تم تحميل هذا الملف من موقع المناهج الإماراتية ## الملف مواصفات الامتحان النهائي للفصل الثاني موقع المناهج ← المناهج الإماراتية ← الصف الحادي عشر المتقدم ← فيزياء ← الفصل الثاني ## روابط مواقع التواصل الاجتماعي بحسب الصف الحادي عشر المتقدم للسلسلامية الاسلامية الله العربية | المزيد من الملفات بحسب الصف الحادي عشر المتقدم والمادة فيزياء في الفصل الثاني | | | | | | |---|---|--|--|--|--| | كل مايخص الاختبار التكويني لمادة الفيزياء للصف الحادي عشر
يوم الأحد 9/2/2020 | 1 | | | | | | ملخص واسئلة ـ الوراثة الجزيئية | 2 | | | | | | الوحدة 6 طاقة الوضع وحفظ الطاقة | 3 | | | | | | اوراق عمل الطاقة الحركية والشغل والقدرة | 4 | | | | | | طاقة الحركة والشغل | 5 | | | | | | Subject | Physics | Question** | Learning Outcome*** | Reference(s) in the Student Book
المرجع في كتاب الطالب | | |-------------------------------|-----------------|---|--|---|-----------------------| | المادة | | | | ب انصائب
Example/Exercise | المرجع في هنا
Page | | Grade | l l | السؤال** | ناتج التعلم*** | example/exercise
مثال/تمرین | Page
الصفحة | | الصف | 11 | | | 3,3 , 10 | | | | | 1 | Becall that positive work is a transfer of energy to the object and possitive work is a transfer of energy from the object | Definition | 133 | | Stream | Advanced | | Recall that positive work is a transfer of energy to the object and negative work is a transfer of energy from the object | MCQ 5.12 | 150 | | المسار | | | | | | | | 1 | 2 | Calculate work done by the gravitational force in liftiing or lowering an object. Apply the equation (W=F-\(\Omega\)r=F\(\Omega\)r coscal to calculate the work done on an object by a constant force by taking the dot product of the | Example 5.2 | 136 | | Number of Questions | 25 | | force vector F and the displacement vector Δr | example 5.2 | 136 | | عدد الأسئلة | | | To the vector i will the displacement vector all | | | | | | 3 | Apply the work–kinetic energy theorem to relate the work done by a force and the resulting change in kinetic energy (ΔK=K–K0=W). | MCQ 5.10 - | 150 | | Type of Questions | MCQs | , | Apply the work kinede energy theorem to relate the work done by a force and the resulting change in kinede energy (ak-k ko-w). | conceptual questions 5.15-5.18 | 150 | | طبيعة الأسئلة | اختيار من متعدد | | T | | | | Marks per Question | | 4 | Solve problems related to work and kinetic energy | conceptual questions 5.15-5.18 | 150 | | الدرجات لكل سؤال | 5 | | | | | | | | 5 | Apply the relationship between a particle's kinetic energy, mass, and speed as KE=1/2 mv2, measured in joules (J) or Nm or kgm2/s2 | conceptual questions 5.15-5.18 | 151 | | Maximum Overall Grade* | 100 | | PAPPLY the relationship between a particle's kinetic energy, mass, and speed as KE-1/2 mvz, measured in judies (1) or win or kgmz/sz | conceptual questions 3.13-3.18 | 151 | | العلامة القصوى الممكنة* | 100 | | | | | | | 1 | 6 | Apply the work–kinetic energy theorem to relate the work done by a force and the resulting change in kinetic energy (ΔK=K–K0=W). | conceptual questions 5.20-5.25 | 151 | | Exam Duration
مدة الامتحان | 120 minutes | | | | | | مده الاستحال | | | | | | | Mode of Implementation | - 16.1 | 7 | Apply the work–kinetic energy theorem to situations where spring force is involved | Solved problem 5.2 | 142-143 | | طريقة التطبيق | SwiftAssess | | | | | | | | 8 | . Recall the unit of power as watt (W) where 1 W=1 J/s=1 kgm2/s3 | Stated explicitly in text | 144 | | | | | | | | | | | 1777 | Apply the equation (W=F·Δr=FΔr cosα) to calculate the work done on an object by a constant force by taking | | | | | | 9 | the dot product of the force vector F and the displacement vector Δr | conceptual questions 5.29-5.32 | 151 | | | | | | | | | | | 10 | Apply the relationship between average power, the work done by a force or the associated energy transfer, | Example 5.4 | 145 | | | | 100 | and the time interval in which that work is done or energy is transfered (Pavg=W/Δt) | | | | | | 444 | | | | | | | 11 | Identify the condition for the momentum of a system to be conserved (| Stated explicitly in text | 194 | | | | | | | | | | | 12 | Relate the work done by the gravitational force and the gravitational potential energy for an object lifted from rest to a height h | Solved problem 6.1 | 156-157 | | | | | | | | | | | 40 | | Cabandanahlana C.E. | 474.475 | | | | 13 | Calculate the work done by friction force for an object sliding across a horizontal surface between two points: | Solved problem 6.5 | 174-175 | | | | | | | | | | | 14 | Solve problems on work done by a conservative force and potential energy | Solved problem 6.6 | 177 | | | | | | | | | | | 15 | Identify that for a particle moving between two points, the work done by a conservative force does not depend | Stated explicitly in text | 158 | | | | on the path taken by the particle: W A to B,path1 = W A to B,path2 | | | | | | | | Apply the law of conservation of mechanical energy for an isolated system (no external forces) | | | | | | 16 | with no dissipative forces involved, to calculate different physical quantities | MCQ 6.3 | 182 | | | | | | | | | | | 17 | Solve problems related to conservation of mechanical energy | Concept check 6.4 | 170 | | | | | , | conceptual questions 6.41-6.43 | 184 | | | | | T | | | | | | 18 | Find the extension in a spring for an object at equilibrium hanging vertically from a spring :F= ky =-mg | Stated explicitly in text | 171 | | | | | <u>' </u> | | | | | | 19 | Explain how air bags, seat belts and crumple zones reduce the forces acting on a driver during a crash | Stated explicitly in text | 193 | | | | 13 | | States expitetty in text | -55 | | | | | Describe the electic collision of an elect with a colid wall in terms of the account of the collision of an elect with a colid wall in terms of the account of the collision of the electric state | | | | | | 20 | Describe the elastic collision of an object with a solid wall in terms of the momentum components parallel and perpendicular to the wall before and after collision | Solved problem 7.2 | 202 | | | | | | | | | | | 21 | 5. Apply the conservation of linear momenta for an isolated system of particles to relate the initial | conceptual guestions7.38- 7.40 | 214 | | | | | momenta of the particles to their final momenta at any later instant. | | | | | | | Identify the resulting motion after an elastic collision in one dimension for the special case | | | | | | 22 | when one object is initially at rest (say object1 | Q 7.19 | 216-218 | | | | | | | | | | | 23 | Solve problems related to elastic collisions in one dimension | Q7.46 | 219 | | | | | | | | | | | | | Stated explicitly in text | 190 | | | | 24 | Relate momentum to kinetic energy (K=p2/2m). | Q 7.24 | 217 | | | | | | | | | | | 25 | Solve problems related to elastic collisions in one dimension | Q 7.49 | 219 | | | | | | | | | | | Best 20 answers out of 25 will count. | | | | | | | Example: 14 correct answers yield a grade of 70/100, while 20 and 23 correct answers yield a (full) grade of 100/100 each. | | | | | | | تخليب الأخيال 20 إجابة من 25. التخليب الأخيال 20 إجابة من 25. التخليب الأخيال 20 إجابة من 25. التخليب الأخيال 20 الأخيال 100 من 100 من الأخيال 100 من م | | | | | | | مثال: 14 إجابة صحيحة تعطي علامة 70/100 بينما 20 أو 23 إجابة صحيحة تعطي الملامة الكاملة أي 200/100. | | | | | | | ** | Questions might appear in a different order in the actual exam. | *** As it appears in the textbook/LMS/SoW. | | | | | | | *** | كما وردت في كتاب الطالب وLMS و الخطة الفصلية. | | | | | | | | | |