

مراجعة نهائية وفق الهيكل الوزاري الخطة C

موقع المناهج ← المناهج الإماراتية ← الصف الحادي عشر المتقدم ← فيزياء ← الفصل الثالث ← الملف

تاريخ إضافة الملف على موقع المناهج: 02-02-2024 08:17:36

إعداد: أحمد التميمي

التواصل الاجتماعي بحسب الصف الحادي عشر المتقدم						
		7	CULARMEL			
	"	ابط "الصف الحادي عشر المتقدم	<u>اضغط هنا للحصول على جميع رو</u>			
	روابط مواد الصف الحادي عشر المتقدم على تلغرام					
ریا <u>ضیات</u>	<u> 11</u>	اللغة الانجليزية	اللغة العربية	<u>التربية الاسلامية</u>		

مزيد من الملفات بحسب الصف الحادي عشر المتقدم والمادة فيزياء في الفصل الثالث					
الهيكل الوزاري الحديد منهج بريدج الخطة M-101-A المسار <u>المتقدم</u>	1				
الهيكل الوزاري الحديد منهج بريدج الخطة M-101-B المسار <u>المتقدم</u>	2				
الهيكل الوزاري الجديد منهج بريدج الخطة C-101 المسار المتقدم	3				
مراجعة نهائية اختيار من متعدد مع بعض الإجابات منهج انسباير	4				

مشر المتقدم والمادة فيزياء في الفصل الثالث	المزيد من الملفات بحسب الصف الحادي ع
ملخص الوحدة التاسعة الحركة الدائرية	5

هيكل 11ADV حكومي

EOT Term 3 2023/2024

المادة: الفيزياء المدرس: أحمد التميمي

Grade 11 Advanced (Plan C) – EoT Coverage

الأستاذ أحمد التميمي

MCQ 1	 (1) Define the center of mass as the point at which all the mass of an object appears to be concentrated. (2) Recall that center of gravity is equivalent to center of mass in situations where the gravitational force is constant everywhere throughout the object. 	Student Book (S.B)	226
-------	--	-----------------------	-----

Question 1						
Which of the following statements are true about the center of mass?						
Α	٦ cer	The conter c	ent <mark>er of mass</mark> is always the same as the I <mark>f gravity, no</mark> ma <mark>tt</mark> er the size of the object.	В	An object can have more than one center of mass.	
С		Some	e objects do not have a center of mass.	D	The center of mass is where the mass of an object can be considered to be concentrated.	
Ques	stior	۱2				
Under	whic	ch coi	ndition is the center of gravity equivalent to	the ce	nter of mass for an object?	
Α			When the object is in motion	В	everywhere throughout the object	
С			When the object is in a vacuum	D	When the object has uniform density	
M	CQ	2	Describe that the location of the center of the object or system of objects and does coordinate system used to describe it.	mass i not dep	s a fixed point relative to bend on the location of the Concept Check 8.1	
Ques	stior	า 3	Vour Guid	0	to Success	
Based on the system shown in the figure, which mass is greater than the other? What does R represent?						

А	$m_1 < m_2$, R represents the location of the center of mass of the system	В	$m_1 > m_2$, R represents the location of the center of mass of the system
С	$m_1 > m_2$, R represents the location of the geometric center of the system	D	$m_1 < m_2$, R represents the location of the geometric center of the system

الفيزياء ک ک ک الکو التوجي الفيزياء Question 4

Question 5 A donut-shaped object has uniform density. Which image shows a red dot at the object's center of mass? A B C D Question 6

A sys	A system has multiple objects. Where is the center of mass of the system found?						
Α	It is found at multi <mark>ple points</mark> that model the motion of objects in the system	В	It is found at multiple points that are the centers of mass of the objects in the system				
С	It is found at a single point at the geometric center of the volume of the system	ed	It is found at a single point where the mass of all the objects is concentrated				

Question 7

How is the mass density of an object such that the center of mass of the object is not located at the geometrical center of the body?

Α	It will be non-homogenous	В	It will be constant
С	It will be small	D	It will be large

الف_يزياء		ىتاذ	ع الأس	
	ännn	אר וו		
$X = \frac{x_1m_1 + x_2m_2 + x_3m_3}{m_1 + m_2 + m_3 + \cdots}$	$\frac{+\cdots}{m_1+m_2} \qquad Y = \frac{y_1m_1+y_2}{m_1+m_2}$	$\frac{1}{2}m_2 + y_3m_3m_2 + m_3 + m_3 + m_3$	$\frac{x_1 + \cdots}{x_2} \qquad Z = \frac{z_1 n}{2}$	$\frac{m_1 + z_2m_2 + z_3m_3 + \cdots}{m_1 + m_2 + m_3 + \cdots}$
Question 8				
A 4.0 m rod of negligible mas one sphere is 3.0 kg and the mass if the center of mass of as shown in the figure below?	ss connects two small sphere mass of the other is unknow this system is 1.4 m to the r	es at its ends n. What is th ight of the 3	s. The mass of ne unknown 0.0 kg sphere	4.0 m
A	4.2 kg	В	3.4	ł kg
С	2.7 kg	D	1.6	5 kg
Question 9				
A system consists of 2 kg obj figure. What are coordinates (ects located at coordinates (X,Y) of the center of the mas 0.5, 0.5)	0,2), (0,0), (i s of the syst	2,0), as shown in the rem?	y (m) $2^{\frac{2}{2} kg}$ $\frac{2 kg}{1}$ 2 kg $\frac{2 kg}{1}$ 2 kg x (m) x (m)
С (0.	75, 0.75)	D	(1	, 1)

MCQ	3	(1) Define the polar coordinate system as a two-dimensional coordinate system such that a point on a plane is defined by its distance r from the origin and the angle θ measured. (2) Express the Cartesian coordinates (x, y) in terms of the polar coordinates	Student Book (S.B) S.B/Figure 9,3/9,4	255 256
		(r, θ) and vice versa. (3) Convert polar coordinates to Cartesian coordinates and vice versa.	SS Example 9.1	256

أحمد التميمي

You Tube

f

O.

Cartesian \rightarrow PolarPolar \rightarrow Cartesian $r = \sqrt{x^2 + y^2}$ $\theta = \tan^{-1}(\frac{y}{x})$ $x = r \cos(\theta)$ $y = r \sin(\theta)$

Quadrant الربع	Signs of x and y اشارة x و y	Calculated angle الزاوية المحسوبة	Correction to find $ heta$ (التصحيح)
1 st	(+,+)	0° <i>to</i> 90°	None needed
2 nd	(-,+)	$0^{\circ} to - 90^{\circ}$	<i>Add</i> 180°
3 rd	(-,-)	0° <i>to</i> 90°	<i>Add</i> 180°
4 th	(+, -)	$0^{\circ} to - 90^{\circ}$	<i>Add</i> 360°

Question 10

الف_يزياء

A point has a value of $\left(6,\frac{\pi}{6}\right)$ in the polar coordinate system. What is the value in cartesian coordinate?

Α	(5.0, 4.0)	B	(0.87, 0.50)
С	(4.0, 2.0)	D	(5.2, 3.0)

Question 11

A point has a value of $\left(8, \frac{4\pi}{3}\right)$ in the polar coordinate system. What is the value in cartesian coordinate?

Α	(-7.98, -0.58)	В	(7.98, 0.58)
C	(-4.0, -6.93)	D	(4.0, -6.93)

Question 12

А

The cartesian coordinates of a point in the xy-plane are (x,y)=(-3.50 m, -2.50 m) as shown. Find the polar coordinates of this point.

(4.30m, 216°)

J

С	(2. 45m, 216º)	D	(2.45m, 36º)
Que	stion 13		
How	many de <mark>grees correspond</mark> to a radian?		
Α	57.3°	В	90.0°
С	180°	D	360°

В

الآستاذ

M	CQ	4	Relate the arc length (s), to the radius (r) o (θ) , measured in radians.	f the <mark>c</mark> i	ircular path and the angle	S.B/Figure 9.3 Student	255 257
						DOOK	
				r	JEN DEM	Υ	
Ques	stion	14	Your Guid	е	to Succe	SS	
A bicy bicycle	vcle tr e fron	avels n its	141 m along a circular track of radius 30 r starting position?	n. Wha	t is the angular displacement	in radians of	the
Α			1.0 rad	В	1.5 rac	d d	
C			3.0 rad	D	4 7 rac	4	

The garden academy

y (m)

x (m)

 θ

(-3.50, -2.50)

(4.30m, 36°)

الف_يزياء

Question 15

The track on a compact disc (CD) shown in figure. The track is a spiral, originating at an inner radius of $r_1 = 25$ mm and terminating at an outer radius of $r_2 = 58$ mm. The spacing between successive loops of the track is a constant, $\Delta r = 1.6 \ \mu m$. What is the total length of this track?

Question	16	
----------	----	--

A chil	d, riding	on a l	arge m	nerr <mark>y-go-rou</mark>	nd, travels	a distanc	e of 300	000 m in a circle of diameter 40 m. The total angl	е
throug	gh which	she r	evolves	s is					
						n r			
Α				50 rad			В	75 rad	
С				150 rad			D	314 rad	
0		7							

Question 17

An ob of this	ject rotates along a circular path with a constant sp s circular path is known to be 10 cm. Find the lengt	eed to co of the	omplete 2 revolutions in 20 seconds. If the radius bath covered by the object.
Α	Y3:14m r Guio	eΒ	
С	1.26m	D	4.3m

Question 18

A drone flies along a circular path and completes 3 revolutions in 15 minutes. If the length of the path covered by the drone is 1.5 kilometers, what is the diameter of the circular path?

Α	80m	В	160m
С	320m	D	540m

الف_يزياء LOI You Tube 0 t 1 Example 9.3 260 Apply the relation for the magnitude of angular velocity in terms of MCQ 5 Additional frequency and period of rotation 282 Exercises/9.61(a) $\omega = 2\pi f = \frac{2\pi}{\mathrm{T}}$ $v = r\omega$ **Question 19** The Earth orbits around the Sun and also rotates on its pole-to-pole axis. What are North Pole the angular velocities, frequencies, and linear speeds of these motions?

Question 20

A boy is on a Ferris wheel, which takes him in a vertical circle of radius 9.00 m once every 12.0 s. What is the angular speed of the Ferris wheel?

The garden academy

our G

Equator

South Pole

الف_يزياء

أحمد التميه

You Tube

Question 21

The angular speed of the minute hand of a clock (in radians per second) is:

Α	0.05 rad/s	В	6.28 rad/s
С	3.20 rad/s	D	0.10 rad/s

Ν	1CQ	6	Relate the magniticity of the second	tudes of linear (tan s, and explain that ngular velocity vect	igential) an this relatio ors which p	d ai n d ooir	ngular velocities for oes not hold for nt in different directions	Exercises/Q. <mark>9.44</mark>	281
					v = r a)			
Que	estion	22							
The spee	figure : d of th	show ie po	s a cylinder of radi int P is:	ius 0.7 m rotating	about its a	xis a	at 10 rad/s. The linear	P)
Α			4.0 m	n/s	В		7.0 m	/s	
С			11.0 r	n/s	D)	13.0 m	ı/s	
							nen		
Que	estion	23					DEN_		
A ca 20 n	r trave neters,	ls alc calcı	ng a circ <mark>ular track</mark> Ilate the angular v Y O	and completes 4 r elocity and the line	revolutions ear velocity	in 4 of 1	40 seconds. If the radius of the car at the time it comple t o Succe	this circular tra etes the 4 revo	ick is lutions.
Α			0.43 rad/s -	12.57 m/s	В		0.63 rad/s –	6.58 m/s	
С			0.63 rad/s -	12.57 m/s	D)	0.84 rad/s - 1	2.57 m/s	

DEN

(O)

1

J

f

الفيزياء

MCQ	7	Relate the magnitude of the net acceleration in circular motion to the tangential acceleration and centripetal acceleration	Question 9.44 (part f), Exercises for Question 9.46, Additional Exercises for Question 9.63.	281 282
MCO	12	Express the linear acceleration vector for an object in circular motion as	(S.B)	262
ITICQ	15	$\vec{a} = a_t \hat{t} - a_c \hat{r}$	Exercise/Q.9.46	281

Ini

$$\vec{a} = a_t \hat{t} - a_c \hat{r}$$
$$a_t = r\alpha$$
$$a_c = v\omega = \omega^2 r = \frac{v^2}{r}$$

Question 24

A discus thrower (with arm length of 1.20 m) starts from rest and begins to rotate counterclockwise with an angular acceleration of 2.50 rad/s^2 .

Your Guide to Success

- a) How long does it take the discus thrower's speed to get to 4.70 rad/s?
- b) How many revolutions does the thrower make to reach the speed of 4.70 rad/s?
- c) What is the linear speed of the discus at 4.70 rad/s?
- d) What is the linear acceleration of the discus thrower at this point?
- e) What is the magnitude of the centripetal acceleration of the discus thrown?
- f) What is the magnitude of the discus's total acceleration?

The garden academy

الف_يزياء

Question 25

A particle is moving clockwise in a circle of radius 1.00 m. At a certain instant, the magnitude of its acceleration is $a = 25.0 \text{ m/s}^2$ and the acceleration vector has an angle of $\theta = 50.0^\circ$ with the position vector, as shown in the figure. At this instant, find the speed, $v = |\vec{v}|$ of this particle.

Question 26

A car accelerates uniformly from rest and reaches a speed of 22.0 m/s in 9.00 s. The diameter of a tire on this car is 58.0 cm.

a) Find the number of revolutions the tire makes during the car's motion, assuming that no slipping occurs.

Your Guide to Success

b) What is the final angular speed of a tire in revolutions per second?

MCQ 8

الف_يزياء

Identify that the centripetal force, necessary for circular motion, can be provided by different forces such as the force of friction, tension, gravitational force, Coulomb force, or the normal force.

LOI

Student Book (S.B) Exercises/Q. 9.50 281

$$F_c = ma_c = mv\omega = m\frac{v^2}{r} = m\omega^2 r$$

Question 27

Calculate the centripetal force exerted on a vehicle of mass m = 1500. kg that is moving at a speed of 15.0 m/s around a curve of radius R = 400. m. Which force plays the role of the centripetal force in this case?

Question 28

Calculate the centripetal force exerted on a stone of mass m = 2.0 kg that is being swung at a speed of 6.0 m/s around a circular path with a radius R=1.5 meters. Which force plays the role of the centripetal force in this case?

Your Guide to Success

الف_يزياء

9

MCQ

Apply the kinematic relationships for circular motion with constant angular acceleration to calculate angular position, angular displacement, angular velocity, angular acceleration, or time.

(i)

(ii)

(iii)

(iv)

(v)

Circular Motion

 $\theta = \theta_0 + \overline{\omega}t$

 $\omega = \omega_0 + \alpha t$

 $\overline{\omega} = \frac{1}{2}(\omega + \omega_0)$

 $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0).$

 $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$

 Example 9.6
 264

 Example 9.7
 271

 Exercises/Q.
 9.35

Linear Motion

- (i) $x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$
- (ii) $x = x_0 + \overline{v}_x t$
- (iii) $v_x = v_{x0} + a_x t$
- (iv) $\overline{v}_x = \frac{1}{2}(v_x + v_{x0})$
- (v) $v_x^2 = v_{y_0}^2 + 2a_x(x x_0)$

Question 29

In Example 9.2, we established that a CD track is 5.4 km long. A music CD can store 74 min of music. What are the angular velocity and the tangential acceleration of the disc as it spins inside a CD player, assuming a constant linear velocity?

Question 30

In hammer throw competetion, the hammer's total length is 121.5 cm, and its total mass is 7.26 kg. The athlete has to accomplish the throw from within a circle of radius 2.13 m, and the best way to throw the hammer is for the athlete to spin, allowing the hammer to move in a circle around him, before releasing it. An athlete broke the Olympic record distance of 84.80 m. He took seven turns before releasing the hammer, and the period to complete each turn was obtained from examining the video recording frame by frame: 1.52 s, 1.08 s, 0.72 s, 0.56 s, 0.44 s, 0.40 s, and 0.36 s.

a) What was the average angular acceleration during the seven turns? Assume constant angular acceleration for the solution.

الف_يزياء	رومرمتال	ع الأستاذ ا ح ص ح		
			🛗 🗘 <	0 f
b) Assuming that the ra hammer plus the arr	idius of the circle on which the ns of the athlete), what is the lin	hammer moves is 1.67 near speed with which	7 m (the length o the hammer is re	f the eleased?
c) What is the centriper releases it?	al force that the hammer throw	ver has to exert on the	hammer right be	fore he
d) After release, what is	the direction in which the han	nmer moves?		
Question 31				

A vinyl record plays at 33.3 rpm. Assume it takes 5.00 s for it to reach this full speed, starting from rest.

-11

Your Guide to Success

- a) What is its angular acceleration during the 5.00 s?
- b) How many revolutions does the record make before reaching its final angular speed?

|--|

التميه

ستاذ

You Tube

f

O.

Angle Conversions								
Degree V	s. Radians	Degree Vs.	Revolutions	Radians Vs. Revolutions				
Deg. → rad	rad → Deg.	Deg. \rightarrow rev	$rev \rightarrow Deg.$	$rad \rightarrow rev$	$rev \rightarrow rad$			
(angle(°) $\times \frac{\pi}{180}$)	$(angle(rad) \times \frac{180}{\pi})$	$\left(\frac{angle(^{\circ})}{360^{\circ}}\right)$	(angle(rev) × 360°)	$\left(\frac{angle(rad)}{2\pi}\right)$	(angle(rev) × 2π)			

الف_يزياء

The garden academy

الف_يزياء JUOÏ You Tube 0 1 Identify that for an object in circular motion with a given angular velocity, 264 (S.B) MCQ 12 Example 9.8 the centripetal force increases with the distance from the center. 273 $F_c = m \cdot \frac{4\pi^2 r}{T^2}$ **Question 36** Which piece would fall first as the angular speed of the spinning table increases?

Your Guide to

Question 37

Suppose that cars move through the U-turn shown in Figure at constant speed and that the coefficient of static friction between the tires and the road is $\mu s = 1.2$. If the radius of the inner curve shown in the figure is $R_B = 10.3$ m and radius of the outer is $R_A = 32.2$ m and the cars move at their maximum speed, how much time will it take to move from point A to A' and from point B to B'?

The garden academy

المــيرياء			ച		010	ill	70.	SĨ.						
									You Tube	የ		Ø	f	
	мсо	14	Distinguish	between tan	gential accel	leration a	and radial a	cceleration,		Stu Bool	dent < (S.B)	261]	
	specifying the cause and direction of each.							Exer Q. 9.4	cises/ 6/9.43	281				
Q	uestion	38												
Ca ce	alculate the entripetal a	e req accele	uired frequer ration of 84	ncy and the li 0,000 <i>g</i> at a	near speed o distance of 2	of a samp 23.5 cm f	ole in an ulf from the ult	racentrifuge racentrifuge	. The sar 's rotatic	nple is on axis.	subject	ed to a:		

Question 39

A centrifuge in a medical laboratory rotates at an angular speed of 3600. rpm (revolutions per minute). When switched off, it rotates 60.0 times before coming to rest. Find the constant angular acceleration of the centrifuge.

-11

Your Guide to Success

The garden academy

	رياء		വ		ດເດເ			Ĩ				GARDEN GARDEM	Y
									You Tube	ጌ		0	f
	MCQ	15	Apply Newt analyze circ loop of an a levelled or l	on's laws of ular motion amusement p panked curv	motion and/or in a vertical or park ride, rotati e,)	energy horizon ng cylin	conservatic tal plane (m der, moving	on principles notion in ver g through a	to tical	S.B/F 9.18 S.B/Figu S.B/MCG Add	igure / 9.19 ɹre 9.20 }/Q.9.11 ed Q	266 268 278	
Ģ	Question 40												
P ve S c c th	erhaps the ertical loo uppose th paster hav nat frictior	e big p in i ie vei ve to n betv	gest thrill to t , where pa tical loop h be at the to ween roller	be had at assengers fo as a radius p of the loo coaster and	an amusemen eel almost wei of 5.00 m. Wi op for the pase I rails can be r	nt park i ightless hat doe sengers neglecte	is on a roll at the top is the linea is to feel wo ed.)	ler coaster o of the loo ar speed of eightless? (with a p. the ro (Assur	a oller ne	(a	₽ ₽	,
												\vec{F}_{g}	

What speed must the roller coaster have at the top of the loop to accomplish the same feeling of weightlessness if the radius of the loop is doubled?

Question 41

One of the rides found at carnivals is a rotating cylinder. The riders step inside the vertical cylinder and stand with their backs against the curved wall. The cylinder spins very rapidly, and at some angular velocity, the floor is pulled away. The thrill-seekers now hang like flies on the wall. If the radius of the cylinder is r = 2.10 m, the rotation axis of the cylinder remains vertical, and the coefficient of static friction between the people and the wall is $\mu s = 0.390$, what is the minimum angular velocity, ω , at which the floor can be withdrawn?

(b)

Question 42

The figure shows a rider stuck to the wall without touching the floor in the Barrel of Fun at a carnival. Which diagram correctly shows the forces acting on the rider?

لأستاذ

Question 43

An am	nusement park ride has the shape of a cylindrical shel	l of rad	ius 12 m. First, a
passer	nger stands against the wall of the ride, and when the	e ride r	eaches a speed of 15
m/s, tl	he floor underneath the passenger is lowered. What i	s the m	inimum coefficient of the transformed set of
static	friction that allows the passenger to remain pinned a	gainst	he wall of the ride?
	Verr Guid		
A		В	10 3 4 6 0.68 5 5
С	0.71	D	0.80

End of MCQ part

أحمد التميمي

FRQ	 (1) Identify that the linear velocity, of a particle in circular motion always points tangential to the circular path (circumference) and is always perpendicular to the position vector, which points in the radial direction. (2) Sketch the path taken in circular motion (uniform and non-uniform) and explain the velocity and acceleration vectors (magnitudes and directions) during the motion. (3) Explain that for uniform circular motion, where the angular velocity is constant, the tangential acceleration is zero, but the velocity vector still changes direction continuously as the object moves in its circular path. (4) Relate the magnitudes of linear (tangential) and angular velocities for circular motion. 	Exercises/Q. 9.46 Exercises/Q. 9.47.(a) Exercises/Q. 9.50	281
-----	---	--	-----

Question 44

In a tape recorder, the magnetic tape moves at a constant linear speed of 5.60 cm/s. To maintain this constant linear speed, the angular speed of the driving spool (the take-up spool) has to change accordingly.

a) What is the angular speed of the take-up spool when it is empty, with radius $r_1 = 0.800$ cm?

b) What is the angular speed when the spool is full, with radius $r_2 = 2.20$ cm?

c) If the total length of the tape is 100.80 m, what is the average angular acceleration of the take-up spool while the tape is being played?

FRQ	17	 (1) Apply Newton's laws of motion and/or energy conservation principles to analyze circular motion in a vertical or horizontal plane (motion in vertical loop of an amusement park ride, rotating cylinder, moving through a levelled or banked curve). (2) Determine the location of the center of mass of two or several particles or extended objects with uniform mass distribution (the object can be divided into simple geometric figures, each of which can be replaced by a particle at its center) by applying suitable mathematical equations 	Solved Problem (9.1) Conceptual Questions (9.20) Exercises/Q. 9.55 Additional Exercises/Q. 9.60	266 279 281 282
-----	----	---	---	--------------------------

JU

آستاذ

The garden academy

الف_يزياء

A person rides on a Ferris wheel of radius R, which is rotating at a constant angular velocity ω . Compare the normal force of the seat pushing up on the person at point A to that at point B in the figure. Which force is greater, or are they the same?

Question 47

A particular Ferris wheel takes riders in a vertical circle of radius 9.00 m once every 12.0 s.

a) Calculate the speed of the riders, assuming it to be constant.

- b) Draw a free-body diagram for a rider at a time when she is at the bottom of the circle. Calculate the normal force exerted by the seat on the rider at that point in the ride.
- c) Perform the same analysis as in part (b) for a point at the top of the ride.

You Tube

(O'

1

В

You Tube

O.

Question 48

الف_يزياء

Given a banked curve with a radius of R=110 m and a banking angle of $\theta=21.1^\circ$, calculate the • maximum speed a driver can maintain without slipping if the coefficient of static friction between the track and the tires is μ_s =0.620.

Find the minimum speed at which the car can travel with as it negotiates the banked curve?

 $N \sin \theta \vec{N}$

00971569174493

 $fcos(\theta)$

 $fsin(\theta)$

 $N \cos \theta$

الف_يزياء

• Find the minimum speed at which the car has to move with if the surface is frictionless.

1

f

(O)

You Tube

C

Question 49

A car speeds over the top of a hill. If the radius of curvature of the hill at the top is 9.00 m, how fast can the car be traveling and maintain constant contact with the ground?

 FRQ 18 (1) Apply the kinematic relationships for circular motion with constant angular acceleration to calculate angular position, angular displacement, angular velocity, angular acceleration, or time. (2) Solve problems related to rotation with constant angular acceleration. (3) Relate the magnitude of the net acceleration in circular motion to the tangential acceleration and centripetal acceleration. 	Exercises/Q. 9.35 Exercises/Q. 9.44 Additional Exercises/Q. 9.63	280 281 282
---	--	-------------------

All questions mentioned in this part were solved in the previous parts. (Repeated questions)

FRQ	19	Apply Newton's laws of motion and/or energy conservation principles to analyze circular motion in a vertical or horizontal plane (motion in vertical loop of an amusement park ride, rotating cylinder, moving through a levelled or banked curve).	Solved Problem /Q.9.4 Exercises/Q. 9.59	275 282
-----	----	---	---	------------

Question 50

A speedway turn, with radius of curvature R, is banked at an angle θ above the horizontal.

- a) What is the optimal speed at which to take the turn if the track's surface is iced over (that is, if there is very little friction between the tires and the track)?
- b) If the track surface is ice-free and there is a coefficient of friction μ s between the tires and the track, what are the maximum and minimum speeds at which this turn can be taken?
- c) Evaluate the results of parts (a) and (b) for R = 400. m, $\theta = 45.0^{\circ}$, and $\mu s = 0.700$.

Question 51

The raceway of a car race is banked at an angle θ above the horizontal. What must the value of θ be if a race car, moving with a speed of 45 m/s, maintains a circular motion of radius 320 m, assuming it is raining and the friction between the tires and the road is negligible?

End of FRQ part

مع تمنايتي لكم بالتوفيق والنجاح

