تم تحميل هذا الملف من موقع المناهج الإمار اتية

حل الدرسين الأول والثاني من الوحدة السادسة Logarithmic ريفيل منهج Functions

موقع المناهج ← المناهج الإماراتية ← الصف الحادي عشر المتقدم ← رياضيات ← الفصل الأول ← حلول ← الملف

تاريخ إضافة الملف على موقع المناهج: 22:57:20 2024-10-27

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة رياضيات:

إعداد: محمد زياد

التواصل الاجتماعي بحسب الصف الحادي عشر المتقدم

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الحادي عشر المتقدم والمادة رياضيات في الفصل الأول

المريد من المتعاب العلق الحادي عشر المتعد / والمادة رياطيات في العلقل الأول	
حل مراجعة الوحدة الخامسة functions Exponential الدوال الأسية منهج ريفيل	1
أوراق عمل الدرس الثاني الدوال اللوغاريتمية من الوحدة الثانية	2
أوراق عمل الدرس الأول الدوال الأسية من الوحدة الثانية	3
نموذج هيكل الاختبار التكويني الالكتروني والكتابي	4

المزيد من الملفات بحسب الصف الحادي عشر المتقدم والمادة رياضيات في الفصل الأول

حل أوراق عمل مراجعة القسم السادس functions Logarithmic الدوال اللوغاريتمية

5

Week2 15-9-2024

Mr. Mohammed Ziad Channels

<u>Lessons: 6.1 + 6.2</u>

Ex1: Convert the following expressions:

1)
$$\log_2\left(\frac{1}{32}\right) = -5$$
 to exponential form

$$\frac{1}{2}^{-5} = \frac{1}{32}$$

2)
$$5^4 = 625$$
 to logarithmic form

Ex2: Evaluate the following:

1)
$$\log_3\left(\frac{1}{81}\right) = 2$$

$$3^{2} = \frac{1}{34}$$

$$2) \log_8(32) = \times$$

$$(2^{3})^{x} = 32$$

$$\frac{3x}{3} = \frac{5}{3}$$

$$x = \frac{5}{3}$$

Using Calculator

 $\log_3\left(\frac{1}{81}\right)$

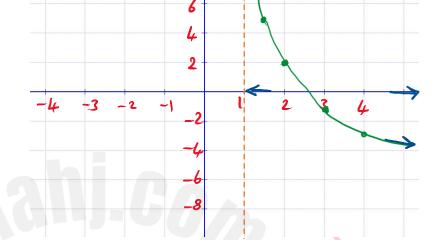
$$2^3 = 8$$
, $2^5 = 32$

$$(x^n)^m = x^{n \cdot m}$$

Ex3: Sketch the graphs of $f(x) = -3\log_2(x-1) + 2$, Then find, Domain

range, and end behavior.

$$\times$$
 | 1.2 | 1.5 | 2 | 3 | 4 \times | 9 | 8.9 | 5 | 2 | -1 | -2.8


To find Vertical

asymptote X-1=0

$$X-1=a$$
 $X=1$

Domain: All real number greater than 1

or (1, 00)

$$f(x) \longrightarrow \infty$$

$$f(x) \longrightarrow -\infty$$

$$0.50-7214939$$

Ex4: Using the following information.

$$\log_{\frac{5}{4}} = 0.861$$
 , $\log_{\frac{5}{3}} = 0.683$, $\log_{\frac{5}{6}} = 1.113$, $\log_{\frac{5}{3}} = 1.113$

Find:

a) $\log_5(72)$

$$\log (6 \times 4 \times 3) = \log 6 + \log 4 + \log 3$$

= 1.113 + 0.861 + 0.683
= 2.657

Rules $|\log(x\cdot y) = \log x + \log y$ $|\log(\frac{x}{y}) = \log x - \log y$ $|\log x^n = n \log x$

050-7214939

b)
$$\log_5 \frac{2}{3}$$

$$= \log_{5} \frac{2}{1} - \log_{5}^{3}$$

$$= \log_{5} \frac{6}{1} - \log_{5}^{3}$$

$$= \log_{5} 6 - \log_{5}^{3} - \log_{5}^{3}$$

$$= 1.113 - 0.683 - 0.683$$

$$= -0.253$$

OR
$$\frac{2}{3} = \frac{4}{6}$$
 $\log_{s}^{2} = \log_{s}^{4}$
 $\log_{s}^{4} = \log_{s}^{4} - \log_{s}^{6}$
 $= 0.861 - 1.113$
 $= -0.253$

c) $\log_5 \frac{45}{4}$

$$= \log_{5} 4$$

$$= \log_{5} 4$$

$$= \log_{5} (3^{2} \times 5) - \log_{5} 4$$

$$= 2 \log_{5} (3^{2} \times 5) - \log_{5} 4$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) - \log_{5} 4$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) - \log_{5} 4$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) - \log_{5} 4$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

$$= 2 \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5) + \log_{5} (3^{2} \times 5)$$

Ex5: Solve the following equations:

a) $\log_3(2x+4) - 3 = 0$

a)
$$\log_3(2x+4) - 3 = 0$$

$$\log (2x + 4) = 3$$

$$2x + 4 = 3^{3}$$

$$2x + 4 = 27$$

$$4x = 23$$

$$2x = 23$$

$$\frac{\text{Check}}{\log(2x+4)-3} = 0$$

$$\log(2(11.5)+4)-3 = 0$$

$$0 = 0$$

$$x = 11.5$$

Correct Solution

SS = 18/11-52 4939

b) $\log_8(x^2 + 2x) = \log_8(3x + 6)$

$$\chi^2 + 2\chi = 3\chi + 6$$

$$x^2 + 2x - 3x - 6 = 0$$

$$\chi^2 - \chi - 6 = 0$$

$$(x-3)(x+2)=0$$

 $x-3=0$ $x+2=0$
 $x=-2$

050-7214939

$$\log_8(x^2 + 2x) = \log_8(3x + 6) \qquad \log_8(x^2 + 2x) = \log_8(3x + 6)$$

$$\log_{8}(x^{2} + 2x) = \log_{8}(3x + 6)$$

$$\log_{8}((-2)^{2} + 2(-2)) = 10$$

undefined substitutions

extraneous solution

c)
$$\log_4(3x+1) \ominus \log_4(x+3) = \log_4(2)$$

$$\frac{3x+1}{x+3} = \log \left(\frac{3x+1}{x+3}\right) = \log \left(\frac{3x+1}{x$$

$$2(x+3) = 1(3x+1)$$

$$2x+6 = 3x+1$$

$$2x-3x = 1-650-7214939$$

$$x = -5$$

$$\log_4(3x+1) - \log_4(x+3) = \log_4(2)$$

$$\log_4(3(5)+1) - \log_4(5+3) \stackrel{?}{=} \log_4(2)$$

$$= \frac{1}{2}$$