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11 Repres.ent a [JOiI-lt in one, two and three dimensional space in terms of its STUDENT TEXTEOOK 18
Cartesian coordinates.
[2] Represent a vector in terms of its components in Cartesian coordinates- FIGURE 1.15 14
in two, and three-dimensional space. FIGURE 1.25 22
y
zS(-::m} _ A P,
L i
i A4
7 =
3 B oA &= 7z |
= R 4 : Py
1 y (cm) | T! I
o P x
"4 | _"_l ' 4 4 4
2 : : 7 g P
x (cm) 3 4 - [—/ -
: e T P=®.P,P)

FIGURE 1.25 cCalculating the angle
between two position vectors.

FIGURE 115 Representation of a point
= ; = : Pin a three-di ional space in ter f
1 (400’2.00’5.00) . (450! 40 3‘00) - three-dimensional space in terms o

its Cartesian coordinates.




Find the length and direction of a two-dimensional vector from its STUDENT TEXTBOOK 21

Cartesian components.

Q. [1.99/1.100/1.102/1.104] 30

Vector Length and Direction

I we know the component representacion of a vecoor. how can we find s lengoh (mag-
nimde) and the direction it is pointng in® Lec's look at the most important case: a weotor
in two dilmensions. In nwo dimensions, a vector 4 can be specified uniquely by giving the
wwo Cartesian components, A and A, We can also specify the same vecor by giving owo
other numbers: its lengrh A and its angle & with respect o the positive x-axis

Ler's take a look at Figure 1.23 1o see howw we can determine A and & froma A, and A,
Figure 1_23%a showws the graphical representarion of equartion 1,19 The wvector A is the sum
of the vectors A, % and A . Since the unit vectors % and & are by definition orchogonal to
each other, these wecrtors fomm a 90 angle. Thus, the three vecrors A A % and A, 8§ form
a righr triangle with side lengrhs A, A, and A, as shown in Figure 1.230.

Mo we can employ basic mrigonomerry to find & and A, Using cthe Pythagorean

Theorem resulcs in
A= ll'Af—t—A;_ {1200
e can find che angle & from the definition of the tangent funcoion

|H=1:£|1'1_E—Jdls’I - (1213

A

Im using equation 1.21. you must be carefuil thar & is in the correct quadrant. We can

also inwvert equartions 1.20 and 1.21 to abrtain the Cartesian components of a vector
of given length and direcrion:

x

A=A coss {1.22)
Ag = A sin #_ {1.23)

You will encouner these rigonomertric relations again and again chroughour intro-
ductory phwvsics. If vou need to refamiliarize yourself with rigonometry. consulc the
mathemarcics primer provided in Appendix o

FIGURE 1.23 Length and direction of a
wector {2) Cartesian components A, and A
(i) lengtih A and angle &




2 Find the length and direction of a two-dimensional vector from its STUDENT TEXTBOOK 21
Cartesan chmp onents, Q.[1.99/1.100/1.102/1.1041 20
=
1.99 Sketch the vectors wi e components A = (Ax, Ay) = (30.0 m, -50.0 m) and

B = (Bx, By) = (-30.0 m, 50.0 m), and find the magnitudes of these vectors

1.100 What angle does A = (Ax, Ay) = (30.0 m, -50.0 m) make with the positive x-axis?
What angle does it make with the negative y-axis?



2 Find the length and direction of a two-dimensional vector from its STUDENT TEXTBOOK 21
CERERmE compnenty Q. [1.99/1.100/1.102/1.1041 a0
1.102 What angle does B = (Bx, By) = (30.0 m, 50.0 m) make with the positive x-axis?

What angle does it make with the positive y-axis?

1.104 Find the magnitude and direction of — A + B, where A =(23.0,59.0), B =(90.0, -150.0).



STUDENT TEXTBOOK 21,23
EXAMPLE 1.5 / Q.1.80/0Q1.103 22 7 29730

3 Find the angle between two position vectors in the cartesian coordinates.

Scalar Product of Vectors

Above we saw how to mulriply a vector with a scalar. NMow we will define one way
of multiplving a wvector with a wvecrtor and obtain the scalar prodwuct. The scalar
product of two vectors A and B is defined as

AepB= |_.3a| |E| COos ¢y, {(1.24)

Scalar Product for Unit Vectors. On page 26 we introduced unit vectors in the
three-dimensional Cartesian coordinate systenu: X = (1,0,0), § = (0.1,0), and 2 =
(0,0, 1). With our definition (1.25) of the scalar product, we find

Xek=geg=z22=1 (1.30) Self-Test Opportunity 1.1

and Show that equations 1.30 and 1.21 are

X'g,:r:)'('i:g'i:(] correct by using equation 1.25 and the
o223 - — (1.31) definitions of the unit vectors.
jex=zsx =z=gyg=0.

Now we see why the unit vectors are called that: Their scalar products with them-
selves have the value 1. Thus, the unit vectors have length 1, or unit length, according
to equation 1.27. In addition, any pair of different unir vectors has a scalar product that
is zero, meaning that these vecrtors are orthogonal to each other. Equations 1.30 and
1.31 thus state that the unit vecrors %, §j, and Z form an orthonormal ser of vecrors,
which makes them extremely useful for the description of physical systems.



STUDENT TEXTBOOK 21,23

Find the angle between two position vectors in the cartesian coordinates.
EXAMPLE 1.5 / Q.1.80/Q1.103 22 7 29/30

AeB=(A,. A, A )*(B,. B, B,)=AB, +A,B, + A,B,.

P = T = S
des ] R cove — 2B T geon )

Geormretrical interpretotion of thhe Scalfor Prodorct. It the definmition of the scalar
prodiuuct A e B — |Z| El cos oy {equation 1.2-4% mawe Ccan interpret |..E| cos oy as  the
projecrion of the wectror A onto rthe wvecrtor B (Figure 1.26Ga). Im chis drawwing, the
Lizae |,-E.| cosox is rotared by 90 o show the geomerrical inrterpretation of the scalar
prodiasct as the area of a rectangle wich sides |,.-E| cos or arvcl |§| - I the sarme wway, we Car
INMTerpret |‘§1 cos o as the projection of the vecror B onto the wvwecror A and conscrict a
recrangle with side lengrhs |§| cos ow arvc |jﬁ| {Figure 1._26b). The arecas of the twwo vellow
recrangles in Figure 1.25 are idenrcical and are eqgual ro the scalar produact of the twwo
wecTors A ard B

Finally, if wwe substimute from eguartion 128 for the cosime of cthe angle beoween

che owo wvectors, thhe projectiomn |_E£| cos o of the wector A onto the wector B can be
WTiToer: as

-8B __ A-B
| 12] |3]

| Al cose = |A],

eI

amnd che projecticorn |B| cos o of the vector

|B| CUDS oy —




) = ) ] . STUDENT TEXTBOOK 21,23
3 Find the angle between two position vectors in the cartesian coordinates.
EXAMPLE 1.5 / Q.1.80/Q1.103 22 /7 29/30
Vector Product K== Z
The vector product (or cross product) between two vectors A=(4A,, Ay, A;) and E} e o ——
B=(8,.B, B) s defined s | = N 2
C=AxB = N = ij.
C,=AB, =AB, _ )
C,=AB,—-AB, (1.32) |l’§| - |15.| |q i
C, = AB, =AB,. = :
FIGURE1.26 Geometical
interpratation of the seala product
a5 an area. jg) The projectionof A onto B,
|t The projection of & onta 4.




STUDENT TEXTEOOK 21,23
EXAMPLE 1.5 / Q.1.80/Q1.103 22 / 29/30

3 Find the angle between two position vectors in the cartesian coordinates.

EXAMPLE 1.5 [ Angle Between Two Position Vectors
E’l

PROBLEM
What is the angle o berween the two position vectors shown in Figure 1.25,

A =(4.00,2.00,5.00) cm and B = (4.50, 4.00, 3.00) em?

5

FIGURE 1.25 Calculating the angle
between two position vectors.



: N . _ _ STUDENT TEXTBOOK | 21,23
3 Find the angle between two position vectors in the cartesian coordinates. '
EXAMPLE 1.5 / Q.1.80/Q1.103 22 / 29 /30
1.80 Express the vectors A = (Ax, Ay) =(-30.0 m, -50.0 m) and B = (Bx, By) =(30.0 m, 50.0 m)

by giving their magnitude and direction as measured from the positive x-axis

1.103 Find the magnitude and direction of each of the following vectors, which are given in
terms of their x- and y-components: A =(23.0,59.0), and B =(90.0, -150.0)



[1] Multiply a vector with a scalar. STUDENT TEXTBOOK 20
[2] Add or subtract vectors using Cartesian components. Q. [1.76/1.79/1.105/1.106] 29

Multiplication of a Vector with a Scalar

WWhat is .4 4+ A 4+ A2 If wour answer to this guesrtion is 3.4, yvou already understand
multiplying a vector with a scalar. The vector that results from mulriplying the vecror .4
writh the scalar 3 is a wvecror thart points in the same direcrion as the original wecror A
burt is 3 times as long.

Multiplicartion of a vector with an arbitrary positiwve scalar—thart is, a positive number—
results in another wvecrtor thart points in the same direcrion but has a magnitude thart is
the product of the magnitude of the original wvecror and the walue of the scalar. Miul-
riplicarion of a vecrtor bwv a negartive scalar resulrs in a vecror pointing in the opposite
direcrion to the original with a magnitude thar is the product of the magnitude of the
original vector and the magnitude of the scalar. .

Again, the component notation is useful. For thhe mulriplicarion of a vecrtor A
writhh a scalar s, we obrtain:

E=—2=zA =s(A,_ A, A )=(sA s, sA_ ) (1.15)

In other words, each component of the wvecror A is mulriplied bw the scalar in order
o arriwve at the components of the product vector:

E, =sA,

0

£ LOAE Sy (1.16)
Unit Vectors §=(0,1,0) E, —sA,.
z=00,0,1).



4 [1] Multiply a vector with a scalar. STUDENT TEXTBOOK 20
[2] Add or subtract vectors using Cartesian components. Q. [1.76/1.79/1.105/1.106] 29
1.76 Find the vector C that satisfies the equation 3"x +6"y-10"z2+C =-7"x+ 14"y

«1.79 Find the magnitude and direction of (a) 9B — 3.4 and
(b)) —SA + 8B, where A = (23.0, 592.0), B = (90.0, — 150.0).



4 [1] Multiply a vector with a scalar. STUDENT TEXTBOOK 20
[2] Add or subtract vectors using Cartesian components.

Q.[1.76/1.79/1.105/1.106] 29

1.105 Find the magnitude and direction of —5A 4+ B . where
A = (23.0, 59.0). B = (90.0, —150.0).

1.106 Find the magnitude and direcrion of — 78 + 34 , where
A = (23.0, 59.0), B = (90.0, —150.0).



5 [2] Calculate the average speed & average velocity.
[3] Given a graph of a particle’s position versus time, determine the EXAMPLE (2.1, 2.2) 38,39
mstantaneous veloeity for any particular time. Q. [2.31/2.32/2.33] 61

[1] Calculate the speed as the magnitude of instantaneous velocity. STUDENT TEXTBOOK 76-30

IGURE 2.F Graph of the position x and
ocity v, &s a function of the time £ The
ape of the dashed lime represaents the
serage welocity for the time intercal from
To 10 s,

EXAMPLE 21 ,'/Time Dependence of Velocity

PROBLEM
Daring the cime interval from 00 o 100 5 the position: vecoor of a car on a road is given
b solel = a + br + cr?, with a — 17.2 m, b — —10.1 mys, and ¢ — 1.10 m.”s°. Whart is the

cars velocity as a funcrion of time? Whart is the car’s average wvelocicy during chis inverval?

SOLUTIOM
ASccording to the definition of velocicy in equation 2.6, we simply take the time derivative
of the position wvecoor funNction oo arrive ac owur solution:

B, = %:%{a 4+ Bbr 4+ ct2)}—= b 4+ 2cc = — 101 s 4+ 2 - (1.10 m“sZ 3.
It is instructive to graph this solution. In Figure 2.7 the position as a funcrion of cime
is shown in blue, and the wvelocioy as a funcdon of time is shown in red. Inicially, the
welocity has a value of —10.1 s, and ar £ = 10 5, the velocity has a value of +1 1.9 mss.
Nore thar rthe wvelocity is imitially negartive, is zero ar 4 .59 s (indicaved by the wvervical
dashed line in Figure 2Z.7). and then is positive after 459 5. At ¢ = 459 s, the position graph
ar) shows an extremum (a mininmum in chis case) just as expecoved from calculus,. since

ax . b —101 mss __
I—b+2ﬁu—0:acn— = Eon o = 24 .59 5.

From the definition of average velocity, we knonw thar to determine the average welociny dur
ing a gdme ineerval, we need o subtract the position ar the begimning of the interval from the

position ac the end of the mterval. By insertdng ¢ = O and ¢ = 10 s inoo the eqguarion for the
position wvector as a2 funcrion of time. we obtain x = 0) = 172 m and x = 10 s) = 262 m
Thercfore,

Py = xfe =10) — xr =0) = 2652 m1 — 172 m = G0 ma.
wWWe then obtain for the average wvelocity owver this time interval:

T, =X 20 m _ o0 mss

i 10 s
The slope of the green dashed line in Figure 27 is the average velocioy owver this riime interval




[1] Calculate the speed as the magnitude of instantaneous velocity. STUDENT TEXTBOOK 16-29
[2] Calculate the average speed & average velocity.

5 [3] Given a graph of a particle’s position versus time, determine the EXAMPLE (2.1, 2.2) 38,39
instantaneous velocity for any particular time. Q. [2.31/2.32/2.33] 61
EXAMPLE 2.2 [ Speed and Velocity Concept Check 2.3

The speedometer in your car shows
Suppose a swimmer completes the first 50 m of the 100-m freestyle in 38.2 5. Once she reaches
the far side of the 50-m-long pool, she turns around and swims back to the start in 425 s a) average speed.

b) instantaneous speed.

PROBLEM
What are the swimmer's average velocity and average speed for (a) the leg from the ) sverdaEHEpHEement
start to the far side of the pool, (b) the return leg, and (c) the total lap? d) instantansous displacement.

FIGURE 2.9 Choosing an x-axis in a
swimming pool.



[1] Calculate the speed as the magnitude of instantaneous velocity. STUDENT TEXTROOK 16-29

5 [2] Calculate the average speed & average velocity.
[3] Given a graph of a particle’s position versus time, determine the EXAMPLE (2.1, 2.2) 38,39
instantaneous velocity for any particular time. Q. [2.31/2.32/2.33] 61

2.31 Running on a 50-m by 40-m rectangular track, you complete
one lap in 100 s. What is your average velocity for the lap?

2.32 An electron moves in the positive x-direction a distance of 2.42 m in 2.91 x 10-8 s, bounces off
a moving proton, and then moves in the opposite direction a distance of 1.69 m in 3.43 x 10-8 s.

a) What is the average velocity of the electron over the entire time interval?

b) What is the average speed of the electron over the entire time interval?



[1] Calculate the speed as the magnitude of instantaneous velocity.

g [2] Calculate the average speed & average velocity.

[3] Given a graph of a particle’s position versus time, determine the
instantaneous velocity for any particular time.

STUDENT TEXTBOOK 36-39
EXAMPILE (2.1, 2.2) 38,39
Q.[2.31/2.32/2.33] 61

2.33 The graph describes the position of a particle in one dimension as a function of time.

a) In which time interval does the particle have its maximum speed? What is that speed?
(e} {rm)

b) What is the average velocity in the time interval between -5 s and +5 s?
c) What is the average speed in the time interval between -5 s and +5 s?
d) What is the ratio of the velocity in the interval between 2 s and 3 s to

the velocity in the interval between 3 s and 4 s?
e) At what time(s) is the particle’s velocity zero?




FIGURE (2.7, 2.16) (38,45)

Q.[2.12/2.13/2.26/2.33/ 59,60,
2.42/2.51] 61,62

[1] Interpret motion of an object from its position-time graph.
[2] Interpret the motion of an object from a velocity-time graph.

L~y
a,

> [

0 t

FIGURE 2.7 Graph of the position x and
velocity v, as a function of the time . The FIGURE 216 The acceleration, velocity,

slope of the dashed line represents the :
average velocity for the time interval from and dlEplECEfﬂEl‘lt of the p!EﬂE before

0to10 s. takeoff.



6 [1] Interpret motion of an object from its position-time graph.
[2] Interpret the motion of an object from a velocity-time graph.

FIGURE (2.7, 2.16)

(38, 45)

Q.[2.12/2.13/2.26/2.33/

59,60,

2.42/2.51] 61,62
s
2.12 The figure describes the position of an object as a function of 2
time. Which one of the following statements is true?
1
3L
= 2F E O i a1 Lo
= = 0 1 2 3 4 5
" r(s)
1L
=i}
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4] 1 2 3 4 5
(s —2

a) The position of the object is constant.
b) The velocity of the object is constant.

c) The object moves in the positive x-direction until t = 3 &, and
then the object is at rest.

d) The object’s position is constant until £ = 3 s, and then the object
begins to move in the positive x-direction.

e) The object moves in the positive x-direction fromt=0tot= 35
and then moves in the negative x-direction fromt = 3stot =5 s

This figure describes the position of an object as a function of time.
Refer to it to answer Questions 2.13-2.16.

2.13 “Which one of the following statements is true at ¢ = 1 s?
a) The x-component of the velocity of the object is zero.

b} The x-component of the acceleration of the object is zero.
c} The x-component of the velocity of the object is positive.
d) The x-component of the velocity of the object is negative.



[1] Interpret motion of an object from its position-time graph.
[2] Interpret the motion of an object from a velocity-time graph.

FIGURE (2.7, 2.16)

(38, 45)

Q.[2.12/2.13/2.26/2.33/
2.42/2.51]

59,60,
61,62

2.26 A car moves along a road
with a constant velocity. Starting at
time ¢ = 2.5 s, the driver acceler-
ates with constant acceleration. The
resulting position of the car as a function of time is shown by the blue
curve in the figure.

~ "
sol : | | /
&0 i
!
= 40  —
| B
20} ! T =T }
-~
0 1 ‘ 1 1
o 2.5 s TS 10

r (s)
a) What is the value of the constant velocity of the car before 2.5 s?
(Hint: The dashed blue line is the path the car would take in the absence
of the acceleration.)
b) What is the velocity of the car at ¢t = 7.5 s? Use a graphical technique
(i.e, draw a slope).
<) What is the value of the constant acceleration?




6

[1] Interpret motion of an object from its position-time graph.
[2] Interpret the motion of an object from a velocity-time graph.

FIGURE (2.7, 2.16) (38,45)
Q.[2.12/2.13/2.26/2.33/ 59,60,
2.42/2.51] 61,62

2.33 The graph describes the position of a particle in one dimension as a function of time.

a) In which time interval does the particle have its maximum speed? What is that speed?
b) What is the average velocity in the time interval between -5 s and +5 s?
c) What is the average speed in the time interval between -5 s and +5 s?
d) What is the ratio of the velocity in the interval between 2 s and 3 s to

the velocity in the interval between 3 s and 4 s?
e) At what time(s) is the particle’s velocity zero?




FIGURE (2.7, 2.16
6 [1] Interpret motion of an object from its position-time graph. [ ) i A)
[2] Interpret the motion of an object from a velocity-time graph. Q. [2.12/2.13/2.26/2.33/ 29,60,
2.42/2.51] 61,62

2.42 A fellow student found in the performance data for his new car
the velocity-versus-time graph shown in the figure.

A

354
30—

1 ] i L] 1 L] ] ] 1 | .

|
0 94 & 8 10 12 14 i6 18 200 22 24 25
[ is)

a) Find the average acceleration of the car during each of the segments 1,
I and ML

b) What is the roral distance traveled by the car from et = 05 to r = 24 s




FIGURE (2.7, 2.16
[1] Interpret motion of an object from its position-time graph. [ ) Tl
[2] Interpret the motion of an object from a velocity-time graph. Q.[2.12/2.13/2.26/2.33/ 29,60,
2.42/2.51] 61,62

#2.51 A car is moving along the x-axis and its velocity, v, varies
with time as shown in the figure I x; = 20 m at t;, = 2.0 s, what is
the position of the car at ¢ = 100 s

A
24

20 - : |-

i t } b i -t (s)




[1] Interpret motion graphs for objects under free fall. SN TEXTEOOR 20-54
7 [2] Apply the constant-acceleration equations to free-fall motion FIGURE (2.27, 2.28) o4
Q. [2.66/2.67/2.69] 63
2.8 Free Fall _ Concept Check 2.8 Concept Check 2.7
Concept Check 2.9 ron . o -
. W1 Rannr i ek Wikl et s s Throwing a ball straight up into the
i i i If the reaction time of person B vy, as shown in Figure 2.24. The ball it i el a o fefall
- determined with the meter stick reaches a maximum height of y = h. Fl : P
method is twice as long as that of What is the ratio of the speed of the motion. At the instant the ball reaches
l person A, then the displacement hg ball, v, at y = A2 in Figure 2.24b, to its maximum height, which of the
at i e s i measured for person B in terms of the the initial upward speed of the ball, v,, following statements is true?
- i displacement h, for person Ais at y = 0 in Figure 2.24a?
a) The ball's acceleration vector
a) hg = 2h,. a) vy =20 . £ -
points down, and its veloity vector
b oz eV 4 LoV 4 o b) hg = L h, b) vyl = 0.50 points up.
l l o) hy=-2h, o) vy =071 b) The ball's acceleration is zero, and
=< = its velocity vector points up.
e I ) o e d} hg = 4, d) viv, =075 Y o p.
’ e) hy= Enh, e] vy, = 0.90 ¢) The ball's acceleration vector points
@ i @ “ i up, and its velocity vector points up.

Reaction Time

FIGURE 2.24 The velocity wvector

and acceleration vector of a ball thrown

straight up in the air. (a) The ball is initially PROBLEM
Eﬁ::;‘;g‘;a;:i;;f o Y"iﬁf,g‘;;’?:fﬁ:f If the meter stick falls 0.20 m before you catch it, what is your reaction time?
at its maximum height of y = f. {d) The ball

coming down at y = k2. (e} The ball back

at y = 0 going downward.

d) The ball's acceleration vector points
down, and its velocity is zero.

e) The ball's acceleration vector points
up, and its velocity is zero.

f) The ball's acceleration is zero, and
its velocity vector points down.




STUDENT TEXTBOOK 20-54

[1] Interpret motion graphs for objects under free fall.

7 [2] Apply the constant-acceleration equations to free-fall motion FIGURE (2.27, 2.28) 24
Q. [2.66/2.67/2.69] 63
B 2.8 | Free Fall SOLVED PROEBLEM 2.5 | Melon Drop
-
ahove k Suppose yvou decide to drop a melon from rest from the first observation platform of
60 £ the Eiffel Tower. The initial height k from which the melon is released is 58.3 m above
so b the head of your French friend Khaled, who is standing on the ground right below you.
: Ar rthe same instant you release the melon, Khaled shoors an arrow straight up with
o L an initial velocity of 25.1 ms. (Of course, Khaled makes sure the area around him is
B cleared and gers out of the way quickly after he shoots his arroww.)
S 30f s
% PROBLEM
20+ \\ (a) How long after yvou drop the melon will the arrow hirt it? (b) At what height above
0k Khaled's head does rthis collision occur?
D 1 ! I 1 ! 1 o 1 2 e 58.3 I'Il PN
0 05 1 1§ 2 25 3 U (t) =h — 5 gr .= —25 1 m/s =232271s
Y (8) = vyt — L ge”. %
The key insight is thart ar r., the moment when the melon arnd
20 arrow collide, their coordinates are identical: 1 2 2
i ¥ (6) = U (). (L) =583 m = 5(9_81 m/s")(232271 s)° =31.8376 m.
g SIMPLIFY Inserting r. into the rwo equartions of motion and
0 >t (s ing th 1 Is i . s
g ‘.3. t(s) serting them equal resuzr_e. in . W Y= Yo + Byl — égrz
—-104 h— 1gts =vt. — Lgil = —
(ii) y=uy, + 0O,
i Bi= v, = B
AT _  h (iii) v, = U,y — gr
—-301+ | S Uap ) '
(iv) D, = 3(p, +U,s)
N U {le) = — (9.81 m/As  )2.32 5) = — 22.8 m/s 5 o
FIGURE 2.28 Velocities of the arrow {red curve) and melon (v) pZ =vZ, — 290y — u,)

{oroen el asa fundtion of fime; p(r. ) =(251 mss) — (981 ms/s*N232 s) = 2.34 msfs. . . . - . 5 .




[1] Interpret motion graphs for objects under free fall. 2.8 FreeFall STUDENT TEXTBOOK 20-54

7 [2] Apply the constant-acceleration equations to free-fall motion FIGURE (2.27 , 2.28) ' o4
Q. [2.66/2.67/2.69] | 63

2.66 A ball is tossed vertically upward with an initial speed of 26.4 m/s.
How long does it take before the ball is back on the ground?

2.67 A stone is thrown upward, from ground level, with an initial
velocity of 10.0 m/s.

a) What is the velocity of the stone after 0.50 s?

b) How high above ground level is the stone after 0.50 s?

2.69 A ball is thrown directly downward, with an initial speed of 10.0 m/s, from a height of
50.0 m. After what time interval does the ball strike the ground?



STUDENT TEXTBOOK 42-43

8 Determine an object's change in velocity by the area under the curve in an
acceleration versus time graph. FIGURE (2.13) 43
Q. [2.48/2.53] 62
2.6 Finding Displacement and Velocity from Acceleration
Cmr o fr)
The fact that integration is the inverse operation of differentiation is known as the ;
Fundamental Theorem of Calculus. It allows us to reverse the differentiation process
leading from displacement to velocity to acceleration and instead integrate the equa-
tion for velocity (2.6) to obtain displacement and the equation for acceleration (2.13)
to obrtain velocity. Let’s start with the equation for the x-component of the velocity:
0= B0 M=%
s
L r dx( ')
Je@de = [ de = x(0— x(@) = @
Iy Iy H_\.[I'J
t
X =xo + [v.@)de (2.14)
__do,(r)
a, {t) = T dr
r r dv. (e Area = ifi) = by
. . L . .
Ja@rde = [Zn S dr = o, (0) — v, (r) = o
o [ (b)

0, () =D .n —l—fax([‘:ldt'-
iy

FIGURE 213 Geometrical interpretation
of the integrals of (a) velodity and (b)
acceleration with respect to time.



STUDENT TEXTBOOK 42-43
Determine an object's change in velocity by the area under the curve in an
acceleration versus time graph. FIGURE (2.13) 43
Q. [2.48/2.53] 62

2.48 A car moving in the x-direction has an acceleration a, thar
wvaries with time as shown in the figure. At the moment t = 0.0 5, the
car is located at x = 12 m and has a velocity of 6.0 m/s in the positive
x-direction. What is the velocity of the car at ¢ = 5.0 s?

r
5.0

| REE
prma. {s)




Determine an object's change in velocity by the area under the curve in an
acceleration versus time graph.

STUDENT TEXTBOOK 42-43
FIGURE (2.13) 43
Q. [2.48/2.53] 62

#2.53 A motorcycle starts from rest and accelerates as shown in the
figure. Determine (a) the motorcycles speed att = 400 sand atr = 1405
and {b) the distance wraveled in the first 140 5

-~
b i
5 _— | I
i !
3 |
3
;; _?_ .‘i‘_ 4 4':3 % I:ﬂ )| R | ;! 116;!{5}
2k | I | — i
18 b |
|




[1] Calcl{late a particle’s chaflge in velocity by integrating its acceleration STUDENT TEXTBOOK ' 49
9 function with respect to time. .
[2] Calcurlate zllparﬁcle’s chaflge in position by integrating its velocity Q. [2.49/2.50] 62
function with respect to time.

2.49 The velocity as a function of time for a car on an amusement park ride is given as
v = At? + Bt with constants A = 2.0 m/s3 and B = 1.0 m/s?
If the car starts at the origin, what is its positionatt=3.0s ?

2.50 An object starts from rest and has an acceleration given by a = Bt? - 12Ct, where
B=2.0m/s* and C =-4.0 m/s3

a) What is the object’s velocity after 5.0 s?

b) How far has the object moved after t = 5.0 s?



10 to each other at constant velocity and along a single axis.

to each other at constant velocity and in two dimensions

[1] Apply the relationship between a particle’s position, velocity, and
acceleration as measured from two reference frames that move relative

[2] Apply the relationship between a particle’s position, velocity, and
acceleration as measured from two reference frames that move relative

STUDENT TEXTBOOK 80
EXAMPLE 3.3 81
EXAMPLE 3.4 82

Q. [3.63] 88

3.6 | Relative Motion

To study motion, we have allowed ourselves to shift the origin of the coordinate system
by properly choosing values for x; and g,. In general, x; and g, are constants that can be
chosen freely. If this choice is made intelligently, it can help make a problem more manage-
able. For example, when we calculated the path of the projectile, y(x), we set ;=0 o
simplify our calculations. The freedom to select valuesfor x; and ,, arises from the fact that
our ability to describe any kind of motion does not depend on the location of the origin
of the coordinate systent.

So far, we have examined physical situations where we have kept the origin of the
coordinate system at a fixed location during the motion of the object we wanted to con-
sider. However, in some physical situations, it is impractical to choose a reference system
with a fixed origin. Consider, for example, 2 jet plane landing on an aircraft carrier that is
going forward at full throttle at the same tme. You want to describe the plane’s motion in
a coordinate system fixed to the carrier, even though the carrier is moving. The reason why
this is important is that the plane needs to come to rest relative to the carrier at some fixed
location on the deck. The reference frame from which we view motion makes a big differ-
ence in how we describe the motion, producing an effect known as relative velocity.

Another example of a situarion for which we cannot neglect reladve morion is a
wransatlantic flight from Detroit, Michigan, to Frankfurt, Germany, which takes 8 h and
10 min. Using the same aircraft and going in the reverse direction, from Frankfurr to
Detroit, takes 9 h and 10 min, a full hour longer. The primary reason for this difference is
that the prevailing wind at high alttudes, the jet stream, tends to blow from west to east
at speeds as high as 67 m/s (150 mph). Even though the airplane’s speed relative to the
air around it is the same in both directions, that air is moving with its own speed. Thus,
the relatdonship of the coordinate system of the air inside the jet stream to the coordi-
nate system in which the locations of Detroit and Frankfurt remain fixed is important in
understanding the difference in flight times.

For a more easily analyzed example of a moving coordinate system, let’s consider
motion on a moving walkway, as is typically found in airport terminals. This system is an
example of one-dimensional relative motion. Suppose that the walkway surface moves with
a certain velocity, v, relative to the terminal. We use the subscripts w for walkway and
t for terminal. Then a coordinate system that is fixed to the walkway surface has exactly
velocity v, relative to a coordinare system attached tw the rerminal. The man shown in
Figure 3.17 is walking with a velocity p,,,, as measured in a coordinate system on the walk-
way, and he has a velocity v, = v, + v, with respect to the terminal. The two velocities
Dy and v, add as vectors since the corresponding displacements add as vectors. (We will
show this explicitly when we generalize to three dimensions) For example, if the walkway
moves with 1, = 1.5 m/s and the man moves with v,;,,, = 20 m/s, then he will progress
through the terminal with a velocity of vy, = vy, + 0, = 20 m/s + 1.5 m/s = 3.5 m/s.

One can achieve a stare of no motion relarive to the terminal by walking in the direction
opposite of the motion of the walkway with a velocity that is exactly the negative of the
walkway velocity. Children often try to do this. If a child were ro walk with v, = —15 m/s
on this walkway, her velocity would be zero relative to the terminal.




[1] Apply the relationship between a particle’s position, velocity, and STUDENT TEXTEOOK 30
acceleration as measured from two reference frames that move relative
10 to each other a.t cun?tant velocity and.alojng a 5.11.1g1e axis. EXAMPLE 3.3 a1
[2] Apply the relationship between a particle’s position, velocity, and
: 3 EXAMPLE 3.4 82
acceleration as measured from two reference frames that move relative
2 : = : Q. [3.63] 23
to each other at constant velocity and in two dimensions

P

EXAMPLE 3.3 | Airplane in a Crosswind

=
Alrplanes move relative to the air that sumrounds them. Suppose a pilot points
his plane in the northeast direction. The airplane moves with a speed of 160. m/s
relative to the wind, and the wind is blowing at 32.0 m/s in a direction from east
to west (measured by an insorument art a fixed point on the ground).

PROEBLEM
What is the velocity vector—speed and direcdon—of the airplane relative to the
ground? How far off course does the wind blow this plane in 2.0 h?

ﬁpg = ﬁpw -+ Ewg 3 airplane FIGURE 319 Velocity of an airplane with respect to

. A 2 d the wind (yellow), the velocity of the wind with respect
is the velocity of the plane with respect to the wind and has these components: 1o the ground (orange), and the resultant velocity of the

Dpw,x — Upw cos 8 =160 mss - cos45° =113 m/s airplane with respect to the ground (green).

=
Here b,

Upwy = Upsy SINE =160 m/s - sin45° =113 m/s. S T \‘I{vgg’x + 2., — 139 m/ss

g e = — 32 110S gzm—l[:ﬁ}=54‘4o_

gy = O- ’ PR
Dpe s = Dpaeae + g e — 113 mss — 32 ms = 81 s o 3 _
sl Wias. Y- F1| = [Dug|t =320 m/sx7200 s = 2304 km.



[1] Apply the relationship between a particle’s position, velocity, and
: . STUDENT TEXTBOOK 80
acceleration as measured from two reference frames that move relative
10 to each other a.t con?iam velocity and.a]ujng a s‘ullgle axis. ] EXAMPLE 3.3 81
[2] Apply the relationship between a particle’s position, velocity, and
2 . EXAMPLE 3.4 42
acceleration as measured from two reference frames that move relative 0. [3.63] 3a
to each other at constant velocity and in two dimensions i
EXAMPLE 3.4 | Driving through Rain Concept Check 3.8

Lets supppose rain is falling straight down on a car, as indicated by the white lines in
Figure 3.20. A stationary observer outside the car would be able to measure the velocities
of the rain (blue arrow) and of the moving car (red arrow).

However, if you are sitting inside the moving car, the outside world of the stationary ob-
server (including the street, as well as the rain) moves with a relative velocity of & = — ¥,,,. The
velocity of this relative motion has to be added to all outside events as observed from inside the
moving car. This motion results in a velocity vector &', for the rain as observed from inside the
moving car (Figure 32 1); mathemartically, this vector isasum, ', = Dy, — Dear. Where 0,
and O,

FIGURE 3.20 The velocity vectors of a moving FIGURE 3.21 The velocity vector

car and of rain falling straight down on the car, as D 5 Of rain, as observed from inside the
viewed by a stationary observer. moving car.

It is raining, and there is practically

no wind. While driving through the
rain, you speed up. What happens fo
the angle of the rain relative to the
horizontal that you observe from inside
the car?

a) Itincreases.
b} It decreases.
c) It staysthe same.

d) It can increase or decrease,
depending on the direction in which
you are driving.




10

[1] Apply the relationship between a particle’s position, velocity, and
acceleration as measured from two reference frames that move relative

to each other at constant velocity and along a single axis.

[2] Apply the relationship between a particle’s position, velocity, and
acceleration as measured from two reference frames that move relative
to each other at constant velocity and in two dimensions

STUDENT TEXTBOOK 80
EXAMPLE 3.3 81
EXAMPLE 3.4 82

Q. [3.63] 88

3.63 You are walking on a moving walkway in an airport. The length of the walkway is 59.1 m. If your
velocity relative to the walkway is 2.35 m/s and the walkway moves with a velocity of 1.77 m/s,

how long will it take you to reach the other end of the walkway?




STUDENT TEXTBOOK 68-78

MCQ. (3.1/3.2/3.4/3.6/3.10
3.11) o

Calculate the particle’s position, displacement, and velocity at a given
instant during the flight given the launch velocity

11

F.1 An arrow is shoro horizoncally wich a speed of 20, mss from the
rop of a tower GO, m high. The time o reach the ground will be

a) 8.9 s ) 3.5 5 e) 1.0 s
b 7.1 s. d} 246 s,

3.2 A projecrtile is launched from the rop of a building with an inicial
velocity of 30.0 my's at an angle of 60.0° abowve the horizontal. The
magnitude of its velocity at r = 5.00 s afrer the launch is

a) —23.0 mJss. <) 150 mv's. e} 50.4 m/Ss.

b} 7.3 mss. d) Z7.5 mys.



11 Calculate the particle’s position, displacement, and velocity at a given SEUHENE R OOk Wid

instant during the flight given the launch velocity MCQ. (3.1/3.2/3.4/3.6/3.10 a7
3.11)

3.4 During pracrice rwo baseball cucfielders throw a ball o the
shormsrop. In borth cases the disptance is 400 m Oucfielder 1 dhrows

the ball with an inicial speed of 200 mss, oucfielder 2 cthrows rthe bhall
wrirth an inidal speed of 300 s In borh cases the balls are dhrown and
caughrt ar the same heighr abowe growrnd.

a) Ball 1 is in the air for a shhoorcer cirme cthan ball 2.

b)) Ball 2 is in rthe air for a shorcer timee thhan ball 1.

) Borch bhalls are in the air for the same duracion.

d)} The answer cannot be decided from the informarion given.

F.6 For a given inmitial speed of an ideal projecrile, thhere is (are)
laumch angle(s) for whickh rthe range of rthe projecrtrile is rthe same.

a} only one

b} owo differenc

) more than rwo bur a fnive number of

d} only one if the angle is 45° bur ocherwise owo differenc
) an infinice number of



STUDENT TEXTBOOK 68-78

MCQ. (3.1/3.2/3.4/3.6/3.10
3.11)

Calculate the particle’s position, displacement, and velocity at a given

1 instant during the flight given the launch velocity

817

F.10 A baseball is launched from cthe bar ar an angle @ = 30.0° wwich
respect oo the posictive xaxis and with an inirial speed of 400 mAs,
and it is caughr ar the same height from which it was hic. Assoaming
ideal projecrile motion {positive g-axis upward), the velocicy of che
ball when it is caughe is

a) {20.00 % + 34 .64 gy ms.
by (—20.00 % -+ 3464 0 msos.
Y (FA 64 F— 2000 B s
d) (34 .64 % + 2000 g msds

3.11 In ideal projectile motion, the velocity and acceleration of the
projectile at its maximum height are, respectively,

a) horizontal, verrical downward. ) zero, verrical downward.
b) horizonral, zero. e} zero, horizontal.

C) Zero, zero.



[1] Describe an object in static equilibrium and dynamie equilibrium. STUDENT TEXTEOOK 97-99
[2] State the conditions for an objact to be in equilibrium.

[3] Calculate a force of unknown magnitude acting on an object in EXAMPLE 4.1 100
equilibrium. Q434 /Q481 122 /125

4.4 Newton’s Laws

Newton’s First Law:

12

Newton's First Law says there are two possible states for an object with no net
force on it: An object at rest is said to be in static equilibrium. An object moving
If the net force on an object is equal to zero, the object will remain at rest if it : . ! . R
was at rest. If it was moving, it will remain in motion in a straight line with the with constant ‘IE}U{IW is said to be in dyllilnlt Equﬂlhﬂum. ;
same constant velocity. - 2R 1\ T S "
Newton’s Second Law: Fhnec =— O .

If 2 net external force, Fyer, acts on an object with mass m, the force will cause
an acceleration, @, in the same direction as the force:

Ee =md.
Newton’s Third Law:
The forces that two interacting objects exert on each other are always exactly
equal in magnitude and opposite in direction:

- -
Fl—r?_= -FZ—nl-



[1] Describe an ul‘zjt_act in static Equi]ibrium.and d;,ma:lnic equilibrium. STUDENT TEXTBOOK 97-99
[2] State the conditions for an object to be in equilibrium.

12 [3] Calculate a force of unknown magnitude acting on an object in EXAMPLE 4.1 100
equilibrium. 0434 /Q481 122 /125

- k.

. 3 T
EXAMPLE 41 | Modified Tug-of-War

In a tug-of-war competition, two teams twy to pull each other across a line. If neither
team is moving, then the two teams exert equal and opposite forces on a rope. This is an
immediate consequence of Newton's Third Law. Thart is, if one team pulls on the rope
with a force of magnitude F, the other team necessarily has to pull on the rope with a
force of the same magnitude but in the opposite direction.

PROBLEM

Now let’s consider the simation where three ropes are ded together at one point, with a
team pulling on each rope. Suppose team 1 is pulling due west with a force of 2750 N, and
team 2 is pulling due north with a force of 3630 N. Can a third team pull in such a way that
the three-team rug-of-war ends ar a standstill, that is, no team is able to move the rope? If yes,
whart is the magnitude and direction of the force needed to accomplish this!

'D' == E I = b : i i 4 w
= 3 +FE +—r:1.3 F’.i:\/%z‘x"'gz,y =\/{2?59N]2+(—3530N)2 =4554 N
& FR=—(R+
3 % (Fl Fﬂ i 93=tan_1 E =léll'l_I ﬂ ==529° FIGURE 4.9 Addition of force vectors in
= {2?5{} N]X — {363{} N}y. Fix 275{} N the three-team tug-of-war.




[1] Describe an object in static equilibrium and dynamic equilibrinm. STUDENT TEXTBOOK 97-99
[2] State the conditions for an object to be in equilibrium. 100

[3] Calculate a force of unknown magnitude acting on an objeet in EXAMPLE 4.1
equilibrium. 0434 /0481 122 /125

12

4.34 In a physics laboratory class, three massless ropes are tied together at a point. A pulling
force is applied along each rope: F1 = 150. N at 60.0°, F2 = 200. N at 100.°, F3 = 100. N at 190.°.
What is the magnitude of a fourth force and the angle at which it acts to keep the point at
the center of the system stationary? (All angles are measured from the positive x-axis.)




[1] Describe an object in static equilibrium and dynamic equilibrinm. STUDENT TEXTBOOK 97-99
[2] State the conditions for an object to be in equilibrium. 100

[3] Calculate a force of unknown magnitude acting on an objeet in EXAMPLE 4.1
equilibrium. 0434 /0481 122 /125

12

4.81 A block of mass 5.00 kg is sliding at a constant velocity down an inclined plane that makes
an angle of 37.0° with respect to the horizontal.
a) What is the friction force?
b) What is the coefficient of kinetic friction?




[1] Apply the relationship between the drag force on an object moving STUDENT TEXTBOOK

111-112

13 through air and the speed of the object.
[2] Determine the terminal speed of an object falling through air EXAMPLE4.7/ Q455

112 /124

Air Resistance

In general, thhe magnitude of the ricdon force due to air resistance,. or drag force, can
be expressed as Frhy, — Mg &+ Ko &+ Koo® ., wwith the constantcs Ko, K. Ko, ... determined
experimmentally. For the drag force on macroscopic objecrts mowing at reladwely high speaeds,
ware carn neglect the linear ternrm in the wvelocity. The magnitade of the drag force is thhen
approxirmace s

Frirag =— Ko™ . CA. 1 3D

This eguartion means thar the force due o air resistance is proportiomnal to the
square of the speed.

Wwhhen an object falls through air. the force from air resistance increases as the
object accelerates tmtil it reaches a terzmimal speed. Ar this point, the upward force
of air resistance and the downwawvard force due to grawvity eqgiial each orther. Thus, the
et force is zero. and rthere is mo more accelerarion. Because rthere is mo more acocel-
eraction, the fallimg object has comnstant terminal speed:

Fiy = Flirag — Mg =— KD~ _

Solbving this for thhe terminal speed, we obrtain
ey
. JEEEEAE & B B &
” i « >

To compute the terminal speed for a falling object, we need o know the value of
the constant K. This constant depends on many wvariables, including the size of the cross-
sectional area. A, exposed to the air stream. In general terms, the bigger the area. the
bigger is the constant K. K also depends linearly on the air density, p. All other depen-
dences on the shape of the object. on its inclination relative to the direction of motion,
on air viscosity, and compressibilicy are usually collected in a drag coeflicient, oy

K=LgAp. (4.15)




[1] Apply the relationship between the drag force on an object moving STUDENT TEXTBOOK 111-112
13 through air and the speed of the object.
[2] Determine the terminal speed of an object falling through air EXAMPLE 4.7/ Q 4.55 112 /124

EXAMPLE 47 | Sky Diving

An 80.0-kg skydiver falls through air with a density of 1.15 kg/m”. Assume that his drag coeffi- |
cient is ¢; = 0.570. When he falls in the spread-eagle position, as shown in Figure 4.20a, his body
presents an area A; = 0.940 m” w the wind, whereas when he dives head first, with arms close |
to the body and legs together, as shown in Figure 4.20b, his area is reduced to A, = 0210 m”.

PROBLEM ‘ ’

What are the terminal speeds in both cases?

D_'__Jrng L ¢ g
K TaAp

— (80.0 kg}{?fﬁl m/s%) _ —sosm/s
1 0.5700(0.940 m~}1.15 kgsm™)
80.0 k 81 =
B = (¢ g}{gz mjs ) =— = 107 mvs.
1 0.570(0.210 m~ X1.15 kgs/m ™)



[1] Apply the relationship between the drag force on an object moving STUDENT TEXTBOOK 111-112
13 through air and the speed of the object.
[2] Determine the terminal speed of an object falling through air EXAMPLE 4.7 / Q 4.55 112 /124

4.55 A skydiver of mass 82.3 kg (including outfit and equipment) floats downward suspended
from his parachute, having reached terminal speed. The drag coefficient is 0.533, and the
area of his parachute is 20.11 m? . The density of air is 1.14 kg/m?3
What is the air’s drag force on him?




14

[1] Sketch a free-body diagram for an cbject, showing the object as a
particle and drawing the forces acting on it as vectors with their tails
anchored on the particle

[2] Draw free-body diagrams and apply Newton's second law for objects on
horizontal, vertical, or inclined planes in situations invalving friction

SOLVED PROBLEM (4.1)
EXAMPLE (4.8)
SOLVED PROBLEM (4.4)
EXAMPLE (4.9)

104
114
116
118

SOLVED PROBLEM 441 |

i
- Snowboarding

PROBLEM

A snowboarder (mass 72.9 kg, height 1.79 m) glides down a slope with an angle of
22° with respect to the horizontal (Figure 4.15a). If we can neglect friction, what

is his acceleration?




[1] Sket:::h a free-hodj_,' diagram for an t.]h]ect, :shuwmg the ol.:l]ect asa SOLVED PROBLEM (4.1) 104
particle and drawing the forces acting on it as vectors with their tails EXAMPLE (4.8) 114

14 anchored on the particle :
[2] Draw free-body diagrams and apply Newton’s second law for objects on SOL‘;@;%?‘;EEI; (+4) 115
horizontal, vertical, or inclined planes in situations involving friction ) 118

-
I

MXAMPLE 4-8_}_,"' Two Blocks Connected by a Rope—with Friction

J
I

Wwhe solwved this problem in Solved Problem 4.2, with the assumprions thar block 1
slides withour friction across thhe horizontal support surface and thart the rope slides
withoutr friction across the pulley. Here we will allows for friction beoween block 1 and
the surface it slides across. For now, we will still assurmme thar the rope slides wirthouo
friction across the pulley. (Chaprer 10 will present technigues thhart let uas deal wicth the
pulleyw being ser into rotational motion by the rope mowving across ic.)

PROBLEM 1

Letr the cosefficient of static friction between block 1 (mass mr, = 2.3 kg) and irts supporc
surface hawve a wvalue of 073 and the coeflicient of kinetic fricrtion have a walue of O.SO.
(Refer back tao Figure <. 150 If block 2 has mass i = 1.9 kg will block 1 accelerate firom resc?

PROBLEM 2
v hart is thhe vwvalhuue of the acceleracionmn?

L

- x
lr."
e

||~'¢5‘.|
!



[1] Sket::h a free-bodj_,' diagram for an (.]b]BL't, .shcmnng the ol.:-]ect asa SOLVED PROBLEM (4.1) 104
particle and drawing the forces acting on it as vectors with their tails EXAMPLE (4.8) 114
14 anchored on the particle :
[2] Draw free-body diagrams and apply Newton’s second law for objects on SOL‘;;%;%?EEEI:] (#4) 115
horizontal, vertical, or inclined planes in situations involving friction ) 118
e y
SOLVED PROBLEM 4.4 Jr( Two Blocks
NZ

Two rectangular blocks are stacked on a table as showmn in Figure 4.24a. The upper
block has a mass of 340 kg, and the lower block has a mass of 38.6 kg. The ceefficient
of kinetic fricion between the lower block and the table is 0.260. The coefficient of
static friction between the blocks is 0.551. A string is attached to the lower block, and
an external force F is applied horizontally, pulling on the string as shown.

PROBLEM

Whart is the maximum force that can be applied to the string without having the upper

block slide off?

m:g

()

FIGURE 4.24 (a) Two stacked blocks
being pulled to the right. (b) Free-body
diagram for the two blocks moving
together. (c) Free-body diagram for the
upper block.




[1] Sket:::h a free-hod?' diagram for an t.]h]ect, :shuwmg the ol.:l]ect asa SOLVED PROBLEM (4.1) 104
particle and drawing the forces acting on it as vectors with their tails EXAMPLE (4.8) 114

14 anchored on the particle :
[2] Draw free-body diagrams and apply Newton’s second law for objects on SOL;%;%?EI'&ETS) (+4) 116
horizontal, vertical, or inclined planes in situations involving friction ) 118

EXAMPLE 4.9 | Pulling a Sled

Suppose vou are pulling a sled across a level snow-covered surface by exerting constant
force on a rope, at an angle & relarive to the ground.

PROBLEM 1

If the sled, including its load, has a mass of 15.3 kg, the coefficients of friction between the
sled and the snow are j, = 0.076 and gy, = 0070, and you pull with a force of 25.3 N on the
rope at an angle of 24.5° relative o the horizontal ground, whar is the sled’s acceleration? FIGURE 4.25 Free-body diagram of the

sled and its load.
PROBLEM 2
Whar angle of the rope with the horizontal will produce the maximum acceleration of the sled
for the given value of the magnitude of the pulling force, T? What is that maximum value of @




[1] Identify that the direction of the force due to the pull on the rope acts SOLVED PROBLEM (4.2) [ 105
exactly in the direction along the rope. EXAMPLE (4.4) ‘ 106
15 [2] Describe how the force with which we pull on the massless rope is -
transmitted through the entire rope unchanged, even if the rope passes Q. (4.35/4.48/4.96) ‘ 122,123,126
over a pulley

SOLVED PROBLEM 4.2 (Two Blocks Connected by a Rope
—

In this classic problem, a hanging mass causes the acceleration of a second mass that is

resting on a horizonrtal surface (Figure 4.16a). Block 1, of mass m, = 3.00 kg, rests on a hori-

zontal fricdonless surface and is connected via a massless rope (for simplicity, oriented in

the horizonrtal direction) running over a massless pulley to block 2, of mass m, = 1.30 kg.

PROBLEM
Whar is the acceleration of block 1 and of block 22

(a)




EXAMPLE 4.4 | Atwood Machine

The Arwood machine consists of two hanging weights (with masses m; and m;) connected
via a rope running over a pulley. For now, we consider a friction-free case, where the pulley
does not move, and the rope glides over it {In Chapter 10 on rotation, we will return to this
problem and solve it with fricton present, which causes the pulley to rotate.) We also assume

that m; > m,. In this case, the acceleration is as shown in Figure 4.17a. (The formula
derived in the following is correct for any case. If m; < m,, then the value of the ac-
celeration, a, will have a negarive sign, which will mean thar the acceleration direction
is opposite to what we have assumed in working the problem.)

. m —ms
X9 a=g|=m2|
; |

H m my +moz

>

[1] Identify that the direction of the force due to the pull on the rope acts SOLVED PROBLEM (4.2) [ 105
exactly in the direction along the rope. EXAMPLE (4.4) ‘ 106
15 [2] Describe how the force with which we pull on the massless rope is -
transmitted through the entire rope unchanged, even if the rope passes Q. (4.35/4.48/4.96) ‘ 122,123,126
over a pulley
~ Self-Test Opportunity 4.2

What is the accelerafion of the masses
on the Atwood machine at the limits
where m, approaches infinity, m,
approaches zero, and my = m,?

Self-Test Opportunity 4.3

For the Atwood machine, can you write
a formula for the magnitude of the ten-
sion in the rope?

Concept Check 4.4

If you double both masses in an
Atwood machine, the resulting
acceleration will be

a) twice as large.

b) half as large.

c} the same.

d) one-guarter as large.

e) four times as large.



[1] Identify that the direction of the force due to the pull on the rope acts SOLVED PROBLEM (4.2) " 105
exactly in the direction along the rope. EXAMPLE (4.4) 106
15 [2] Describe how the force with which we pull on the massless rope is
transmitted through the entire rope unchanged, even if the rope passes Q. (4.35/4.48/4.96) 122,123,126
over a pulley

4.35 Four weights, of masses m1 = 6.50 kg, m2 = 3.80 kg, m3 = 10.70 kg, and m4 = 4.20 kg,
are hanging from a ceiling as shown in the figure. They are connected with ropes. Qm
What is the tension in the rope connecting masses m1 and m2? :
Q iz

O

Omy
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[1] Identify that the direction of the force due to the pull on the rope acts
exactly in the direction along the rope.

[2] Describe how the force with which we pull on the massless rope is
transmitted through the entire rope unchanged, even if the rope passes

SOLVED PROBLEM (4.2)
EXAMPLE (4.4)

105
106

Q. (4.35/4.48/4.96)

122,123,126

over a pulley

el A48 A rmass, rmi, —

O kg on a fricdonless ramp is

arcached o a light soing. The soring passes over a

fricuonless pulley and is artached ro a hanging

rass, 2. The ramp is ar an angle of
& — 30.0° above thhe horizoncal. The

Imass 122, moves up the ramp
uniforrmily (ar consranc
speed). Find the value
of rr2.
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[1] Identify that the direction of the force due to the pull on the rope acts
exactly in the direction along the rope.

[2] Describe how the force with which we pull on the massless rope is
transmitted through the entire rope unchanged, even if the rope passes

SOLVED PROBLEM (4.2) 105
EXAMPLE (4.4) 106
Q. (4.35/4.48/4.96) 122,123,126

over a pulley

4. 96 Two blocks are cory-
neceed by a massless mope, as
showmn in the figure. Block 1
has mass m, = 1267 kg, and
block 2 has mass e, — 3557
kg The mwvo blocks mowvre o a

fricrionless, horizonual ablewp. A horizonial exemal force, F = 1261 N, aces

on block 2. What is the rension in the rope conneccing the owo blocks?
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% Calculate the Cartesian components of a two-dimensional vector from STUDENT TEXTBOOK 18-25
the length and angle with respect to the x-axis.

16 % Add or subtract vectors using Cartesian components. Fslgtvmlfns ;;Bﬂé’{;i:“'m) 19,22,24

% Add and subtract vectors graphically to find the resultant vectors. sfaliipass 5"_}1'3)

% Identify cartesian unit vectors in two and three dimensions. Q (1.65/1.67/1.97) 29,30

Vector Addition Using Components ~
P ~
w “..
§7 o i A h‘\

Cartesian Representation of Vectors
A=(A,A,) in two-dimensional space S
(o, 1} e\ . (=ArB=(A, Ay, AJHE, Bg, B)=(A 15, Ay +B9, A+h)

FIGURE119 Commutative property of

e
vector addition.

-

A
Graphical Vector Addition and Subtraction

- h =
C=A+BE
A+B=B+A. :

E+ {—C-'} = E’_E’: (D’D’D)' ::g::l;E‘IZO Inverse vector —C of a

N

il
|
)
+
m
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% Calculate the Cartesian components of a two-dimensional vector from STUDENT TEXTBOOK 18-25

the length and angle with respect to the x-axis.
% Add or subtract vectors using Cartesian components.

% Add and subtract vectors graphically to find the resultant vectors.

% Identify cartesian unit vectors in two and three dimensions.

FIGURES (1.18/1.21/1.28) 19,20,24
SOLVED PROBLEM. (1.3) 24
Q. (1.65/1.67/1.97) 29,30

i

F——+ +—
8 -2 | 2 4 6 8
xR 2

@ )

Figure 1.21b displays their sum vector &=(4+3, 2+4)=(7,6). Figure 1.21b clearly shows
that C,= A, + B,, because the whole is equal to the sum of its parts.

In the same way, we can take the difference ﬁ=ﬁ—§, and the Cartesian

components of the difference vector are given by

D,=A,—B,
D,=A,—B, (1.14)
D,=A,—B,.

Multiplication of a Vector with a Scalar

E=sA=5(A,, A,A,)=(sA,,5A,,5A,). (1.15)

; In other words, each component of the vector A is multiplied by the scalar in order
+ +¢, toarrive at the components of the product vector:

E’x =sAx

E,=sA, (1.16)

E,=sA,.

Limit Wectors
A={AX,AH,AZ)
=(A4,,0,0)+(0,A,0)+(0,0,4,)

Se=—=1,00, )
f— (0, 1, O) =A,(L,0,0)+ Ag(0,1,0}+ A(0,0,1)
Z=(0, 0, 1). =Ax;"c+Ay§r+ Az
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% Calculate the Cartesian components of a two-dimensional vector from STUDENT TEXTBOOK 18-25

the length and angle with respect to the x-axis.
% Add or subtract vectors using Cartesian components.
% Add and subtract vectors graphically to find the resultant vectors.
% Identify cartesian unit vectors in two and three dimensions.

FIGURES (1.18/1.21/1.28) 19,20,24
SOLVED PROBLEM. (1.3) 24
Q.(1.65/1.67/1.97) 29,30

Vector Length and Direction

If wwre know the component representacion of a wvecoor, how can wwe find ics lengch (mag-
nirude) and the direcrion it is poinring in? Lers look ar the most important case: a weonor
in owo dimensions. In two dimensions, a vector A can be specified uniquely by giving the
two Cartesian components, A, and A, We can also specify the same vecoor by giving twa
other numbers: is length A and its angle @ with respect 1o the posicive x-axis.

Ler's take a look ar Figure 1.23 1o see how we can determine A and & from A, and A
Figure 1 _23a shonws the graphical represencacion of equacian 1.19. The weactoor A is the sum
of the vectors A % and A Since the unit vectors & and g are by definiton orthogonal o
each oher, these wvectors form a 0% angle. Thus, the three vectors A A, % and A, § form
a right triangle wich side lengrhs A, A, and A, as shown in Figure 1.23b

Mo wee can emplow basic mrigonometry o find & and A Using the Pyrthagorean

Theoren resulcs i
A= Il',q.,f + Al 1200

Wie can find the angle & from the definition of the tangent funcoion
B=ram ' 5 1=y

I using equartion 1.21, you musc be carefill thar & is in the correce quadrant. We can
also inwers equacions 1. 20 and 1.21 to abrtain che Carresian components of a veccor
of given lengrh and direcriom

A=A cosé {1.=2>2)
Ay = A sin & {1.=23)

YWou will encounter these rrigonomerric relations again and again chroughour intro-
ducrtory phwvsics. If vou neaed o refamiliarize yourself with mrigonomeory. consult che
matchemartics primer prowvided in Appemndix S

FIGURE 1.22 cCartesian unit wectors in
(a) twwo &nd (b) three dimension=

FIGURE 1.23 Length and directicn of &
wector (&) Cartesian compomnents A, and Ao
(o) lemgth A amd anglae &




% Calculate the Cartesian components of a two-dimensional vector from | STUDENT TEXTBOOK | 18-25
the length and angle with respect to the x-axis.

16 | % Add or subract vetor using Caresian components SOV POBLEM. (1) | 2
Add and subtract vect hically to find the resultant vectors. A
% Add and subtract vectors graphically oI Eehon Q. (1.65/1.67/1.97) 29,30

% Identify cartesian unit vectors in two and three dimensions.

Scalar Product of Vectors

Above we saw how o mulrtiply a vector with a scalar. Now we will define one waw
of mulriplving a wector with a wvecror and obrtain the scalar prodwuct. The scalar
product of two vecrors A and B is defined as

A B = |ﬁ| |E_i| COS oy, (1.24)

Scalar Product for Unit Vectors. On page 26 we introduced unit vectors in the
three-dimensional Cartesian coordinate systent: X = (1.0,0), § = (0,1,0), and 2 =
(0,0, 1). With our definition (1.25) of the scalar product, we find

XeXx=[fefj=222=1 (1.30) Self-Test Opportunity 11
and Show that equations 1.30 and 1.31 are
Xeg=xXezZ=gez=20 correct by using equation 1.25 and the
(1.31) definitions of the unit vectors.

fjex =zex=2z=j=0.

Now we see why the unit vectors are called that: Their scalar products with them-
selves have the value 1. Thus, the unit vectors have length 1, or unit length, according
to equation 1.27. In addition, any pair of different unit vectors has a scalar product that
is zero, meaning thart these vectors are orthogonal to each other. Equations 1.30 and
1.31 thus state that the unit vecrtors ®, ij, and Z form an orthonormal set of wvectors,
which makes them extremely useful for the descriptrion of physical systems.



% Calculate the Cartesian components of a two-dimensional vector from | STUDENT TEXTBOOK | 18-25

the length and angle with respect to the x-axis.
16 % Add or subtract vectors using Cartesian components. Fslgﬁfgﬁns ;;égiéﬁ“'za) 19’23’24
% Add and subtract vectors graphically to find the resultant vectors. - (1.3)

% Identify cartesian unit vectors in two and three dimensions. Q (1.65/1.67/1.97) 29,30

AeB=(A,. A, A )*(B,. B, B,)=AB, +A,B,+ A.B,.

A w Fo= e A
E-E‘:lﬁl |§|ccsa:bcosa:£=p-a:ccsii MJ_
|-l =] =) =
Geormetrical fnterpretotion of thhe Scofaor Prodoct. In the definiriomn of the scalar
product A e B = |Z| |§| COES o {(equartion 1.24). wwe Ccan inrerprec |.E| COPSs. o Aas thue

projection of the wector A onto the wector B (Figure 1.2&a). In this drawing, the
Lirne |‘E| cosox is rotared bw 90° oo show the geomerrical imnrerprerarion of thhe scalar
product as the area of a rectangle with sides |..E.| COSs ov arud |E| - I the same wwaw, WwWie Can
interprec |.§ cos or as the projecrion of the vecror B onto the wvector A and conscract a
recrangle with side lengrhs |_B.| COSs or arncl |;i| (Figure 1.26b). The areas of the mwo vellona
recrangles in Figure 1.25 are idencical amd are equal o rthe scalar produact of the mwo
wectors A and B.

Finally, if wwe substiture frormm equarion 1.28 for the cosine of the angle _I?em-'5311
che wo wvectors. the projection cos o of thhe vector A onoo the wvector B can be
wwritten as

A-B _ A-B8B
Al |8 | 5]

A coser = |4,

and rhe projecrtion |B| cos o of the vector B onto rthe wvecror A can be expressed as

|E|mscc:%_ ﬁ-{§+6}=ﬁiﬁ+ﬁ.6.



% Calculate the Cartesian components of a two-dimensional vector from

the length and angle with respect to the x-axis.

16 % Add or subtract vectors using Cartesian components.

% Add and subtract vectors graphically to find the resultant vectors.
% Identify cartesian unit vectors in two and three dimensions.

STUDENT TEXTBOOK 18-25

FIGURES (1.18/1.21/1.28) 19,20,24

SOLVED PROBLEM. (1.3) 24
Q.(1.65/1.67/1.97) 29,30

Vector Product

"[he vector product (or cross product) between two vectors A =(A,, Ay A,) and
B=(B,, By, B,) is defined a

(1.32)

Bx A

Ax(BxC)=B(AsC)—C(As]

A A = D,

FIGURE1.26 Geometrical
interpretation of thescalar product

as an area. f2) The projectionof A onto &.
(b The projection of § onto A

=

——AxB.

FIGURE 1.27 Vector product.
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% Calculate the Cartesian components of a two-dimensional vector from
the length and angle with respect to the x-axis.

% Add or subtract vectors using Cartesian components.

% Add and subtract vectors graphically to find the resultant vectors.

% Identify cartesian unit vectors in two and three dimensions.

STUDENT TEXTBOOK

18-25

FIGURES (1.18/1.21/1.28)
SOLVED PROBLEM. (1.3)
Q. (1.65/1.67/1.97)

19,20,24
24
29,30

@) (b)

FIGURE 1.21 Vector addition by
components. (a) Components of vectors
A and B ;(b) the components of the
resultant vector are the sums of the
components of the individual vectors.

"= A+E

FIGURE 18 Directfight versus ne-
stop flight as an example of vectr addiion.

=
=

§

FIGURE1.28 Hike witha 907 turn.

XE



% Calculate the Cartesian components of a two-dimensional vector from STUDENT TEXTBOOK 18-25
the length and angle with respect to the x-axis.
16 % Add or subtract vectors using Cartesian components. Fslgtt;mlfns ;;;;;:ﬁi:“.m) 19,22,24
% Add and subtract vectors graphically to find the resultant vectors. ol 5_;:!1-3)
% Identify cartesian unit vectors in two and three dimensions. Q {1.65/1.67/1.97) 29,30

SOLVED PROBLEM 1.3 [ Hikin ]
o g e

PROBLEM

You are hiking in the Florida Everglades heading southwest from your base camp, for
1.72 km. You reach a river that is oo deep to cross; so you make a 90° right turn and
hike another 3.12 kin to a bridge. How far away are you from your base camp?

FIGURE 1.28 Hike with a 90~ turn.
C,=A, +B,=Acosf, +Bcosty
Cy,=A,+B,= Asind, + Bsinfy.

c=,/cZ +c2 = (A, +B,) + (A, + B,

==

By = 135°
:J{ACOSQA+BCOSQE}2+(AHHHA “+ B sin 8537 . %“ -

W
By=225°

c= J{(1_72 km)cos 225°+ (3.12 km) cas135° ) + ((L.72 km)sin 225°+ (3.12 km)sin 135°)° A

1.72x(=V172) + 3.120(=172))" +((L724(~V172) + 312/172) km.

= 3‘56 m FIGURE 1.29 Angles of the two hike

segments.



% Calculate the Cartesian components of a two-dimensional vector from STUDENT TEXTBOOK 18-25

the length and angle with respect to the x-axis.

16 % Add or subtract vectors using Cartesian components. P:g:"“é:ﬁns ;;;E;Llﬁi;“'za) 19,22,24
% Add and subtract vectors graphically to find the resultant vectors. -(1.3)
Q. (1.65/1.67/1.97) 29,30

% Identify cartesian unit vectors in two and three dimensions.

2.65 A position vector has a length of 40.0 m and is at an angle of 57.0°above the x-axis.
Find the vector’s components.

2.67 Find the components of the vectors A, B, C, and D, if their lengths are given by A=75.0,
B=60.0, C=25.0, D=90.0 and their direction angles are as shown y
in the figure. Write the vectors in terms of unit vectors..

.y
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% Calculate the Cartesian components of a two-dimensional vector from
the length and angle with respect to the x-axis.

% Add or subtract vectors using Cartesian components.

% Add and subtract vectors graphically to find the resultant vectors.

% Identify cartesian unit vectors in two and three dimensions.

STUDENT TEXTBOOK 18-25
FIGURES (1.18/1.21/1.28) 19,20,24
SOLVED PROBLEM. (1.3) 24

Q. (1.65/1.67/1.97) 29,30

2.97 Add the three vectors A, B, and C using the component method,

and find their sum vector D.




% Solve problems related to position and displacement. STUDENT TEXTBOOK (33-40), (42-54)
% Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.
17 % Describe the motion of an object in a straight line with constant EXAMPLE. (2.1) 38
SRty Q. (2.34/2.35/2.85) 61,64
%  Apply, in the direction of motion, the constant-acceleration equations Q. (2.66/2.67/2.70) 63
to relate acceleration, velocity, position, and time for an object moving
with constant acceleration.
T 3 = - - i ‘ - " < a’ - T - T NN SNENS SN - - Lo - =
21 Introduction to Kinematics Concept Check 2.1
The smudy of physics is divided into sewveral large parts, one of which is mechanics.  Thetrain in Figure 21is
Mechanics, or the study of motion and its causes, is usually subdivided. In this chapter i
and the next, we examine the kinematics aspect of mechanics. Kinematics is the study ) speading up.
of the motion Ef objects. Thes:_:_-"objects_ may be, for e_xampﬁle, cars, basebalqls_, peop_le, p}a__{jl— b} slowing down.
:_l.ispla::f:ment. Displacement is simply the difference between the_.ﬁna_l Eosition vector, ¢) traveling at a constant speed.
¥y = r(tz), at the end of a motion and the initial position vector, ¥, = F(r, ). We write
the displacement vector as d) moving at a rate that can't be
AF =7, — 71 Ny = Xy —X. (2.1) determined from the photo.
Distance

For motion on a straight line without changing directions. the distance, £, that a moving
object travels is the absolute value of the displacement vector:

£= |&F| ; (2.4)
4

* —— o
v A

SPE'E'{I == =|L!_‘,|. average speed = v
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Solve problems related to position and displacement.

&

STUDENT TEXTBOOK

(33-40), (42-54)

Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.

Describe the motion of an object in a straight line with constant
acceleration.

Apply, in the direction of motion, the constant-acceleration equations
to relate acceleration, velocity, position, and time for an object moving
with constant acceleration.

We define p,, the xcomponent of the velocity wvector, as the change in posi-
tion (ie. the displacement component) in a given time interval divided by that
time interval, Ax/Ar Velocity can change from moment to moment. The velocity
calculated by taking the ratio of displacement per time interval is the average of the
velocity over this time interval, or the x-component of the average velocity, U, :

e L -
Dy = Rr-

(2.5)

Notation: & bar above a symbol is the notation for averaging over a finite time interval.
In calculus, a time derivative is obtained bw taking a limit as the time inter-
wval approaches zero. We use the same concept here to define the instantaneous
velocity, usually referred to simply as the welocity, as the time derivative of the
displacement. For the x-component of the velocity wvector, this implies

= T o Al e
Py = ALl A

2.6
SMr—0 ( }

EXAMPLE. (2.1)
Q. (2.34/2.35/2.85)
Q. (2.66/2.67/2.70)

38
61,64
63

Concept Check 2.2

Your dorm room is located

0.25 kilometers from the Dairy Store.
You walk from your room to the Dainy
Store and back. Which of the following
statements about your trip is true?

a) The distance is0.50 kilometer, and
the displacement is 0.50 kilometer.

b} The distance is 0.50 kilometer, and
the displacement is 0.00 kilometer.

t) The distance is 0.00 kilometer, and
the displacement is 0.50 kilometer.

d) The distance is 0.00 kilometer, and
the displacement is 0.00 kilometer.




Solve problems related to position and displacement. STUDENT TEXTBOOK (33-40), (42-54)
Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.

% Describe the motion of an object in a straight line with constant QEE‘ZTF;ESEZZ.?E] Gf,%é

acceleration. 7
Apply, in the direction of motion, the constant-acceleration equations Q. (2.66/2.67/2.70) 63

to relate acceleration, velocity, position, and time for an object moving

&6

J

with constant acceleration.
P e
e
=
e Fa NS o
I . ,l P Y . ’{ .

Lt L= ] L

FIGURE 2.6 Instantaneocous welocity as the limit of the ratio ofdisplacement to time interval: (a) an average
welocity ower a large time interval; (b)) an average welocity ower a smaller time inmterval; and (c) the instantancesous

o
Ly
Ly
™ FaNI Py s
P .

4 A

(a) {b) {c)

welocity at a specific time, f5._

g
s

FIGURE 210 Instantaneous
acceleration as the limit of the ratio of
welocity change to time interval: (a) average
acceleration over a large time interval; (b)
average acceleration owver a smaller time
interval; and (c) instantaneous acceleration
in the limit as the time interval goes to zero.
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function in the specific time.

17 % Describe the motion of an object in a straight line with constant

acceleration.

with constant acceleration.

Solve problems related to position and displacement.
Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position

%  Apply, in the direction of motion, the constant-acceleration equations
to relate acceleration, velocity, position, and time for an object moving

STUDENT TEXTBOOK

(33-40), (42-54)

EXAMPLE. (2.1)
Q. (2.34/2.35/2.85)
Q. (2.66/2.67/2.70)

Concept Check 2.5

When you're driving a car along a
straight road. you may be trawveling in
the positive or negative direction and
wou may hawve a positive acceleration
or a negative acceleration. Match the
following combinations of velocity and
acceleration with the list of outcomes.

a) positive velocity. positive
acceleration

b} positive velocity, negative
acceleration

c} negative welocity, positive
acceleration

d}) negative welocity, negative
acceleration

1y slowing down in positive direction
2) speeding up in negative direciion
3} speeding up in positive direction

4}  slowing down in negative direction

Concept Check 2.6

An example of one-dimensional mofion

with constant acceleration is

a) the motion of a car during a
NASCAR race.

b} the Earth orbiting the Sun.
c) an object in free fall.

d) Mone ofthe above describe one-
dimensional motion with constant
acceleration.

Concept Check 2.4

Average acceleration is defined as the

) dsplacement change per tie

nterval.

b} pasition change per time interva

¢} velocity change per ime interva

d) speed change per time interval,




Solve problems related to position and displacement. STUDENT TEXTBOOK (33-40), (42-54)
Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.
17 % Describe the motion of an object in a straight line with constant EXAMPLE. (2.1) 38
accalaration: Q. (2.34/2.35/2.85) 61,64
%  Apply, in the direction of motion, the constant-acceleration equations Q. (2.66/2.67/2.70) 63
to relate acceleration, velocity, position, and time for an object moving
with constant acceleration.

&

T - v = = = E " = o = T T

Just as the average velocity is defined as the displacement per time interval. the »xcom-
ponent of average acceleradon is defined as the velocity change per time interval:
FaN 1]

@, = (2.10)

Similarly, the »component of the instantaneous acceleratiom is defined as the
limit of the average acceleration as the time interwval approaches O:

Mo, do,

o = Jim 7. = Jmn SO = 53 G2ad)
We can now define the acceleration vector as
— du
— 4au 2.12
a=d2 (2.12)
I o B o o _ =
L e o U Far [ a8 {d’r x} A= =t



Solve problems related to position and displacement. STUDENT TEXTBOOK (33-40), (42-54)
Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.
17 % Describe the motion of an object in a straight line with constant EXAMPLE. (2.1) 38
asalarabion. Q. (2.34/2.35/2.85) 61,64
%  Apply, in the direction of motion, the constant-acceleration equations Q. (2.66/2.67/2.70) 63
to relate acceleration, velocity, position, and time for an object movine
with constant acceleration.

Wl 26 Finding Displacement and Velociy from Acceleration [ e

2.6 Finding Displacement and Velocity from Acceleration

&

Far sl A i |

T LD = = Fa =
r C - 4 2
{u,&-}dt-: m%dﬂ:x{t)_xc%}:— (i) x:xﬂ'l'”xﬂ['l'%ﬂx[
() =— g —+ [ BT & ) I L L=
] 3 ) ii) X=Xy + U1
ax(t}:d"gift} — -
}ax{t'}dt':j-d-[,é—ilf_t.)dt':ux{t}—ux(tﬂ} — lii) UH :uxﬂ +ﬂx[
o, () = ., —+ jax(r ¥ It d — l
L (W) Dy = E{Dx + ”xﬂ)
ey — i, J'E;{r-} P
N (v) vy = +2a,(x = X;)
Sed — T T Sy e s

T
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&6

Solve problems related to position and displacement.

Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position

function in the specific time.

Describe the motion of an object in a straight line with constant

acceleration.

Apply, in the direction of motion, the constant-acceleration equations
to relate acceleration, velocity, position, and time for an object moving

with constant acceleration.

STUDENT TEXTBOOK

(33-40), (42-54)

EXAMPLE. (2.1)
Q. (2.34/2.35/2.85)
Q. (2.66/2.67/2.70)

38
61,64
63

2.8 Free Fall

The acceleration due to gravity near the surface of the Earth has the value g =
981 m/s%. We call the vertical axis the -axis and define the positive direction as up.
Then the acceleration vector @ has only a nonzero y-component, which is given by

i)
Cii)
(iii)
(i)
(v

6,==q (224)
= UYg &+ Uyunl — %grz
= Uy + D,
UV, = Ugyo — gL
oy, = Sy + gy
vy = vge — 2g(y — Ha)

Concept Check 2.8

A ball isthrown upward with a speed
v;, as shown in Figure 2.24. The ball
reaches a maximum height of y = h.
What is the ratio of the speed of the
ball, vy, at y = hf2 in Figure 2 24b, to
the initial upward speed of the ball, v,
at y =0 in Figure 2.24a?

a) wally =0

b} vy =050
o} wlvy =0N
d) why, =075

e} wiyy =050

Concept Check 2.7
Throwing a ball straight up into the
air provides an example of free-fall
motion. At the instant the ball reaches
its maximum height, which of the
following statements is true?

a) The ball's acceleration vector
points down, and its velocity vector
points up.

b} The ball's acceleration is zero, and
its velocity vector points up.

¢} The ball's acceleration vector points
up, and its velocity vector points up.

d) The ball's acceleration vector points
down, and its velocity is zero.

) The ball's acceleration vector points
up, and its velocity is zero.

f) The ball's acceleration is zero, and
its velocity vector points down.
[ MR
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% Solve problems related to position and displacement.

% Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position

function in the specific time.

% Describe the motion of an object in a straight line with constant

acceleration.

% Apply, in the direction of motion, the constant-acceleration equations
to relate acceleration, velocity, position, and time for an object moving

with constant acceleration.

STUDENT TEXTEOOK (33-40), (42-54)

EXAMPLE. (2.1) 3s
Q. (2.34/2.35/2.85) 61,64
Q. (2.66/2.67/2.70) 63

e

»
»i
[
g
5
3z

T
T
»
T
¢
hh]
¥
T T
¢
h
‘—
N >
T T

N
T

N

gl

{—m

N
T
0

Nl
1]
=]

i

O - o o o o @

Ca) () ) L] e

FIGURE 2. _ 244 The welocity wector
and acceleration wvector of a ball thrower
straight up in thhe air. (@) The all isinitialb
Thrown upwward =t = =— O. (o The ball going
upwwarc at a height of » = 2. () The ball
at its maxirmurm height of p» = /. (d} The >all
corming dowen at - = M2 () The ball back
At o = O going dowernwea rol o

Reaction Time

Concept Check 2.9

If the reaction time of person B
determined with the meter stick
method is twice as long as that of
person A, then the displacement hg
measured for person B in terms of the
displacement f, for person A is

a) hg = 2H,.

b} fg = % A,
) fig = 2.
d) hg = ah,.

&) Pa=f3 Fia.




Solve problems related to position and displacement. STUDENT TEXTBOOK (33-40), (42-54)
Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.

&6

35 = ” . " o " EXAMPLE. (2.1) 38
D ribe th H f bject t 1in th tant
17 o, a:::ler:ﬁo: motion of an ohject in a straigh! e with constan Q. (2.34/2.35/2.85) 61,64
) Q. (2.66/2.67/2.70) 63

%  Apply, in the direction of motion, the constant-acceleration equations
to relate acceleration, velocity, position, and time for an object moving
with constant acceleration.

EXAMPLE 2.1 J"fTime Dependence of Velocity '

PROBLEM |
During the time interval from 0.0 to 10.0 s, the position vector of a car on a road is given
by x(t) = a + bt + ert, witha= 172 m, b = —10.1 m/s, and ¢ = 1.10 m/s”. Whart is the
car’s velocity as a function of time? What is the car’s average velocity during this interval?

I (s)

FIGURE 2.7 Graph of the position x and
velacity v, as a fundion of the time . The
slope of the dashed line represents the
average velocity for the time interval from
0to10s.



Solve problems related to position and displacement. STUDENT TEXTBOOK (33-40), (42-54)
Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.

&6

17 % Describe the motion of an object in a straight line with constant EXAMPLE. (2.1) 38
S MR Q. (2.34/2.35/2.85) 61,64
Q. (2.66/2.67/2.70) 63

%  Apply, in the direction of motion, the constant-acceleration equations
to relate acceleration, velocity, position, and time for an object moving
with constant acceleration.

2.34 The position of a particle moving along the x-axis is given by x = (11 + 14t - 2.0t?),
where t is in seconds and x is in meters.
What is the average velocity during the time interval fromt=1.0stot=4.0s?

2.35 The position of a particle moving along the x-axis is given by x = 3.0t? - 2.0t3
, Where x is in meters and t is in seconds.
What is the position of the particle when it achieves its maximum speed in
the positive x-direction?



Solve problems related to position and displacement. STUDENT TEXTBOOK

&6

(33-40), (42-54)

Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.

17 % Describe the motion of an object in a straight line with constant EXAMPLE. (2.1)
acceleration. Q. (2.34/2.35/2.85)
%, Apply, in the direction of motion, the constant-acceleration equations Q. (2.66/2.67/2.70)

to relate acceleration, velocity, position, and time for an object moving
with constant acceleration.

38
61,64
63

2.85 The position of a rocket sled on a straight track is given as x = at®> + bt? + c,
wherea=2.0m/s3,b=2.0m/s?,and c=3.0m.
a) What is the sled’s position betweent=4.0s and t=9.0 s?
b) What is the average speed betweent=4.0sand t=9.0s?




Solve problems related to position and displacement. STUDENT TEXTBOOK (33-40), (42-54)

Calculate the instantaneous velocity at a specific time as the rate of

change of the position function, which is the slope of the position

function in the specific time.

17 % Describe the motion of an object in a straight line with constant
acceleration.

%  Apply, in the direction of motion, the constant-acceleration equations

to relate acceleration, velocity, position, and time for an object moving

with constant acceleration.

&6

EXAMPLE. (2.1) 38
Q. (2.34/2.35/2.85) 61,64
Q. (2.66/2.67/2.70) 63

2.66 A ball is tossed vertically upward with an initial speed of 26.4 m/s.
How long does it take before the ball is back on the ground?

2.67 A stone is thrown upward, from ground level, with an initial
velocity of 10.0 m/s.

a) What is the velocity of the stone after 0.50 s?

b) How high above ground level is the stone after 0.50 s?



Solve problems related to position and displacement. STUDENT TEXTBOOK

&6

(33-40), (42-54)

Calculate the instantaneous velocity at a specific time as the rate of
change of the position function, which is the slope of the position
function in the specific time.

17 % Describe the motion of an object in a straight line with constant EXAMPLE. (2.1)
accalaration. Q. (2.34/2.35/2.85)
Apply, in the direction of motion, the constant-acceleration equations Q. (2.66/2.67/2.70)
to relate acceleration, velocity, position, and time for an object moving
with constant acceleration.

J

38
61,64
63

2.70 An object is thrown vertically upward and has a speed of 20.0 m/s when
it reaches two thirds of its maximum height above the launch point.
Determine its maximum height ?




% Calculate the components of a velocity vector (vx, vy, vz) by the time STUDENT TEXTBOOK (67-72),(74-78),(B0-83)

derivative of the position vector.
18 % Define maximum height, range of a projectile and time of flight. Q. (3.27/3.39) 86-87
% Calculate the maximum height, range of a projectile and the time of Q. (3.43/3.47)
flight for a projectile.
With this set of Cartesian coordinates, a position vector can be written in component 1 he change in velocity of the particle is A =1, — 7. The average acceleration, 4,,,
form as for the time interval At = t, — t, is given by
F=(x1.2)=xx + yij + zz. 31 - I -
(x,y,2) yy (3.1) o =M=u2 ul. (3.7)
A velocity vector is e At -
v=(v, ,v,,0,)=v.% + 0,0+ U,Z 32
(Vs:0y.) =y 2t (32) Concept Check 31
For one-dimensional vectors, the time derivative of the position vector defines COHCEPt Ch ECk 3-2 In all of the cases shown below, the
the velocity vector. This is also the case for more than one dimension: . velocity vectors ¥ and ¥ have the
In all of the cases shown in Concept P gt BBl s
i — - " i 5 diy . “ i ) vV =5 — y have the largest
B % — %(,‘x + oy + ) = %x o di: g+ %z_ (3.3) ChecEB.‘I,the velocity vectors ¥ Ay = %
and ¥; have the same length. In & &
In the last step of this equation, we used the sum and product rules of differentiation, as il dasa Boee thé Acoalarating i L
well as the fact that the unit vectors are constant vectors (fixed directions along the coor- b i e 2
dinate axes and constant magnitude of 1). Comparing equations 3.2 and 3.3, we see that d = AV / Athave the smallest absolute a) b}
7
as _dy _dz value?
U= By=on, U= (34)
The same procedure leads us from the velocity vector to the acceleration vector by
taking the time derivative of the former: 5] '
(7
. _do_dv, .  duy . dp, .
== g tgit g2 G2 o
. odre,, _ 5 dl-'g N | = e) All of the cases are identical.
= e ¢ T o e T =T oy




% Calculate the components of a velocity vector (vx, vy, vz) by the time STUDENT TEXTBOOK (67-72),(74-78),(80-83)

derivative of the position vector.
18 Y% Define maximum height, range of a projectile and time of flight. Q. (3.27/3.39) 86-87
% Calculate the maximum height, range of a projectile and the time of Q. (3.43/3.47) i
flight for a projectile.
d=(0,~g) =48 6.5 5= o2 + 02 = 2o + 120 — 20— 50) = Yo% — 290 —g).  (323)

For this special case of a constant acceleration only in the y-direction and with zero
acceleration in the x-direction, we have a free-fall problem in the vertical direction and
motion with constant velocity in the horizontal direction. The kinematical equations
for the x-direction are those for an object moving with constant velocity:

Note that the initial launch angle does not appear in this equation. The absolute value
of the velocity—the speed—depends only on the initial value of the speed and the dif-
ference between the y-coordinate and the initial launch height. Thus, if we release a
projectile from a certain height above ground and want to know the speed with which
. — N S (3.11) it hits the ground, it does not matter if the projectile is shot straight up, or horizontally,

. x0 or straight down. Chapter 5 will discuss the concept of kinetic energy, and then the

D, = Uy (3.12) reason for this seemingly strange fact will become more apparent.
Just as in Chapter 2, we use the notation v,, = p,(t = 0) for the initial value of the Concept Check 3.3
x-component of the velocity. The kinematical equations for the y-direction are those ST o o tie Arage oy o s
2 . E . projectile, which of the following
for free-fall motion in one dimension: statement, if any. is (are) true?
= Iz ¥ - .
J=1, + Ugﬂt - 79r Self-Test Opportunlty 31 a) The acceleration is zero.
b} The x—com ponent of the
Y L What is the dependence nf|ﬁ|{mlire acceleration is zero.
g=1yy + Dt x<coordinate?
% c} The p—component of the
acceleration is zero.
D, = Uy — gt —
4 u v ’ d} The speed is zero.
L - e} The xcomponent of the welocity is
L’g — E(Uy ¥ UBQ) (316) zero.
) The p—component of the velocity is
2 2
vy =50 — 29(y — yo)- (3.17) i



% Calculate the components of a velocity vector (vx, vy, vz) by the time

STUDENT TEXTBOOK (67-72),(74-78),(80-83)

derivative of the position vector.

18 % Define maximum height, range of a projectile and time of flight.

% Calculate the maximum height, range of a projectile and the time of
flight for a projectile.

Q. (3.27/3.39)
Q. (3.43/3.47)

86-87

Projectile Motion
Vocabulary

1- Projectile: An object shot through the air or (the motion of an object given initial
welocity that then mowves only under the force of gravity.)

2- Trajectory: The path of a projectile through space.

3- Flight time: The amount of time that a projectile is in the air.

4- Range: The horizontal distance traveled by a projectile.

the range (R). or how far the projectile will travel horizonrally before rEt\.n'}ning to its
original vertical position. and the maximum height (H) it will reach. These gquantities
R and H are illustrared in Figure 3.11. We find thar the maximum height reached by
the projectile is

g
= Lal. (3.24)
H= —+ =
Ha 2g
We'll derive this equarion below. We'll also derive this equarion for the range:

2
Rzu?‘jsinzgo, (3.25)

where v, is the absolute wvalue of the inirial velocity vector and &, is the launch angle.

Concept Check 3.4

A projectile is launched from an initial
height yy = 0. For a given launch
angle, if the launch speed is doubled,
what will happen to the range, £, and
the time in the air, £, 7

a) R and t; will both double.
b} R and £ will both quadruple.

c) R will double, and ¢, will stay the
same.

d} Rwill guadruple, and £, will double.

The maximum range, for a given fixed wvalue of v, is reached when &, = 45°.
= e = e} R wil double. and ¢, will qguadruple.
o N _ ~ L location on the ceck: The eference fame from which we view motion mikes a big difer
— = L

&
FIGURE =11 The masximmurm height (rech ;Jf_“l COs (i}
and range (green) of & projectile

ence in how we describe the motion, producing an effet known as relative velocity.

" 1




derivative of the position vector.

% (Calculate the components of a velocity vector (vx, vy, vz) by the time

18 Y% Define maximum height, range of a projectile and time of flight.

STUDENT TEXTBOOK (67-72),(74-78),(80-83)

Q. (3.27/3.39)

% Calculate the maximum height, range of a projectile and the time of Q. (3.43/3.47) 86-87
flight for a projectile.
Angled Launches The position vector for projectile motion is
1- When a projectile is launched at an angle, the initial velocity has a R Y a8

vertical component as well as a horizontal component

2- If the object is launched upward, like a ball tossed straight up in the air,
it rises with slowing speed, reaches the top of its path, and descends with
increasing speed.

3- The adjoining figure shows the separate vertical-an Horizontal-motion
diagrams for the trajectory of the ball

4- At each point in the vertical direction, the velocity of the

object as it is moving upward has the same magnitude as when

it is moving downward

5- The only difference is that the directions of the two

velocities are opposite

6- The adjoining figure defines two quantities associated with

a trajectory

7- One is the maximum height, which is the height of the projectile when
the vertical velocity is zero and the projectile has only its horizontal-
velocity component

8- For football punts, flight time is often called hang time.

9- The forces that effect in the projectiles: 1- air resistance 2- force
of gravity

and the velocity vector is

B (v )= vk v = %Z_{ =%x—+%y. (3.9)
Acceleration vector is - .
a=(0,-g)=-gp. (3.10)

|

<+ Inx axis acceleration is zero, in y axis acceleration is constant (9.81) and downward.
<+ This is motion with constant velocity in X direction and Free Fall in Y direction ( make sense © )

#9;5inB in
3, = 9,Cos8 AX = 8,Cos® X t t:% e
(9, 5n0)’ (@, g
Py — B _
\y = ‘9f =% +19y

I- Horizontal Projectile

Bac
v, =— Ax = v, t= v, .t

= ¢ For range)

2 N
r— [2o»

For flight time Ay = zi gtZz
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% Calculate the components of a velocity vector (vx, vy, vz) by the time
derivative of the position vector.

% Define maximum height, range of a projectile and time of flight.

% Calculate the maximum height, range of a projectile and the time of
flight for a projectile.

STUDENT TEXTBOOK (67-72),(74-78),(80-83)

Q. (3.27/3.39)
Q. (3.43/3.47)

B86-87

2.27 An object moves in the xy-plane. The x- and y-coordinates of the object as

a function of time are given by the following equations:
x(t)=4.9t2+2t+1 and y(t)=3t+2.

What is the velocity vector of the object as a function of time?

What is its acceleration vector at the timet=2s?




18

% Calculate the components of a velocity vector (vx, vy, vz) by the time

STUDENT TEXTBOOK (67-72),(74-78),(80-83)

derivative of the position vector.

% Define maximum height, range of a projectile and time of flight.

% Calculate the maximum height, range of a projectile and the time of
flight for a projectile.

Q. (3.27/3.39)
Q. (3.43/3.47)

86-87

2.39 A rabbit runs in a garden such that the x- and y-components of its displacement

as functions of time are given by
x(t) =-0.45t2-6.5t+ 25 and y(t)=0.35t2+8.3t+34.
(Both x and y are in meters and t is in seconds.)
a) Calculate the rabbit’s position (magnitude and direction
b) Calculate the rabbit’s velocity at t = 10.0 s.
c) Determine the acceleration vector at t = 10.0s.

)att=10.0s.
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% Calculate the components of a velocity vector (vx, vy, vz) by the time
derivative of the position vector.

% Define maximum height, range of a projectile and time of flight.

% Calculate the maximum height, range of a projectile and the time of
flight for a projectile.

STUDENT TEXTBOOK (67-72),(74-78),(80-83)

Q. (3.27/3.39)
Q. (3.43/3.47)

B86-87

2.43 footballis kicked with an initial speed of 27.5 m/s and a launch angle of 56.7°.

What is its hang time (the time until it hits the ground again)?




% Calculate the components of a velocity vector (vx, vy, vz) by the time STUDENT TEXTBOOK (67-72),(74-78),(80-83)

derivative of the position vector.
18 % Define maximum height, range of a projectile and time of flight. Q. (3.27/3.39) 86-87
% Calculate the maximum height, range of a projectile and the time of Q. (3.43/3.47) )
flight for a projectile.

2.47 7 A football player kicks a ball with a speed of 22.4 m/s at an angle of 49.0° above
the horizontal from a distance of 39.0 m from the goal-post.
a) By how much does the ball clear or fall short of clearing the crossbar of the
goalpost if that bar is 3.05 m high?
b) What is the vertical velocity of the ball at the time it reaches the goalpost?




% Solve problems related to objects on horizontal, vertical, or inclined
planes in situations involving friction, draw free-body diagrams and
19 apply Newton’s second law.
% Solve problems related to multiple connected masses moving in a
system and involving friction (e.g., Atwood machines) connected by
light strings with tensions (and pulleys).

STUDENT TEXTBOOK (96-102), 103-112),

(113-118)
EXAMPLE. (4.2) 101
SOLVED PROBLEM. (4.2) 105
Q (4.26/4.75/4.79/4.81) 122-125

force vectors that act on it are drawn, is called a free-body diagram.

Because forces are vectors, we must add them as vectors, using the methods developed in
Chapter 1. We define the net force as the vector sum of all force vectors that act on an object:

Bea=) F=F+FE+ +Fh. (4.5)
Newton’s First Law:

If the net force on an object is equal to zero, the object will remain at rest if it
was at rest. If it was moving, it will remain in motion in a straight line with the
same constant velocity.

Newton’s Second Law:

It a net external force, Fe, acts on an object with mass m, the force will cause
an acceleration, a, in the same direction as the force:

Foer = md.
Newton’s Third Law:

The forces that two interacting objects exert on each other are always exactly
equal in magnitude and opposite in direction:

Beia=— Py

Concept Check 4.2

Choose the set of three coplanar vectors that sum fo a net force of zero: ﬂ A ﬁz + F-'g =0

N
Fy
FIGURE 4.6 Force of gravity acting
b) downward and normal force acting upward
exerted by the hand holding the laptop
computer.

P




% Solve problems related to objects on horizontal, vertical, or inclined STUDENT TEXTBOOK (96-102), 103-112),
planes in situations involving friction, draw free-body diagrams and (113-118)

apply Newton’s second law.
19 % Solve problems related to multiple connected masses moving in a S OLVEI;(S%‘LE;:} :g;
system and involving friction (e.g., Atwood machines) connected by Q(4.26/4.75/4 '?9;’;1 (B‘;I‘? 55158
light strings with tensions (and pulleys). e i i " -
4.7 [ Friction Force ' The science of friction has a name: tribology. '
Friction al ists the moti Ll
riction always resists the motionso  _* i i icti Frresnoia sriction
rrict : Y! o o oby Ther(.e is FWP kln.d? of frlctlon. -
it is in opposite direction of the object 3. static friction: it is an opposing force 8 so R _oc E——
motion that keeps the object from moving (no Zg e e max stane = ¥= N
@ Friction is independent of the itisi i == riction o4 iwoshoid of motion.
p move) . it is increase as the applied force |2 Swatcmeion ] M« Foriower apphea
speed of the object increases until the maximum static = matenes e friction it just
Friction is independent of the size  friction force increase possible between = > NSO e monon
of the contact area between object the two surfaces Applied torcli@s Totons
and.su.rfac.e 2- Kinetic friction: it is an opposing force Always the coefficient of static friction ( us,max )bigger than the
B Friction is depend on the roughness  on an object when it is moving. It stays coefficient of kinetic friction ( uk) ps,max>puk because
of the surface constant when the object is in motion. X
@ No friction for smooth surface -* The coefficient of friction( g )depends fsmax>f
B There is a linear proportional on the composition and qualities of the fic [N] = kinetic friction
between normal force (N) and friction surfaces in contact, and always it is a kinetic friction equation || static friction equation fomax [N] = maximum static friction
force f decimal number 0<pu<1 P Fomax = oo B, [N] = norma farce
i e (=] = cof fiecent kinetie friction

IS (R BRI S Ve SR a1 BR S RRRIETe
- @ = — Hs [-] = cof fiecent static friction

Jis = foa .




% Solve problems related to objects on horizontal, vertical, or inclined
planes in situations involving friction, draw free-body diagrams and

STUDENT TEXTBOOK (96-102), 103-112),

(113-118)

19 apply Newton's second law.

% Solve problems related to multiple connected masses moving in a EXAMPLE. (3.2) w
system and involving friction (e.g., Atwood machines) connected by SOLVED PROELEM. (4.2) 105
light strings with tensions (and pulleys). Q (4.26/4.75/4.79/4.81) 122-125

Air Resistance The factors effect on terminal speed

The drag force in this example is the air resistance

2-Drag coefficient, there is inversely proportional between( K ) and ¥ terminal
*- When the person goes down his weight (Eg)does not change K=1/2CpAp
*. When the person goes down the velocity increases so the drag force The factors effect on the constant of drag force
increases, too 1- Size of cross sectional area (A) exposed to the air stream (linearly proportional
*_ When the person goes down Frey decreases because drag force increases between( |f) and (_A} _
Enng: @_ Eg 2- Air density p (linearly proportional ) . o .
*_In one point in the air(fluid) ,drag force equals person weight(fg) and 3- Drag constant Cp shows ( the shape of the object, on its inclination relative to

e

which reach it in this point{terminal velocity)

Fet=0  EFE the person will complete his motion with the final velocity thie;direction’of motion illeir visggRlty il cotipzesSiRity

1- Object mass when K is constant , the massive one will be fast

. Lo . Q1) Why do you open the parachute when you are falling?
¥_ = =
. Termlnallvelouty 5e cons'tant Vemmy_When_ Fw iF'& and Eﬂgl 0 Answer: because the surface area of the parachute is big so constant drag (K)
- the terminal speed equation dea =Fg=Kv will be increase but velocity will be decrease because of the inversely
proportional between (K and V termina1 ) $0 When the terminal speed
L= }%Lg- K= -;-Cd/\p. decreases it protects the person when reaching the ground




% Solve problems related to objects on horizontal, vertical, or inclined STUDENT TEXTBOOK (96-102), 103-112),
planes in situations involving friction, draw free-body diagrams and (113-118)
apply Newton’s second law.
19 % Solve problems related to multiple connected masses moving in a EXAMPLE. (4.2) 101
system and involving friction (e.g., Atwood machines) connected by SOLVED PROBLEM. (4.2) 105
light strings with tensions (and pulleys). Q(4.26/4.75/4.79/4.81) 122-125

EMAamMPLE 4.2 [ Still Rings

A gyirmast of mass 55 kg hangs vertically from a prair of parallel rings (Figure <. 10a)

PROBLEM 1
If thhe ropes supporting the rings are vertical anmnd artached to the ceiling directly abowe,

what is the rtension in each rope?

F LS

N F T e

== e J L
4—)':: F_s

Cad LLEY]

FIGURE 410 (a) Still rings in men's gymnastics. (b)) Free-body diagram for problem 1. (c} Free-body diagram

L€ ]

for problemnn 20
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% Solve problems related to objects on horizontal, vertical, or inclined
planes in situations involving friction, draw free-body diagrams and

STUDENT TEXTBOOK (96-102), 103-112),

apply Newton's second law.

% Solve problems related to multiple connected masses moving in a
system and involving friction (e.g., Atwood machines) connected by
light strings with tensions (and pulleys).

(113-118)
EXAMPLE. (4.2) 101
SOLVED PROBLEM. (4.2) 105
Q (4.26/4.75/4.79/4.81) 122-125

SOLVED PROBLEM 4.2 |rTwo Blocks Connected by a Rope

=

In this classic problem, a hanging mass causes the acceleration of a second mass thart is
resting on a horizonral surface (Figure 4.16a). Block 1, of mass m; = 3.00 kg, rests on a hori-
zonrtal fricdonless surface and is connecred via a massless rope (for simplicity, oriented in
the horizontal direction) running over a massless pulley to block 2, of mass m, = 1.30 kg.

PROBLEM
Whart is the acceleration of block 1 and of block 22

(@)




% Solve problems related to objects on horizontal, vertical, or inclined ' STUDENT TEXTBOOK (96-102), 103-112),
planes in situations involving friction, draw free-body diagrams and (113-118)
apply Newton's second law.
19 % Solve problems related to multiple connected masses moving in a HXAMPLE. (4.2) i
system and involving friction (e.g., Atwood machines) connected by SOLVED PROBLEM. (4.2) 105
Hghit strings with tentions (and polewlh Q (4.26/4.75/4.79/4.81) 122-125

A .26 A Tow track of mass Ad i using a cable vo pull a shipping concainer
of mass e across a horrdzonoal surface as showwn in che figure. The cable is
arached vo the conrainer ac che frone boroom comeer and makes an angle &
withh the werrical as shown. The coefficient of kineric fricrion beoween thhe
surface arnnd the cracve is g

IHRRFRRRRTRRERTA

a) Draw a free-body diagram for the conaimner.
b) Assuming thar che ocuck pulls dhe conuainer ar a conscant spaeed, wrice
an equacion for the magnitcude T of the sring rension in che cable.
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% Solve problems related to objects on horizontal, vertical, or inclined
planes in situations involving friction, draw free-body diagrams and
apply Newton’s second law.

% Solve problems related to multiple connected masses moving in a
system and involving friction (e.g., Atwood machines) connected by
light strings with tensions (and pulleys).

STUDENT TEXTBOOK (96-102), 103-112),

(113-118)

EXAMPLE. (4.2)
SOLVED PROBLEM. (4.2)
Q(4.26/4.75/4.79/4.81)

101
105
122-125

2.75 A block of mass 20.0 kg supported by a vertical massless cable is initially at rest.
The block is then pulled upward with a constant acceleration of 2.32 m/s?

a) What is the tension in the cable?
b) What is the net force acting on the mass?

c) What is the speed of the block after it has traveled 2.00 m?




% Solve problems related to objects on horizontal, vertical, or inclined STUDENT TEXTBOOK (96-102), 103-112),
planes in situations involving friction, draw free-body diagrams and (113-118)
apply Newton's second law.
19 % Solve problems related to multiple connected masses moving in a 0 LVE'EXI?;&;}LIEL{;N? (4.2) ig;

systemn and involving friction (e.g., Atwood machines) connected by
light strings with tensions (and pulleys). Q(4.26/4.75/4.79/4.81) 122-125

2.79 A tractor pulls a sled of mass M = 1000. kg across level ground.
The coefficient of kinetic friction between the sled and
the ground is pk = 0.600. The tractor pulls the sled by a rope that
connects to the sled at an angle of 8 = 30.0° above the horizontal.
What magnitude of tension in the rope is necessary to move the
sled horizontally with an acceleration a =2.00 m/s??




% Solve problems related to objects on horizontal, vertical, or inclined
planes in situations involving friction, draw free-body diagrams and

19 apply Newton’s second law.
% Solve problems related to multiple connected masses moving in a
system and involving friction (e.g., Atwood machines) connected by

light strings with tensions (and pulleys).

STUDENT TEXTBOOK (96-102), 103-112),

(113-118)
EXAMPLE. (4.2) 101
SOLVED PROBLEM. (4.2) 105
122-125

Q(4.26/4.75/4.79/4.81)

2.81 A block of mass 5.00 kg is sliding at a constant velocity down an inclihed plané
that makes an angle of 37.0° with respect to the horizontal.

a) What is the friction force?
b) What is the coefficient of kinetic friction?
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