a compound that contains 35.98% aluminum and 64.02% sulfur.
60. Propane is a hydrocarbon, a compound composed only of carbon and hydrogen. It is 81.82% carbon and 18.18% hydrogen. What is the empirical formula?
61. CHALLENGE Aspirin is the world's most-often used medication. The chemical analysis of aspirin indicates that the molecule is 60.00% carbon, 4.44% hydrogen, and 35.56% oxygen. Determine the empirical formula for aspirin.

62. $\mathrm{N}_{2} \mathrm{O}_{3}$
63. $\mathrm{Al}_{2} \mathrm{~S}_{3}$
64. CH_{3}
65. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$

14. determine of the empirical and molecular formulas for a compound from mass percent

14. determine of the empirical and molecular formulas for a compound from mass percent

15. Identify the relationships balanced chemical equation

Problem

The combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ provides energy for heating homes, cooking food, and soldering metal parts. Interpret the equation for the combustion of propane in terms of representative particles, moles, and mass. Show that the law of conservation of mass is observed.

SOLVE FOR THE UNKNOWN

The coefficients in the chemical equation indicate the number of molecules.

SOLVE FOR THE UNKNOWN

To verify that mass is conserved, first convert moles of reactant and product to mass by multiplying by a conversion factor-the molar mass-that relates grams to moles.
moles of reactant or product $\times \frac{\text { grams reactant or product }}{1 \mathrm{~mol} \text { reactant or product }}$

$$
=\text { grams of reactant or product }
$$

- Calculate the mass of the reactant $\mathrm{C}_{3} \mathrm{H}_{8}$.

$$
1 \mathrm{~mol}_{3} \mathrm{H}_{8} \times \frac{44.09 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}{1{\mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}^{2}}=44.09 \mathrm{C}_{3} \mathrm{H}_{8}
$$

- Calculate the mass of the reactant O_{2}.

$$
5 \mathrm{~mol}_{\mathrm{z}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol}_{\mathrm{z}}}=160.0 \mathrm{~g} \mathrm{O}_{2}
$$

- Calculate the mass of the reactant CO_{2}.

1 molecule $\mathrm{C}_{3} \mathrm{H}_{8}+5$ molecules $\mathrm{O}_{2} \rightarrow$
3 molecules $\mathrm{CO}_{2}+4$ molecules $\mathrm{H}_{2} \mathrm{O}$
The coefficients in the chemical equation also indicate the number of moles.
$1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{~mol} \mathrm{O}_{2} \rightarrow 3 \mathrm{~mol} \mathrm{CO}_{2}+$ $4 \mathrm{~mol} \mathrm{H} \mathbf{2}$
$3 \mathrm{molCO}_{z} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{molCO}_{z}}=132.0 \mathrm{~g} \mathrm{CO}_{2}$

$$
4 \mathrm{~mol}_{\mathrm{H}_{2}}-\times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molHz}_{z} \Theta}=72.08 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

- Add the masses of the reactants.

$$
44.09 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}+160.0 \mathrm{~g} \mathrm{O}_{2}=204.1 \mathrm{~g} \text { reactants }
$$

- Add the masses of the products.

$$
132.0 \mathrm{~g} \mathrm{CO}_{2}+72.08 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\mathbf{2 0 4 . 1} \mathrm{g} \text { products }
$$

- The law of conservation of mass is observed.

15. Identify the relationships can be derived from a

1. Interpret the following balanced chemical equations in terms of particles, moles, and mass. Show that the law of conservation of mass is observed.
a. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{5}(\mathrm{~g})$
b. $\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (1)
c. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}$ (s)
2. CHALLENGE For each of the following, balance the chemical equation; interpret the equation in terms of particles, moles, and mass; and show that the law of conservation of mass is observed.
a. \qquad $\mathrm{H}_{2} \mathrm{O}(1) \rightarrow$ \qquad $\mathrm{NaOH}(\mathrm{aq})+$ \qquad $\mathrm{H}_{2}(\mathrm{~g})$
b. \qquad $\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow-\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$ \qquad $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

\author{

1. a. 34.062 g reactants $=34.062 \mathrm{~g}$ products
 b. 92.566 g reactants $=92.566 \mathrm{~g}$ products
 c. 80.608 g reactants $=80.608 \mathrm{~g}$ products
 2. a. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+1 \mathrm{H}_{2}(\mathrm{~g})$
 82.01 g reactants $=82.01 \mathrm{~g}$ products
 b. $4 \mathrm{Zn}(\mathrm{s})+10 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+1 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+$ $5 \mathrm{H}_{2} \mathrm{O}(1)$
 891.68 g reactants $=891.68 \mathrm{~g}$ products
}
2. Write the mole ratios from a balanced chemical equation

- Ratio between the numbers of moles of any two substances in a balanced chemical equation

$$
\cdot 2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Br}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{AlBr}_{3}(\mathrm{~s})
$$

- Possible to write 3 unique mole ratios:
- $\mathrm{Al}: \mathrm{Br}_{2}$ (2:3) $\mathrm{Al}: \mathrm{AlBr}_{3}(2: 2) \mathrm{Br}_{2}: \mathrm{AlBr}_{3}(3: 2)$
- Get 3 more ratios from inverses of above for a total of 6 for this reaction

16. Write the mole ratios from a balanced chemical

eauation

3. Determine all possible mole ratios for the following balanced chemical equations.

$$
\begin{aligned}
& \text { a. } 4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \\
& \text { b. } 3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \\
& \text { c. } 2 \mathrm{HgO}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

4. CHALLENGE Balance the following equations, and determine the possible mole ratios
a. $\mathrm{ZnO}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (1)
b.butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)+$ oxygen \rightarrow carbon dioxide + water
 $\frac{1 \text { mol } Z n \mathrm{O}}{2 \mathrm{~mol} \mathrm{HCl}} \frac{1 \mathrm{mal} Z n O}{1 \mathrm{mal} \angle n C 1} \frac{1 \mathrm{~mol} Z n O}{1 \mathrm{~mol} \mathrm{H} O}$ 2 mol HCl 2 mal HCI 2 mal HCI $1 \mathrm{~mol} 7 \mathrm{ZOO} 1 \mathrm{~mol} \mathrm{ZnCl}_{2} 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ 1 mol $\mathrm{ZnCl}_{2} 1$ mol $\mathrm{ZnCl}_{2} 1$ mol ZnCl_{2} "mal $\mathrm{EnO} \quad 2$ mal HCl 1 malH H

5. $2 \mathrm{C}_{4} \mathrm{H}_{\mathrm{n}}+130 \mathrm{H}_{2}+8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$

 10 mod $H_{2} \quad 10$ mod $H_{2} \quad 8$ mol CO_{2} $13 \mathrm{~mol} \mathrm{O}_{2} \quad 8$ mol $\mathrm{CO}_{3} \quad 13 \mathrm{~mol} \mathrm{O}_{2}$ $13 \mathrm{mal}_{2} \quad 8 \mathrm{mal} \mathrm{CO} \quad 13 \mathrm{~mol} \mathrm{CO}_{2}$ 10 moal $\mathrm{H}_{2} \mathrm{O} \quad 10$ mol $\mathrm{H}_{3} \mathrm{O} \quad 8$ miod CO_{3}
6. a. $\frac{4 \text { mol Al }}{3 \text { mol } \mathrm{O}_{3}} \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol}_{2} \mathrm{O}_{3}} \frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{Q}_{3}}{4 \mathrm{~mol} \mathrm{All}}$

b. $\frac{3 \mathrm{molFe}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \frac{3 \mathrm{~mol} \mathrm{Fe}}{4 \mathrm{~mol} \mathrm{H}_{7}} \frac{3 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}}$
$\frac{4 \mathrm{~mol}_{2} \mathrm{O}}{3 \mathrm{molFe}} \frac{4 \mathrm{~mol}_{2}}{3 \mathrm{molFe}} \frac{1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}}{3 \mathrm{~mol} \mathrm{Fe}}$
$\frac{1 \text { mol Fe, } \mathrm{O}_{4}}{4 \mathrm{~mol} \mathrm{H}} \frac{1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{H}_{2}}$
$\frac{4 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}} \frac{4 \mathrm{~mol}_{4} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}} \frac{4 \mathrm{~mol}_{4}}{4 \mathrm{~mol} \mathrm{H}}$
$\frac{2 \mathrm{~mol} \mathrm{HgO}}{2 \mathrm{~mol} \mathrm{Hg}} \frac{1 \mathrm{~mol}_{\mathrm{O}}}{2 \mathrm{~mol} \mathrm{Hg}} \frac{1 \mathrm{~mol} \mathrm{O}}{2}$
2 mol Hg 2 mol Hg 2 mol HgO
$\overline{2 \mathrm{molHgO}} \overline{1 \mathrm{~mol} \mathrm{O}_{2}} \overline{1 \mathrm{mal}_{\mathrm{j}}}$

16. Write the mole ratios from a balanced chemical equation

Stoichiometry is based on the law of
نستد على قانون ...

What is the correct balanced skeleton equation that represents the chemical reaction below?

Hydrochloric acid (HCl) reacts with solid Aluminum (Al) metal to yield aqueous Aluminum chloride $\left(\mathrm{AlCl}_{3}\right)$ and Hydrogen gas $\left(\mathrm{H}_{2}\right)$

16. Write the mole ratios from a balanced chemical equation

Which of the following mole ratio is NOT correct?

- CHM 530 t 074 4

	$4 \mathrm{~mol} A$
	$\overline{3 \mathrm{~mol} \mathrm{~B}}$
	$4 \mathrm{~mol} A$
	$\overline{2 \mathrm{~mol} \mathrm{C}}$
	2 mol C
	3 mol B
	3 mol C
	2 mol B

17 \& 18. Apply the steps to solve stoichiometric problems

EXAMPLE Problem 2

MOLE-TO-MOLE STOICHIOMETRY One disadvantage of burning propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is that carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is one of the products. The released carbon dioxide increases the concentration of CO_{2} in the atmosphere. How many moles of CO_{2} are produced when $10.0 \mathrm{~mol} \mathrm{of}_{3} \mathrm{H}_{8}$ are burned in excess oxygen in a gas grill?

1. ANALYZE THE PROBLEM

You are given moles of the reactant, $\mathrm{C}_{3} \mathrm{H}_{8}$ and must find the moles of the product. CO_{2}. First write the balanced chemical equation, then convert from moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ to moles of CO_{2}. The correct mole ratio has moles of unknown substance in the numerator and moles of known substance in the denominator.

11. Methane and sulfur react to produce carbon disulfide $\left(\mathrm{CS}_{2}\right)$, a liquid often used in the production of cellophane.$\mathrm{CH}_{4}(\mathrm{~g})+$ \qquad $\mathrm{S}_{8}(\mathrm{~s}) \rightarrow$ \qquad $\mathrm{CS}_{2}(\mathrm{l})+$ \qquad $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
a. Balance the equation.
b. Calculate the moles of CS_{2} produced when $1.50 \mathrm{~mol} \mathrm{~S}_{8}$ is used.
c. How many moles of $\mathrm{H}_{2} \mathrm{~S}$ are produced?
12. CHALLENGE Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ is formed when sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ reacts with oxygen and water.
a. Write the balanced chemical equation for the reaction.
b. How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are produced from 12.5 moles of SO_{2} ?
c. How many moles of O_{2} are needed?

```
11. a. 2CH4}(\textrm{g})+\mp@subsup{\textrm{S}}{8}{(}(\textrm{s})->2\mp@subsup{\textrm{CS}}{2}{}(l)+4\mp@subsup{\textrm{H}}{2}{}\textrm{S}(\textrm{g}
    b. 1.50 mol S
        =3.00 mol CS,
    c. 1.50 mol Sig}\times\frac{4\mp@subsup{\textrm{mol H}}{2}{}\textrm{S}}{1\mp@subsup{\textrm{mol S}}{\textrm{a}}{2}
        =6.00 mol H2S
12.a. 2SO
    b. }12.5\mp@subsup{\textrm{mol SO}}{2}{}\times\frac{2\mp@subsup{\textrm{molH}}{2}{}\mp@subsup{\textrm{SO}}{4}{}}{2\textrm{mol SO}
        = 12.5 mol H}\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ produced
    c. 12.5 mol SO
```


17 \& 18. Apply the steps to solve stoichiometric problems

EXAMPLE Problem 3

MOLE-TO-MASS STOICHIOMETRY Determine the mass of sodium chloride (NaCl), commonly called table salt, produced when 1.25 mol of chlorine gas $\left(\mathrm{Cl}_{2}\right)$ reacts vigorously with excess sodium.

1. ANALYZE THE PROBLEM

You are given the moles of the reactant, Cl_{2}, and must determine the mass of the product, NaCl . You must convert from moles of Cl_{2} to moles of NaCl using the mole ratio from the equation. Then, you need to convert moles of NaCl to grams of NaCl using the molar mass as the conversion factor

Known

moles of chlorine $=1.25 \mathrm{~mol} \mathrm{Cl}_{2}$
2. SOLVE FOR THE UNKNOWN

$$
\begin{aligned}
& 1.25 \mathrm{~mol} \text { ?g } \\
& 2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s}) \\
& \text { Mole ratio: } \frac{2 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{Cl}_{2}} \\
& 1.25 \mathrm{mote}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{molel}_{2}}=2.50 \mathrm{~mol} \mathrm{NaCl}
\end{aligned}
$$

2.50 mol AaCl $\times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \text { mot } \mathrm{AaCl}}=146 \mathrm{~g} \mathrm{NaCl}$

Multiply moles of NaCl by the molar mass to get

Unknown

mass of sodium chloride $=$? g NaCl

- Write the balanced chemical equation, and identify the known and the unknown values.

Multiply moles of Cl_{2} by the mole ratio to get moles

$$
\text { grams of } \mathrm{NaCl}
$$

3. Sodium chloride is decomposed into the elements sodium and chlorine by means of electrical energy. How much chlorine gas, in grams, is obtained from the process diagrammed at right?

4. CHALLENGE Titanium is a transition metal used in many alloys because it is extremely strong and lightweight. Titanium tetrachloride $\left(\mathrm{TiCl}_{4}\right)$ is extracted from titanium oxide $\left(\mathrm{TiO}_{2}\right)$ using chlorine and coke (carbon).
$\mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{TiCl}_{4}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})$
a. What mass of Cl_{2} gas is needed to react with 1.25 mol of TiO_{2} ?
b. What mass of C is needed to react with 1.25 mol of TiO_{2} ?
c. What is the mass of all of the products formed by reaction with $1.25 \mathrm{~mol} \mathrm{of}_{\mathrm{TiO}}^{2}$?

13. $88.6 \mathrm{~g} \mathrm{Cl}_{2}$
 14. a. $17 / \mathrm{g} \mathrm{Cl}_{2}$ b. 15.0 g C
 c. 292 g

17 \& 18. Apply the steps to solve stoichiometric problems

MASS-TO-MASS STOICHIOMETRY Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$, an important fertilizer, produces dinitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ gas and $\mathrm{H}_{2} \mathrm{O}$ when it decomposes. Determine the mass of $\mathrm{H}_{2} \mathrm{O}$ produced from the decomposition of 25.0 g of solid $\mathrm{NH}_{4} \mathrm{NO}_{3}$

1. ANALYZE THE PROBLEM

Write the balanced equation and convert the known mass of the reactant to moles of the reactant. Next, use a mole ratio to relate moles of the reactant to moles of the product. Then, use the molar mass to convert from moles of the product to the mass of the product.

Known
Unknown

mass of ammonium nitrate $=25.0 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \quad$ mass of water $=? \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
2. SOLVE FOR THE UNKNOWN
$25.0 \mathrm{~g} \quad$? g
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Write the balanced chemical equation, and identify
the known and unknown values.
$25.0 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.04 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}}=0.312 \mathrm{moMNH}_{4} \mathrm{NQ}_{\text {gams on }}$ of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ by the inverse of molar
mass to get moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}$.
Mole ratio: $\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}$
$0.312 \mathrm{~mol}_{\mathrm{MH}}^{4} \mathrm{NO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}=0.624$ ntod/H2l moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ by the mole ratio to get
$0.624 \mathrm{molH}_{2} \mathrm{O} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{malH}_{2} \mathrm{O}}=11.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
Multiply moles of $\mathrm{H}_{2} \mathrm{O}$ by the molar mass to get
15. One of the reactions used to inflate automobile air bags involves sodium azide $\left(\mathrm{NaN}_{3}\right): 2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$ Determine the mass of N_{2} produced from the decomposition of NaN_{3} shown below.

16. CHALLENGE in the formation of acid rain, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ reacts with oxygen and water in the air to form sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. Write the balanced chemical equation for the reaction. If 2.50 g of SO_{2} reacts with excess oxygen and water, how much $\mathrm{H}_{2} \mathrm{SO}_{4}$, in grams, is produced?
15. $64.64 \mathrm{~g} \mathrm{~N}_{2}$
16. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) ; 3.83 \mathrm{gH}_{2} \mathrm{SO}_{4}$

19. Determine the limiting reactant In a chemical reaction

- The limiting reactant is the reactant that is completely consumed during a chemical reaction. Reactants that remain after the reaction stops are called excess reactants.

19. Determine the limiting reactant In a chemical reaction

23. The reaction between solid sodium and iron(III) oxide is one in a series of reactions that inflates an automobile airbag:

Go through example $6 \mathrm{Na}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 3 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{Fe}(\mathrm{s})$. If 100.0 g of Na and 100.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are used in this reaction, determine the following. problem 5 from the textbook page number

227
a. limiting reactant
b. reactant in excess
c. mass of solid iron produced
d. mass of excess reactant that remains after the reaction is complete
24. CHALLENGE Photosynthesis reactions in green plants use carbon dioxide and water to produce glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and oxygen. A plant has 88.0 g of carbon dioxide and 64.0 g of water available for photosynthesis. Be sure to report the correct
level of accuracy based on measurements given in the question.
a. Write the balanced chemical equation for the reaction.
b. Determine the limiting reactant and the excess reactant.
c. Determine the mass in excess.
d. Determine the mass of glucose produced.
23. a. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
b. Na
c. 69.92 g Fe
d. 13.6 g Na
24. a. $6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{~g})$
b. CO_{2} is limiting; $\mathrm{H}_{2} \mathrm{O}$ is in excess.
c. 28.0 g
d. 60.0 g

20. Calculate of the theoretical yield of a chemical reaction

EXAMPLE Problem 6

PERCENT YIELD Solid silver chromate $\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)$ forms when excess potassium chromate $\left(\mathrm{K}_{2} \mathrm{CrO} \mathrm{O}_{4}\right)$ is added to a solution containing 0.500 g of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$. Determine the theoretical yield of $\mathrm{Ag}_{2} \mathrm{CrO} 4$. Find the percent yield if the reaction yields 0.455 g of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$

1. ANALYZE THE PROBLEM

You know the mass of a reactant and the actual yield of the product. Write the balanced chemical equation, and calculate theoretical yield by converting grams of AgNO_{3} to moles of AgNO_{3}. moles of AgNO_{3} to moles of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$, and moles of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ to grams of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$. Calculate the percent yield from the actual yield and the theoretical yield.
mass of silver nitrate $=0.500 \mathrm{~g} \mathrm{AgNO}_{3}$
actual yield $=0.455 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CrO}_{4}$

Unknown
theoretical yield $=? \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
percent yield $=? \% \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
2. SOLVE FOR THE UNKNOWN
$0.500 \mathrm{~g} \quad$?g Write the balanced chemical equation, and identify $2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+2 \mathrm{KNOg}$ fagkn and the unknown.
$0.500 \mathrm{~g} \mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{AgNO}_{3}}{169.9 \mathrm{~g} \mathrm{AgNO}_{3}}=2.94 \times 10^{-3} \mathrm{Cmolang}^{2} \mathrm{AO}_{3}$ s of AgNO_{3} to moles.
$2.94 \times 10^{-3} \mathrm{~mol}_{\mathrm{AgNO}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4}}{2 \mathrm{moL} \mathrm{AgNO}_{3}}=1.42$ xe HO^{-3} rmad Agictionnvert moles of AgNO_{3} to moles of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.
$1.47 \times 10^{-3} \frac{\text { mol }_{\mathrm{Ag}_{2}} \mathrm{CrO}_{4}}{} \times \frac{331.7 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CrO}_{4}}{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4}}=0.488$ igatged Cinelquetical yield.
$\frac{0.455 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CrO}_{4}}{0.488 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CrO}_{4}} \times 100=93.2 \% \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
Calculate the percent yield

20. Calculate of the theoretical yield of a chemical reaction

28. Aluminum hydroxide $\left(\mathrm{Al}(\mathrm{OH})_{3}\right)$ is often present in antacids to neutralize stomach acid (HCl). The reaction occurs as follows: $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. If 14.0 g of $\mathrm{Al}(\mathrm{OH})_{3}$ is present in an antacid tablet, determine the theoretical yield of AlCl_{3} produced when the tablet reacts with HCl .
29. Zinc reacts with iodine in a synthesis reaction: $\mathrm{Zn}+\mathrm{I}_{2} \rightarrow \mathrm{ZnI}_{2}$.
a. Determine the theoretical yield if 1.912 mol of zinc is used.
b. Determine the percent yield if 515.6 g of product is recovered.
30. 23.9 g of AlCl_{3} is the theoretical yield.
31. a. $610.3 \mathrm{~g} \mathrm{Znl}_{2}$
b. 84.48% yield of $Z n L_{2}$
32. a. $\mathrm{Cu}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
b. 68.0 g of Ag
c. 88.2% yield
33. CHALLENGE When copper wire is placed into a silver nitrate solution $\left(\mathrm{AgNO}_{3}\right)$, silver crystals and copper(II) nitrate $\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)$ solution form.
a. Write the balanced chemical equation for the reaction.
b. If a 20.0-g sample of copper is used, determine the theoretical yield of silver.
c. If 60.0 g of silver is recovered from the reaction, determine the percent yield of the reaction.

All the Best

https://t.me/+Bsnl6dOuTVthNDY8
alManahj.com/ae

