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Chapter1 Overview

WHAT WE WILL LEARN
-

m  The use of scientific notation and the appropriate
number of significant figures is important in physics.

We will become familiar with the international unit
system and the definitions of the base units as well

as methods of converting among other unit systems.

We will use available length, mass, and rime scales
to establish reference points for grasping the vast
diversity of systems in physics.

We will apply a problem-solving strategy that

will be useful in analyzing and understanding
probiems throughout this course and in science and
engineering applications.

We will work with vecrors: vector addition and
suberaction, multiplication of vectors, unit vectors,
and length and direction of vectors.

11 [ Why Study Physics?

Perhaps your reason for studying physics can be quickly summed up as “Because it
is required for my major!” While this motivation is certainly compelling, the study of
science, and particularly physics, offers a few additional benefits.

Physics is the science on which all other natural and engineering sciences are
built. All modern technological advances-from laser surgery 1o television, from com-
puters to refrigerators, from cars to airplanes-trace back directly to basic physics. A
good grasp of essential physics concepis gives you a solid foundation on which to
construct advanced knowledge in all sciences. For example, the conservation laws
and symmetry principles of physics also hold true for all scientific phenomena and
many aspects of everyday life.

The study of physics will help you grasp the scales of distance, mass, and time, from
the smallest constituents inside the nuclei of atoms to the galaxies that make up our
universe. All natural systems follow the same basic laws of physics, providing a unifying
concept for understanding how we fit into the overali scheme of the universe.

Physics is intimately connected with mathematics because it brings to life the
abstract concepts used in trigonometry, algebra, and calculus. The analytical thinking
and general techniques for problem solving that you learn here will remain useful
for the rest of your life.

Science, especially physics, helps remove irrationality from our explanations of
the world around us. Prescientific thinking resorted to mythology to explain natural
phenomena. If you read the daily news, you will find that some misconceptions from
prescientific thinking persist even today. You may not find the answer 1o the mean-
ing of life in this course, but at the very least you will come away with some of the
intellectual tools that enable you to weed ourt inconsistent, logically flawed theories
and misconceptions that contradict experimentally verifiable facts. Scientific prog-
ress over the last millennium has provided a rational explanation for most of what
occurs in the natural world surrounding us.

Through consistent theories and well-designed experiments, physics has helped
us obrtain a deeper understanding of our surroundings and has given us greater ability
to control them. In a time when the consequences of air and water pollution, lim-
ited energy resources, and global warming threaten the continued existence of huge
portions of life on Earth, the need to understand the results of our interactions with
the environment has never been greater. Much of environmental science is based on
fundamental physics, and physics drives much of the technology essential to prog-
ress in chemistry and the life sciences. You may well be called upon to help decide
public policy in these areas, whether as a scientist, an engineer, or simply as a citizen,
Having an objective understanding of basic scientific issues is of vital importance in
making such decisions. Thus, you need to acquire scientific literacy, an essential tool
for every citizen in our technology-driven society.

You cannot become scientifically literate without command of the necessary elemen-
tary tools, just as it is impossible to make music without the ability to play an instrument.
This is the main purpose of this text: to properly equip you to make sound contributions



to the important discussions and decisions of our time. You will emerge from reading
and working with this text with a deeper appreciation for the fundamental laws that
govern our universe and for the tools that humanity has developed to uncover them,
tools that transcend culwures and historic eras.

1.2 | Working with Numbers

Scientists have established logical rules to govern how they communicate quantita-
tive information to one another. If you want to report the result of a measurement-
for example, the distance between two cities, your own weight, or the length of a
lecture-you have 1o specify this result in multiples of a standard unit. Thus, a mea-
surement is the combination of a number and a unit.

At first thought, writing down numbers doesn’'t seern very difficult. However, in
physics, we need to deal with two complications: how to deal with very big or very
small numbers, and how to specify precision.

Scientific Notation

If you want to report a really big number, it becomes tedious to write it out. For example,
the human body contains approximately 7,000,000,000,000,000,000,000,000,000 atoms.
If you used this number often, you would surely like to have a more compact notation
for it. This is exactly what scientific notation is. It represents a number as the product
of a number greater than or equal to 1 and less than 10 (called the mantissa) and a power
{or exponent) of 10

number = mantissa x 10°*Pene™ (1.1)

The number of atoms in the human body can thus be written compactly as 7 x 107,
where 7 is the mantissa and 27 is the exponent.

Another advantage of scientific notation is that it makes it easy o multiply and
divide large numbers. To multiply two numbers in scientific notation, we multiply their
mantissas and then add their exponents. If we wanted to estimate, for example, how
many atoms are contained in the bodies of all the people on Earth, we could do this
calcularion rather easily. Earth hosts approximately 7 billion (=7 % 10°} humans. All we
have to do to find our answer is to multiply 7 x 10% by 7 x 10°. We do this by multiply-
ing the two mantissas and adding the exponents:

(7x10%7) (7x10%) = (7x7)x10%7*7 = 49x107° = 4.9x10%". (1.2)

In the last step, we follow the common convention of keeping only one digit in front
of the decimal point of the mantissa and adjusting the exponent accordingly. (But be
advised that we will have to further adjust this answer-read on!)

Division with scientific notation is equally straightforward: If we want to calculate
A/B, we divide the mantissa of A by the mantissa of B and subtract the exponent of
B from the exponent of A.

Significant Figures

When we specified the number of atoms in the average human body as 7 x 107, we
meant to indicate that we know it is at least 6.5 * 1077 but smaller than 7.5 x 10%.
However, if we had written 7.0 * 10¥, we would have implied that we know the
true number is somewhere between 6.95 x 10?7 and 7.05 x 10?. This statement is
more precise than the previous statement.

As a general rule, the number of digits you write in the mantissa specifies how
precisely you claim to know it The more digits specified, the more precision is implied
(see Figure 1.2). We call the number of digits in the mantissa the number of significant
figures. Here are some rules about using significant figures followed in each case by
an example;

» The number of significant figures is the number of reliably known digits. For
example, 1.62 has three significant figures; 1.6 has two significant figures.

1.2 Working with Numbers

Concept Check 11

The lolal surface area of Earth is
A=4nR? =4n(6370 km)i =
5099x10" m?. Assuming there

are 7.0 hillion humans on the planet,
what is the available surface area

per person?
a) 7.3x10° m?
by 7.3x10% m?

¢} 3.6x10" m?
dj 3.6x10* m?
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FIGURE 1.2 Two thennometers measuring the same temperature. (a)
The thermometer is marked in tenths of a degree and can be read to four
significant figures (36.85 °C); (b} the thermometer is marked in degrees, 50

it can be read to only three significant figures (36.8 °C}.

Concept Check 1.2

How many significant figures are in =

each of the following numbers?

'

4

\

34 5536373839

If you give a number as an integer, you specify it with infinite precision. For
example, if someone says that he or she has 3 children, this means exactly 3,
no less and no more.

Leading zeros do not count as significant digits. The number 1.62 has the same
number of significant digits as 0.00162. There are three significant figures in both
numbers. We start counting significant digits from the left at the first nonzero digic

a} 2150 d) 0.215000
» Trailing zeros, on the other hand, do count as significant digits. The number
b} 0000215 izl sl 1.620 has four significant figures. Writing a trailing zero implies greater precision!
Clae R » Numbers in scientific notation have as many significant figures as their mantissa.
For example, the number 9.11 % 107! has three significant figures because
thar’s what the mantissa (9.11) has. The size of the exponent has no influence.
®  You can never have more significant figures in a result than you start with in
any of the factors of a multiplication or division. For example, 1.23/3.4461
is not equal to 0.3569252. Your calculator may give you that answer, but
calculators do not automatically display the correct number of significant
Concept Check 1.3 figures. Correctly, 1.23/3.4461=0.357. You must round a calculator result
For the two numbers x = 0.43 and to the proper number of significant figures-in this case, three, which is the
y = 3.53, which of the following has the number of significant figures in the numerator.
greatest number of significant figures? = You can only add or subtract when there are significant figures for that place
a) thesum,x+y d) the number x in every number. For example, 1.23 + 3.4461=4.68, and not 4.6761 as you
may think. This rule, in particular, requires some getting used to.
b) the product, 2} the number y
xy To finish this discussion of significant figures, let’s reconsider the total number of

¢) the difference,

atoms contained in the bodies of all people on Earth. We started with two quantities

e that were given to only one significant figure. Therefore, the result of our multiplica
tion needs to be properly rounded to one significant digit. The combined number of
atoms in all human bodies is thus correctly stated as 5 x 10%".

1.3 [ Sl Unit System

In high school, you may have been introduced to the international system of units and
compared it to the British system of units in common use in the United States. You
may have driven on a freeway on which the distances are posted both in miles and in
kilometers or purchased food where the price was quoted per pound and per kilogram.
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Unit Names and Abbreviations for the Base Units of the SI System of Units

Unit Abbreviation Base Unit for

meter m length

kilogram kg mass

second s time

ampere A current

kelvin K temperawure

mole mol amount of a substance
candela cd luminous intensity

The international system of units is often abbreviated as SI (for Systéme Interna-
tional). Sometimes the units in this system are called metric units. The St unit system
is the standard used for scientific work around the world. The seven base units for the
Sl system are given in Table 1.1.

The first letters of the first four base units provide another commonly used name
for the SI system: the MKSA system. We will only use the first three units (meter,
kilogram, and second) in the entire first part of this book and in all of mechanics. The
current definitions of these base units are as follows:

= 1 meter {m) is the distance that a light beam in vacuum travels in 1/299,792,458
of a second. Originally, the meter was related to the size of the Earth (Figure 1.3).

w 1 kilogram (kg) is defined as the mass of the international prototype of the kilogram.
This prototype is kept just outside Paris, France, under carefully controlled
environmental conditions.

m 1 second (s) is the time interval during which 9,192,631,770 oscillations of
the electromagnetic wave (see Chapter 31) that corresponds to the transition
berween twao specific states of the cesium-133 atom. Until 1967, the standard
for the second was 1/86,400 of a mean solar day. However, the atomic
definition is more precise and more reliably reproducible.

Notation Convention: It is common practice to use roman letrters for unit abbreviations
and italic letters for physical quantities. We follow this convention in this book. For
example, m stands for the unit meter, while m is used for the physical quantity mass.
Thus, the expression m=17.2 kg specifies that the mass of an object is 17.2 kilograms.

Units for all other physical quantities can be derived from the seven base units
of Table 1.1. The unit for area, for example, is m*. The units for volume and mass
density are m® and kg/m’, respectively. The units for velocity and acceleration are
m/s and m/s’, respectively. Some derived units were used so often that it became
convenient to give them their own names and symbols. Often the name is that of
a famous physicist. Table 1.2 lists the 20 derived SI units with special names. In
the two rightmost columns of the table, the named unit is listed in terms of other
named units and then in terms of SI base units. Also included in this table are the
radian and steradian, the dimensionless units of angle and solid angle, respectively.

You can obtain Sl-recognized multiples of the base units and derived units by mulkiply-
ing them by various factors of 10. These factors have universally accepted letter abbrevia
tions that are used as prefixes, shown in Table 1.3. The use of standard prefixes (factors of 10)
makes it easy to determine, for example, how many centimeters (cm) are in a kilometer (km):

1 km =10 m =10’ m-(10? em/m) =10° cm. (1.3)
in comparison, note how tedious it is to figure out how many inches are in a mile:
1 mile = (5,280 feet/mile) - (12 inches/foor) = 63,360 inches. (1.4)

As you can see, not only do you have to memorize particular conversion factors in
the British system, but calcularions also become more complicated. For calculations
in the SI system, you only have to know the standard prefixes shown in Table 1.3 and
how to add or subtract integers in the powers of 10.

1.3 SlUnit System ]

FIGURE 1.3 Originally, the meter was

defined as 1ten-millionth of the length of

the meridian through Paris from the North
Pole to the Equator.

FIGURE 1.4 Prototype of the kilogram,
stored near Parls, France.
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FIGURE 1.5 The Mars Climate Orbiter,
a victim of faulty unit conversion.

Table 1.2 Common SI Derived Units
Derived or Dimensiontess Unit Name Symbol Equivalent Expressions
Absorbed dose gray Gy Ikg m? 572
Angle radian rad - -
Capacitance farad F crv m2 kgl 5t A2
Catalytic activity katal kat - st mol
Dose equivalent sievert Sv J/kg m? 572
Electric charge coulomb C sA
Electric conductance siemens S ALV m2 kg s* A2
Elecuric potental vole v W/A m’kgs? AT
Electric resistance ohm Q2 V/A m’kgs*A“
Energy joule ] Nm m” kg 57
Force newton N mkg s
Erequency hertz Hz - 5"
[liuminance lux Ix Im/m? m? ed
Inductance henry H wh/a mikgs? A7
Luminous flux lumen Im cd sr cd
Magnetic flux weber whb Vs m?kgs2 At
Magnetic field tesla T Whb/m* kgs* AT
Power watt w I/s mikgs”
Pressure pascal Pa N/m? m™ kg 52
Radinactivity becquerel Bq — s!
Solid angle steradian ST — —_
Temperature degree Celsius °C — K
1 Standard Prefixes
Factor Prefix Symbol Factor Prefix Symbol
10% yoita- Y 107% yocto- Y
10* zetta- Z 1078 zeplo- z
o' exa- E 10°71® atto- a
10" peta- P 107" femto- f
10" tera- T 10712 pico- p
10° giga- G 0% nano- n
10 mega M 10 micro- B
10° kilo- k 10 milli m
10° hecto- h 10 centi- c
10! deka- da 107 deci d

The international system of units was adopted by France in 1799 and is now used
daily in almost all countries of the world, the one notable exception being the United
States. Since we use British units in our daily lives, this book will indicate British units
where appropriate, to establish connections with everyday experiences.

The use of British units can be costly. The cost can range from a small expense,
such as that incurred by car mechanics who need to purchase two sets of wrench
socket sets, one metric and one British, to the very expensive loss of the Mars Climate
Orbiter spacecraft (Figure 1.5) in September 1999. The crash of this spacecraft has
been blamed on the fact that one of the engineering teams used British units and the
other one Sl units. The two teams relied on each other’s numbers, without realizing

that the units were not the same,

Coumesy NASASJPL-Caltech
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The use of powers of 10 is not completely consistent even within the SI system
itself. The notable exception is in the time units, which are not factors of 10 times the
base unit (second):

x 365 days form a year,

« a day has 24 hours,

= an hour contains 60 minuies, and

» a minute consists of 60 seconds.

Early metric pioneers tried to establish a completely consistent set of metric time
units, but these attempts failed. The not-exactly-metric nature of time units extends

to some derived units. For example, a European sedan’s speedometer does not show
speeds in meters per second, but in kilometers per hour,

EXAMPLE 141 / Units of Land Area
1

The unit of land area used in countries that use the SI system is the hectare, defined as
| 10,000 m* In some countries , land area is given in acres; an acre is defined as 43,560 fi?.

PROBLEM
You just bought a plot of land with dimensions 2.00 km by 4.00 km. What is the area
of your new purchase in hectares and acres?

SOLUTION
The area A is given by

A = lengthx width = (2.00 km)(4.00 km) = (2.00x10> m)4.00xi0* m)
A =800 km? = 800x10* m?,

The area of this plot of land in hectares is then

A =800 x10¢ m*LNECMIC _ 505,107 hectares = 800. hectares,

10,000 m*
To find the area of the land in acres, we need the length and width in British units:
280 fi
length = 200 km— " — 124 mi 22800 _ ¢ o3
1.609 km 1 mi
width = 400 km—"_ = 240 mi2280M _ 13 130 1.
1.609 km 1 mi

The area is then
A = lengthxwidth = (1.24 mi}{2.49 mi) = (6,563 ft)(13,130 fi)

A =309 mi? =861x107 fc2.
In acres, this is

A=861x10" fr? —LIcTIe

| m = 1980 acres,

T e e

Metrology: Research on Measures and Standards

The work of defining the standards for the base units of the SI system is by no means
complete. A great deal of research is devoted 10 refining measurement technologies
and pushing them to greater precision. This field of research is called metrology. in
the United States, the laboratory that has the primary responsibility for this work is the
National Institute of Standards and Technology (NIST). NIST works in collaboration with
similar institutes in other countries to refine accepred standards for the SI base units.
One current research project is to find a definition of the kilogram based on repro-
ducible quantities in nature. This definition would replace the current definition of the
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Visible universe —
Galaxy cluster —»

Spiral galaxy M74 —>
1 Light-year —»
Solar System —>

Earth —»
City —»

Human —»
Cell —»

Atom —»
Alomic nucleus —»

FIGURE 1.7 Range of length scales

for physical systems. The pictures top to
bottom are the spiral galaxy M74, the Dallas
skyline, and the SARS virus.

kilogram, which is based on the mass of a standard object kept in Sévres on the outskirts
of Paris. The most promising effort in this direction seems to be Project Avogadro, which
attempts to define the kilogram using highly purified silicon crystals.

Research on keeping time ever more precisely is one of the major tasks of NIST
and similar institutions.

Greater precision in timekeeping is needed for many applications in our informa-
tion-based saciety, where signals can travel around the world in less than 0.2 second.
The Global Positioning System (GPS) is one example of technology that would be
impossible to realize without the precision of atomic clocks and the physics research
that enters into their construction. The GPS system also relies on Einstein’s theory of
relativity, which we will study in Chapter 13.

1.4 [ The Scales of Our World

The most amazing fact about physics is that its laws govern every object, from the
smallest to the largest. The scales of the systems for which physics holds predictive
power span many orders of magnitude (powers of 10), as we'll see in this section.

Nomenciature: In the following, you will read "on the order of* several times. This
phrase means “within a factor of 2 or 3.

Length Scales

Length is defined as the distance measurement between two points in space. Figure 1.7
shows some length scales for common objects and systems that span over 40 orders
of magnitude.

Ler’s start with ourselves. On average, in the United States, a woman is 1.62 m
(5 ft 4 in) tall, and a man measures 1.75 m (5 ft 9 in). Thus, human height is on the order
of a meter. If you reduce the length scale for a human body by a factor of a million, you
arrive at a micrometer. This is the typical diameter of a cell in your body or a bacterium.

I you reduce the length of your measuring stick by another factor of 10,000,
you are ar a scale of 10 '° m, the typical diameter of an individual atom. This is the
smallest size we can resolve with the aid of the most advanced microscopes. )

Inside the atom is its nucleus, with a diameter about 1/10,000 that of the ato,
on the order of 107" m. The individual protons and neutrons that make up the
atomic nucleus have a diameter of approximately 107'* m=1 fm (a femtometer).

Considering objects larger than ourselves, we can look at the scale of a typical city,
on the order of kilometers. The diameter of Earth is just a lictle bigger than 10,000 km
(12,760 km, to be more precise). As discussed earlier, the definition of the meter is
now stated in terms of the speed of light. However, the meter was originally defined
as 1 ten-millionth of the length of the meridian through Paris from the North Pole to
the Equator. If a quarter circle has an arc length of 10 million meters (= 10,000 km),
then the circumference of the entire circle would be exactly 40,000 km. Using the
modem definition of the meter, the equatorial circumference of the Earth is 40,075 km,
and the circumierence along the meridian is 40,008 krn,

The distance from the Earth to the Moon is 384,000 km, and the distance from
the Earth to the Sun is greater by a factor of approximately 400, or about 150 million km.
This distance is called an astronomical unit and has the symbol AU. Astronomers used
this unit before the distance from Earth to Sun became known with accuracy, but it
is still convenient today. In SI units, an astronomical unit is

1 AU =1.495 98x10'! m. (1.5)

The diameter of our Solar System is conventionally stated as approximately 10> m, or 60 AU.

We have already remarked that light travels in vacuum at a speed of approximartely
300,000 km/s. Therefore, the distance between Earth and Moon is covered by light in just
over 1 second, and light from the Sun takes approximately 8 minutes to reach Earth. In

{IMELBA PHOTO AGENCY/Aamy, {clJacobs Stock Photography/Getty Images, {bjOr. Fred Murphy, 1975, Centers for Disease Control and Prevention



order to cover distance scales ouiside our Solar System, astronomers have introduced the
(non-SI, but handy) unit of the light-year, the distance that light travels in 1 year in vacuum:

1 lightyear = 9.46x10"° m. (1.6)

The nearest star to our Sun is just over 4 light-years away. The Andromeda Galaxy, the
sister galaxy of our Milky Way, is about 2.5 million lightyears=2x 10%2 m away.

Finally, the radius of the visible universe is approximately 14 billion light-yeais =
1.5 % 10°® m. Thus, about 41 orders of magnitude span between the size of an indi-
vidual proton and that of the entire visible universe.

Mass Scales

Mass is the amount of matter in an object. When you consider the range of masses
of physical objects, you obtain an even more awesome span of orders of magnitude
(Figure 1.8) than for lengths.

Atoms and their parts have incredibly small masses. The mass of an electron is
only 9.11 x 107! kg. A proton’s mass is 1.67 x 107’ kg, roughly a factor of 2000 more
than the mass of an electron. An individual atom of lead has a mass of 3.46 x 107 kg.

The mass of a single cell in the human body is on the order of 107"” kg to 10”'“ kg.
Even a fly has more than 100 million times the mass of a cell, at approximately 107* kg

A car’s mass is on the order of 10° kg, and that of a passenger plane is on the
order of 10° kg.

A mountain typically has a mass of 10'? kg to 10" kg, and the combined mass
of all the water in all of the Earth’s oceans is estimated to be on the order of 10°' kg.

The mass of the entire Earth can be specified fairly precisely at 6.0 x 10%* kg. The
Sun has a mass of 2.0 x 10 kg, or about 300,000 times the mass of the Earth. Our entire
galaxy, the Milky Way, is estimated to have 200 billion stars in it and thus has a mass
around 3x 10*' kg, Finally, the entire universe contains billions of galaxies. Depending
on the assumptions about dark matrer, a currently active research topic (see Chapter 12),
the mass of the universe as a whole is roughly 10°' kg. However, you should recognize
that this number is an estimate and may be off by a factor of up to 100.

Interestingly, some objects have no mass. For example, photons, the “particles”
that light is made of, have zero mass.
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Time Scales

Time is the duration between two events. Human time scales lie in the range from a
second (the typical duration of a human heartbeat) to a century {(about the life expec

tancy of a person born now). Incidentalty, human life expectancy is increasing at an
ever faster rate. During the Roman Empire, 2000 years ago, a person could expect
to live only 25 years. In 1850, actuary tables listed the mean lifetime of a human as
39 years. Now that number is B0 years. Thus, it took almost 2000 years to add 50% to
human life expectancy, but in the last 150 years, life expectancy has doubied again.
This is perhaps the most direct evidence that science has basic benefits for all of us.
Physics contributes to this progress by aiding the development of more sophisticated
medical imaging and treatment equipment, and today’s fundamental research will
enter clinical practice tomorrow. Laser surgery, cancer radiation therapy, magnetic
resonance imaging, and positron emission tomography are just a few examples of
technological advances that have helped increase life expectancy.
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In their research, the authors of this book study ultrarelativistic heavy-ion collisions.
These collisions occur during time intervals on the order of 102 s, more than a million times
shorter than the time intervals we can measure direcrly. During this course, you will learn that
the time scale for the oscillation of visible light is 107" s, and that of audible sound is 1073 s.

The longest time span we can measure indirectly or infer is the age of the universe.
Current research puts this number at 13.7 billion years, but with an uncertainty of
up to 0.2 billion years.

We cannot leave this topic without mentioning one interesting fact to ponder dur-
ing your next class lecture. Lectures typically last 50 minutes ar most universities. A
century, by comparison, has 100 % 365 *24 x60 = 50,000,000 minutes. So a lecture
lasts about 1 millionth of a century, leading to a handy (non-S) time unit, the microcen-
tury =duration of one lecture.

1.5 [ General Problem-Solving Strategy

Physics involves more than solving problems-but problem solving is a big part of
it. At times, while you are labering over your homework assignments, it may seem
that’s all you do. However, repetition and practice are important parts of learning.

A basketball player spends hours practicing the fundamentals of free throw shoot-
ing. Many repetitions of the same action enable a player to become very reliable at this
task. You need to develop the same philosophy toward solving mathematics and physics
problems: You have to practice good problem-solving techniques. This work will pay
huge dividends, nort just during the remainder of this physics course, not just during
exaims, not even just in your other science classes, but also throughourt your entire career.

What constitutes a good problem-solving strategy? Everybody develops his or
her own routines, procedures, and shortcuts. However, here is a general blueprint
that should help get you started:

1. THINK Read the problem carefully. Ask yourself what quantities are known,
what quantities might be useful but are unknown, and what quantities are
asked for in the solution. Write down these quantities and represent them
with their commonly used symbols. Convert into SI units, if necessary.

2. SKETCH Make a sketch of the physical situation to help you visualize the
problem. For many learning styles, a visual or graphical representation is
essential, and it is often essential for defining the variables.

3. RESEARCH Write down the physical principles or laws that apply to the
problem. Use equations representing these principles to connect the known
and unknown quantities to each other. In some cases, you will immediately see
an equation that has only the quantities that you know and the one unknown
that you are supposed to calculate, and nothing else. More often you may have
to do a bit of deriving, combining two or more known equations into the one
that you need. This requires some experience, more than any of the other steps
listed here. To the beginner, the task of deriving a new equation may look
daunting, but you will get better at it the more you practice.

4. SIMPLIFY Do not plug numbers into your equation yet! Instead, simplify your
result algebraically as much as possible. For example, if your result is expressed
as a ratio, cancel out common factors in the numerator and the denominator.
This step is particularly helpful if you need to calculate more than one quantity.

5. CALCULATE Put the numbers with units into the equation and get to work with
a calculator. Typically, you will obtain a number and a physical unit as your answer.

6. ROUND Determine the number of significant figures that you want to have in
your result. As a rule of thumb, a result obtained by multiplying or dividing should
be rounded to the same number of significant figures as in the input quanticy that
is given with the least number of significant figures. You should not round in
intermediate steps, as rounding too early might give you a wrong solution.



7.DOUBLE-CHECK Step back and look at the result. Judge for yourself if the
answer (both the number and the units) seems realistic. You can often avoid
handing in a wrong solution by making this final check. Sometimes the units
of your answer are simply wrong, and you know you must have made an
error. Or sometimes the order of magnitude comes out torally wrong. For
example, if your task is to calculate the mass of the Sun (we will do this later
in this book), and your answer comes out near 10° kg (only a few thousand
tons), you know you must have made a mistake somewhere.

Ler’s put this strategy to work in the following example.

SOLVED PROBLEM 11 | Volume of a Cylinder

F

PROBLEM
Nuclear waste material in a physics laboratory is stored in a cylinder of height 42 inches and
circumference 83 inches. What is the volume of this cylinder, measured in metric units?

SOLUTION
In order o practice problem-solving skills, we will go through each of the steps of the
strategy outlined above.

THINK From the question, we know that the height of the cylinder, converted to
centimeters, is

h=42in=48125in
=(4.8125 in)-(2.54 cm/in)
=12.22375 cm.

Also, the circumference of the cylinder is specified as
c=8=in=81875in
={8.1875 in)-(2.54 cnv/in)
= 2079625 cm.
Even though it is clear that the number of significant digits in our Sl-converted values

for h and c are clearly too high, we keep them for our intermediate calculations, and we
only round our final answer to the proper number of significant digits.

SKETCH Next, we produce a sketch, something like Figure 1.9. Note that the given
quanctities are shown with their symbolic representations, not with their numerical values.
The circumference is represented by the thicker circle (oval, actually, in this projection).

RESEARCH Now we have to find the volume of the cylinder in terms of its height
and its circumiference. This relationship is not commonly listed in collections of
geometric formulas. Instead, the volume of a cylinder is given as the product of base
area and height:

V =arlh
Once we find a way to connect the radjus and the circumference, we'll have the formula
we need. The top and bottom areas of a cylinder are circles, and for a circle we know that

c=27r.

SIMPLIFY Remember: We do not plug in numbers yet! To simplify our numerical
task, we can solve the second equation for r and insert this result into the first equation:

C=27r=r= £
27
2 2
V=narlh= 7r[-—c—] h =-C—’—I-.
2n 47
— Continued

1.5 General Problem-Solving Strategy
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FIGURE 1.9 Sketch of right cylinder,
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CALCULATE Now it's time to get out the calculator and put in the numbers:

_ (2079625 cm)? - (12.22375 cm)
47
= 42069239 cm”.

ROUND The output of the calculator has again made our result look much more
precise than we can claim realistically. We need to round. Since the input quantities |
are given to only three significant figures, our result needs to be rounded to three
significant figures. Our final answer is V=421, cm?,

DOUBLE-CHECK Our last step is to check that the answer is reasonable. First, we look
at the unit we got for our result. Cubic centimeters are a unit for volume, so our result
passes its first test. Now let’s look at the magnitude of our result. You might recognize
that the height and circumference given for the cylinder are close to the corresponding
dimensions of a soda can. If you look on a can of your favorite soft drink, it will list the
contents as 12 fluid ounces and also give you the information that this is 355 mL. Because
1 mL =1 cm’, our answer is reasonably close to the volume of the soda can. Note that
this does not tell us that our caleulation is correct, but it shows that we are not way off.

Suppose the researchers decide that a soda can is not large enough for holding
the waste in the lab and replace it with a larger cylindrical container with a height
of 44.6 cm and a circumference of 62.5 cm. If we want to calculate the volume of
this replacement cylinder, we don't need to do all of Solved Problem 1.1 over again.
Instead, we can go directly to the algebraic formula we derived in the Simplify step
and substitute our new data into that, ending up with a volume of 13,900 ¢cm® when
rounded to three significant figures. This example illustrates the value of waiting to
substitute in numbers until algebraic simplification has been completed.

In Solved Prablem 1.1, you can see that we followed the seven steps outlined in our
general strategy. It is tremendously helpful to train your brain to follow a certain procedure
in attacking all kinds of problems. This is not unlike following the same routine whenever
you are shooting free throws in basketball, where frequent repetition helps you build the
muscle memory essential for consistent success, even when the game is on the line.

Perhaps more than anything, an introductory physics class should enable you to
develop methods to come up with your own solutions to a variety of problems, elim-
inating the need to accept "authoritative” answers uncritically. The method we used
in Solved Problem 1.1 is extremely useful, and we will practice it again and again in
this book. However, to make a simple point, one that does not require the full set of
steps used for a solved problem, we’ll sometimes use an illustrative example.

EXAMPLE 1.2 | Volume of a Barrel of Oil
= e et
PROBLEM
The volume of a barrel of oil is 159 L. We need to design a cylindrical container that will
hold this volume of oil. The container needs to have a height of 1.00 m to fit in a trans
portation container. What is the required circumference of the cylindrical container?

SOLUTION
Starting with the equation we derived in the Simplify step in Solved Problem 1.1, we can relate
the circumference, ¢, and the height, b, of the container to the volume, V, of the container:
y=Sh
4T



| Solving for the circumference, we get

I 47V

c= I—

‘ h
The volume in SI units is

3 3
=159 200mblom’ Tm __ 593
L 1 mL 10° cm

|
‘ The required circumference is then

3
. AzV _ l47r {0.159 m’) =141 m.

““Vr YV 1oo0m

As you may have already realized from the preceding problem and example, a good
command of algebra is essential for success in an introductory physics class. For engineers
and scientists, most universities and colleges also require calculus, but at many schools
an introductory physics class and a calculus class can be taken concurrently. This first
chapter does not contain any calculus, and subsequent chaprers will review the relevant
calculus concepts as you need them. However, there is another field of mathematics that
is used extensively in introductory physics: trigonometry. Virtually every chapter of this
book uses right triangles in some way. Therefore, it is a good idea to review the formulas
for sine, cosine, and the like, as well as the indispensable Pythagorean Theorem, Let's
look at another solved problem, which makes use of trigonometric concepts.

SOLVED PROBLEM 1.2 |'f View from the Willis Tower

—

PROBLEM

It goes withour saying that one can see farther from a tower than from ground level;
the higher the tower, the farther one can see. The Willis Tower (formerly named Sears
Tower) in Chicago has an observation deck, which is 412 m above ground. How far
can one see out over Lake Michigan from this observation deck under perfect weather
conditions? (Assume eye level is at 413 m above the level of the lake)

‘ SOLUTION

THINK As we have stressed before, this is the most important step in the problem-
solving process. A little preparation at this stage can save a lot of work at a later stage.
Perfect weather conditions are specified, so fog or haze is not a limiting factor. What else
could determine how far one can see? If the air is clear, one can see mountains that are
quite far away. Why mountains! Because they are very tall. Bur the landscape around
Chicago is flat. What then could limit the viewing range? Nothing, really; one can see all
the way to the horizon. And what is the deciding factor for where the horizon is? It is
the curvature of the Earth. Let’s make a sketch to make this a little clearer.

SKETCH Our sketch does not have to be elaborate, but it needs to show a simple
version of the Willis Tower on the surface of the Earth. It is not important that the
sketch be to scale, and we elect to greatly exaggerate the height of the tower relative
to the size of the Earth. See Figure 1.10.

It seems obvious from this sketch that the farthest point {(point C) that one can see
from the top of the Willis Tower (point B) is where the line of sight just touches the
surface of the Earth tangentially. Any point on Earth’s surface farther away from the
Willis Tower is hidden from view (below the dashed line segment). The viewing range
is then given by the distance r between that surface point C and the observation deck

| (point B) on top of the tower, at height h. Included in the sketch is also a line from the
| center of Earth (point A} to the foot of the Willis Tower. It has length R, which is the
radius of Earth. Another line of the same length, R, is drawn to the point where the line

of sight touches the Earth’s surface tangentially.
| - Continued

1.5 General Problem-Solving Stralegy

FIGURE 110 Distance from the top of
the Willis Tower (8) to the horizon (C).
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Concept Check 1.4

Two sallors are at the tops of their
ships’ masts in the open ocean. The
mast of ship A is twice as high as that
of ship B, How much farther can sailor
A see than sailor B?

a) no farther d} almost three

limes as far
b} a little more

than 40% e} four times
farther as far
¢) twice as far

FIGURE 1.11 Viewing range in the limit

of very large h.

RESEARCH As you can see from the sketch, a line drawn from the center of the Earth to the
point where the line of sight wouches the surface (A to C) will form a right angle with that
line of sight (B to C); that is, the three points A, B, and C form the comers of a right triangle.
This is the key insight, which enables us to use trigonomertry and the Pythagorean Theorem
to attack the solution of this problem. Examining the sketch in Figure 1.9, we find

rP+RZ=(R+h>.

SIMPLIFY Remember, we want to find the distance to the horizon, for which we used the
symbuol r in the previous equarion. Isolating that variable on one side of our equation gives

r? =(R+hy? - R
Now we can simplify the square and obrtain
r? =R?+2hR+h* — R* =2hR +I°.

Finally, we take the square root and obtain our final algebraic answer:

r=v2hR + h2.

CALCULATE Now we are ready to insert numbers. The accepted value for the radius of
Earth is R = 637%10° m, and h = 413 m = 4.13 * 10° m was given in the problem. This
leads to

r = J2(4.13x102m}6.37x10° m) + (4.13x10°m)? = 7.25382x10° m.

ROUND The Earth’s radius was given to three-digit precision, as was the elevation of
the eye level of the observer. So we round to three digits and give our final result as

F=7.25x10*m =725 km.

DOUBLE-CHECK Always check the units first. Since the problem asked “how far,”
the answer needs to be a distance, which has the dimension of length and thus the
base unit meter. Our answer passes this first check. What about the magnitude of our
answen! Since the Willis Tower is almost 0.5 kilometer high, we expect the viewing
range to be ar least several kilometers; so a multikilometer range for the answer seems
reasonable. Lake Michigan is slightly more than 80 km wide, if you look toward the
east from Chicago. Our answer then implies that you cannot see the Michigan shore of
Lake Michigan if you stand on top of the Willis Tower. Experience shows that this is
correct, which gives us additional confidence in our answer.

Problem-Solving Guidelines: Limits

In Solved Problem 1.2, we found a handy formula, r = V2hR + 2, for how far one
can see on the surface of Earth from an elevation h, where R is the radius of Earth.
There is another test that we can perform to check the validity of this formula. We
did not include it in the Double-Check step, because it deserves seperate consider-
ation. This general problem-solving technique is examining the limits of an equation.

What does “examining the limits” mean? In terms of Solved Problem 1.2, it means
that instead of just inserting the given number for h into our formula and computing the
solution, we can also step back and think about what should happen to the distance r one
can see if h becomes very large or very small. Obviously, the smallest that h can become is
zero. In this case, r will also approach zero. This is expected, of course; if your eye level is
at ground level, you cannot see very far. On the other hand, we can ponder what happens
if h becomes large compared to the radius of Earth (see Figure 1.11). (Yes, it is impossible
to build a tower that tall but i could also stand for the altitude of a satellite above ground.)
In that case, we expect that the viewing range will eventually simply be the height k. Our
formula also bears out this expectation, because as i becomes large compared 1o R, the

first term in the square root can be neglected, and we find ilim V2R +h? = h.

1 — 00

What we have illustrated by this example is a general guideline: If you derive a formula,
you can check its validity by substituting extreme values of the variables in the formula and
checking if these limits agree with common sense. Often the formula simplifies drastically



at a limit. If your formula has a limiting behavior that is correct, it does not necessarily mean
that the formula itself is correct, bur it gives you additional confidence in its validity.

Problem-Solving Guidelines: Ratios

Another very common class of physics problems asks what happens to a quantity
that depends on a certain parameter if that parameter changes by a given factor.
These problems provide excellent insight into physical concepts and take almost no
time to do. This is true, in general, if two conditions are met: First, you have to know
whart formula to use; and second, you have to know how to solve this general class
of problems. Bur that is a big if. Studying will equip your memory with the correct
formulas, but you need to acquire the skill of solving problems of this general type.

Here is the trick: Write down the formula that connects the dependent quantity to
the parameter that changes. Write it twice, once with the dependent quantity and the
parameters indexed (or labeled} with 1 and once with them indexed with 2. Then form
ratios of the indexed quantities by dividing the right-hand sides and the left-hand sides
of the two equations. Next, insert the factor of change for the paramerer (expressed as
a ratio) and do the calculation to find the factor of change for the dependent quantity
(also expressed as a ratio).

Here is an example that demonstrates this method.

EXAMPLE 1.3 | Change in Volume

- e

PROBLEM
If the radius of a cylinder increases by a factor of 2.73, by what factor does the volume
change?! Assume that the height of the cylinder stays the same.

SOLUTION
The formula that connects the volume of a cylinder, V, and its radius, r, is

vV =ar’h.
The way the problem is phrased, V is the dependent quantity and r is the parameter
it depends on. The height of the cylinder, h, also appears in the equation but remains

{ constant, according to the problem statement.

Following the general problem-solving guideline, we write the equation twice,
once with 1 as indexes and once with 2:

V, =arih
V, =arih
Now we divide the second equation by the first, obtaining

. m'z 2h _
mrih

As you can see, h did not receive an index because it stayed constant in this problen;
it canceled out in the division.
The problem states that the change in radius is given by:

r,=2.73r,.

We substitute for r, in our ratio:
2 2
Y2 =[2] =[—12‘73’ ] =273% = 74529,
-

ar
V, =745V,

where we have rounded the solution to the three significant digits that the quantity
given in the problem had. Thus, the answer is that the volume of the cylinder increases
| by a factor of 7.45 when you increase its radius by a factor of 2.73.

& e e—— o —

1.5 General Problem-Solving Strateqy
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Concept Check 1.5

Estimate the number of liters of
gasoline consumed each day in the
United States by commuters driving
to work,

a) 37854 flers  d) 37854418
"
b) 378,541 flers
liters e} 378541178
iters
¢) 3785411784 fees
liters

Problem-Solving Guidelines: Estimation

Sometimes you don't need to solve a physics preblem exactly. When an estimate is
all that is asked for, knowing the order of magnitude of some quantity is enough. For
example, an answer of 1.24 x 10%° km is for most purposes nor much different from
1 10*° km. In such cases, you can round off all the numbers in a problem to the near-
est power of 10 and carry out the necessary arithmetic. For example, the calculation in
Soived Problem 1.1 reduces to

(20.8 em)?x (12.2 cm) _ (2x10' cm)’ (10 cm) _ 4x10° cm’®
4n 10 10

which is pretty close to our answer of 420. cm®. Even an answer of 100 cm” (rounding
20.8 cm to 10 cm) has the correct order of magnitude for the volume. Notice that you
can often round the number 7 to 3 or round 7 1o 10. With practice, you can find
more tricks of approximation like these that can make estimations simpler and faster.

The technique of gaining useful results through careful estimation was made famous
by the 20th-century physicist Enrico Fermi (1901-1954), who estimated the energy
released by the Trinity nuclear explosion on July 16, 1945, near Socorro, New Mexico,
by observing how far a piece of paper was blown by the wind from the blast. There is
a class of estimation problems called Fermi problems that can yield interesting results
when reasonable assumptions are made about quantities that are not known exactly.

Estimates are useful to gain insight into a problem before turning to more compli-
cated methods of calculating a precise answer. For example, one could estimate how
many tacos people eat and how many taco stands there are in town before investing
in a complete business plan to construct a taco stand. In order to practice estimation
skills, let’s estimate rthe amount of carbon dioxide thart is added to Earth’s atmosphere
annually by humans breathing.

= 400 cm’,

EXAMPLE 1.4 I!;Greenhouse Gas Production

R A e
SN ——y |

PROBLEM '
The concentration of greenhouse gases, including carbon dioxide (CO,), in the Earth’s
atmosphere is increasing. Estimate how much CO, is added to the atmosphere each
year by humans breathing.

SOLUTION

Since we are asked to estimate, we have 1o come up with the order of magnitude of the
amount. The precise number does not matter so much. Let’s start with the amount of CO, in
one breath, estimate how many breaths each of us takes per year, and then multiply by the
number of huimans on the planec.

When we breathe, we take in air that is a mixture of 21% oxygen and 78% nitrogen (plus
iraces of other gases). We exhale air that has approximately 16% oxygen and 5% CO,. Even
though our lung capacity is approximately 3 to 5 L, we only use about 10% of that capacity in
norrmal breathing. So, let's say that one breath of air is approximately 0.4 L Then, 5% of 04 L is
2 % 1072 L. You may remember from high school science that 22.4 L of gas comprise 1 mole, :
and that 1 mole of CO;, has a mass of 2 * 16 g + 12 g = 44 g. This means that in one breath |
we produce

my = (22107 LX44 g) 1%;41'):44 g) = 4x1072 g
of C0O,.

We take a breath of air about once every 4 seconds. (You can use a stopwatch to convince
yourself that this is true, or you can count the number of breaths you take in a minute) This
means that we breathe about 1000 times per hour, and since a year has about 10,000 hours, we
take N = 10 breaths per year.

Now, we can pur all this together and get our estimate. Hutnanity (-7 billion, or 7 x 10,
humans) produces about

M = NmNyumans = 1074 x 1072 g)X7 x 10%) = 3 x 10" g = 3 x 10"% kg of CO,
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In other words, our estimate indicates that humans add approximately 3 billion metric
tons of CO, to Earth’s atmosphere each year just by breathing. Remember, this is jusc an
estimate; we cannot be sure of the mantissa, but we can be reascnably confident of the
exponent. Our answer certainly is billions of tons, but we cannot be sure if it is 1 or 3 billion.

For comparison, measurements indicate that the amount of CO, in the atmosphere
increases by approximately 15 billion metric tons per year. This amounc is clearly much
higher than our estimate, but is mainly due to burning of fossil fuels.

E.._ = =i = — —— P —

Vectors are mathematical descriptions of quantities that have both magnitude and
direction. The magnitude of a vector is a nonnegative number, often combined
with a physical unit. Many vector quantities are important in physics and, indeed,
in all of science. Therefore, before we start this study of physics, you need to be
familiar with vectors and some basic vector operations.

Vectors have a starting point and an ending point. For example, consider a flight
from Seattle 1o New York. To represent the change of the plane’s position, we can
draw an arrow from the plane’s departure point to its destination (Figure 1.11).
(Real flight paths are not exactly straight lines due to the fact that the Earth is a
sphere and due to airspace restrictions and air traffic regulations, but a straight line
is a reasonable approximation for our purpose.) This arrow represents a displacement
vector, which always goes from somewhere to somewhere else. Any vector quantity
has a magnitude and a direction. If the vector represents a physical quantity, such
as displacement, it will also have a physical unit. A quantity that can be represented
withourt giving a direction is called a scalar. A scalar quantity has just a magnitude
and possibly a physical unit. Examples of scalar quantities are time and temperature.

This book denotes a vector quantity by a letter with a small horizontal arrow
pointing to the right above it. For example, in the drawing of the trip from Seattle
to New York (Figure 1.12), the displacement vector has the symbol C. In the rest of
this section, you will learn how to work with vectors: how to add and subtract them
and how to multiply them. In order to perform these operations, it is very useful to
introduce a coordinate system in which to represent vectors.

Cartesian Coordinate System

A Cartesian coordinate system is defined as a set of two or more axes with angles of
90° berween each pair. These axes are said to be orthogonal to each other. In a two-dimen-
sional space, the coordinate axes are typically labeled x and y. We can then uniquely spec-
ify any point P in the two-dimensional space by giving its coordinates P, and P, along the
two coordinate axes, as shown in Figure 1.13. We will use the notation (P,.P,) to specify a

——_r—\\
\_ﬂk I"""\I\k '\b 4
'._‘f A FIGURE 113 Representation of a point

F in two-dimensional space in terms of its
FIGURE 1.12 Fiight path from Seattle to New York as an example of a vector. Carlesian coordinates.
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P.I.'
——be—to4 bt b Eex
4 2 4] 2 4
FIGURE 114 Representation of a
point P in a one-dimensional Cartesian
coordinate system.

FIGURE1.15 Representation of a point
Pin a three-dimensional space in terms of
its Cartesian coordinales.

FIGURE 1.16 Cartesian representations
of a vector 4.

{a} Displacement vector from Pto Q;

(b} displacement veclor from R to S,

point in terms of its coordinates. In Figure 1.13, for example, the point P has the position
{3.3,3.8), because its x-coordinate has a value of 3.3 and its y-coordinate has a value of 3.8,
Note that each coordinate is a number and can have a positive or negative value or be zero.

We can aiso define a one-dimensional coordinate system, for which any point is
located on a single straight line, conventionally called the x-axis. Any point in this
one-dimensional space is then uniquely defined by specifying one number, the value
of the x-coordinate, which again can be negative, zero, or positive (Figure 1.14). The
point P in Figure 1.14 has the x-coordinate P,=—2.5.

Clearly, one- and two-dimensional coordinate systems are easy to draw,
because the surface of paper has two dimensions. In a three-dimensional coordi-
nate system, the third coordinate axis is perpendicular 1o the other two; thus, to
be represented accurately, it would have to stick straight out of the plane of the
page. In order to draw a three-dimensional coordinate system, we have to rely on
conventions that make use of the techniques for perspective drawings. We represent
the third axis by a line that is at a 45° angle with the other two (Figure 1.15).

In a three-dimensional space, we have to specify three numbers to uniquely deter-
mine the coordinates of a point. We use the notation P=(P,,F,,P,) to accomplish this.
It is possible to construct Cartesian coordinate systems with more than three orthogo-
nal axes, although they are almost impossible to visualize. Modern string theories for
example, are usually constructed in 10-dimensional spaces. However, for the purposes
of this book and for almost all of physics, three dimensions are sufficient. As a matter of
fact, for most applications, the essential mathematical and physical understanding can
be obrtained from two-dimensional representations.

Cartesian Representation of Vectors

The example of the flight from Seattle 10 New York established that vectors are
characterized by two points: start and finish, represented by the tail and head of an
arrow, respectively. Using the Cartesian representation of points, we can define the
Cartesian representation of a displacement vector as the difference in the coordinates
of the end point and the starting point. Since the difference between the two points
for a vector is all that matters, we can shift the vector around in space as much as
we like. As long as we do not change the length or direction of the arrow, the vector
remains mathematically the same. Consider the two vectors in Figure 1.16.

Figure 1.16a shows the displacement vector A that points from point P=(—2, —3)
to point @=(3, 1). With the notation just introduced, the components of A are the
coordinates of point @ minus those of point P, A= (3-(=2), 1-(-3) = (5, 4).
Figure 1.16b shows another vector from point R=(—3, —1) to point $=(2, 3). The differ-
ence between these coordinates is (2—(—3), 3—(~1)) = (5, 4), which is the same as the
vector A pointing from P1o Q.

For simplicity, we can shift the beginning of a vector to the origin of the coordi-
nate systemn, and the components of the vector will be the same as the coordinates
of its end point (Figure 1.17). As a result, we see that we can represent a vector in
Cartesian coordinates as

A= (A, Ay) in two-dimensional space (1.7)
A= (Ax,Ay. A,) in three-dimensional space (1.8)
where A,, A, and A, are numbers. Note that the notation for a point in Cartesian coor-

dinates is similar to the notation for a vector in Cartesian coordinates. Whether the
notation specifies a point or a vector will be clear from the context of the reference.

Graphical Vector Addition and Subtraction

Suppose that the direct flight from Seattle to New York shown in Figure 1.12 was not
available, and you had to make a connection through Dallas (Figure 1.18). Then the dis-
placement vector ¢ for the flight from Seattle to New York is the sum of a displacement
vector A from Seattle to Dallas and a displacement vector B from Dallas to New York:

C=A+B. (1.9)
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FIGURE 148 Direct flight versus one-

FIGURE 117 Cartesian (LR stop flight as an example of vector addition,

vector A in two dimensions.

This example shows the general procedure for vector addition in a graphical way:
Move the tail of vector B the head of vector A; then the vector from the tail of ol
vector A to the head of vector B is the sum vector, or resultant, of the two.

If you add two real numbers, the order does not matter: 345 =5+3. This prop-
erty is called the commurative property of addition. Vector addition is also commurative:

A+B=B+A. (1.10}
Figure 1.19 demonstrates this commutative property of vector addition graphically. It
shows the same vectors as in Figure 1.18, but also shows the beginning of vector Amoved
to the tip of vector B (dashed arrows)-note that the resultant vector is the same as before.
Next, the inverse (or reverse or negative) vector, —C, of the vector C is a vector
with the same length as C but pointing in the opposite direction (Figure 1.20). For
the vector representing the flight from Seattle to New York, for example, the inverse
vector is the return trip. Clearly, if you add € and its inverse vector, —C, you end up
at the point you started from. Thus, we find

C+(-€)=C-C=(0,0,0), (1.11)

FIGURE 149 commutative property of
vector addition.

and the magnitude is zero, |E‘ —(-_"l = 0. This seemingly simple identity shows that
we can treat vector subtraction as vector addition, by simply adding the inverse vector.
For example, the vector B in Figure 1.19 can be obtained as B = C — 4. Therefore,
vector addition and subtraction follow exactly the same rules as the addition and FIGURE 1.20 Inverse vector ~C of a
subtraction of real numbers. vector C.

Vector Addition Using Components

Graphical vector addition illustrates the concepts very well, but for practical pur-
poses the component method of vector addition is much more useful. (This is
because calculators are easier to use and much more precise than rulers and graph
paper.) Let's consider the component method for addition of three-dimensional
vectors. The equations for two-dimensional vectors are special cases that arise
by neglecting the z-components. Similarly, the one-dimensional equation can be
obtained by neglecting all y- and z-components.

If you add two three-dimensional vectors, A=(A,, Ay A,) and B=(B,, By, B,),
the resulting vector is

C=A+B=(A, A, A,)+(B,, B, B)=(A, +B,, A +B,, A, +B,). (1.12)

In other words, the components of the sum vector are the sums of the components
of the individual vectors;

C,=A,+8B,
C,=A, + B, (1.13)
C,=A,+B,.

The relationship between graphical and component methods is illustrated in Figure 121.
Figure 1.21a shows two vectors A=(4, 2) and B=(3, 4) in two-dimensional space, and
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FIGURE 1.21 Vector addition by
components. {a) Components of vectors
A and 3 {b) the components of the
resultant vector are the sums of the
components of the individua! vectors.

@) b)

Figure 1.21b displays their sum vector C =(4+3, 2+4)=(7,6). Figure 1.21b clearly shows
that C,=A, + B,, because the whole is equal to the sum of its parts.

In the same way, we can take the difference D=A — B, and the Cartesian
components of the difference vector are given by

Dx=Ax — B,
D,=A,-B, (1.14)
D,=A,—B,.

Multiplication of a Vector with a Scalar

What is A+ A+ A? If your answer to this question is 34, you already understand
multiplying a vector with a scalar. The vector that results from multiplying the vector A
with the scalar 3 is a vector that points in the same direction as the original vector A
but is 3 times as long.

Multiplication of a vector with an arbitrary positive scalar-that is, a positive number-
results in another vector that points in the same direction bur has a magnitude that is
the product of the magnitude of the original vector and the value of the scalar. Mul-
tiplication of a vector by a negative scalar results in a vector pointing in the opposite
direction to the original with a magnitude that is the product of the magnitude of the
original vector and the magnitude of the scalar.

Again, the component notation is useful. For the multiplication of a vector A
with a scalar s, we obrtain:

E=sA=s(A,, A, A,)=(sA,,5A,,54,). (1.15)

In other words, each component of the vector A is multiplied by the scalar in order
to arrive at the components of the product vector:

E, =s5A,
E, =54, (1.16)
E,=5A,.

Unit Vectors

There is a set of special vectors that make much of the math associated with vectors

easier. Called unit vectors, they are vectors of magnitude 1 directed along the main

coordinate axes of the coordinate system. In two dimensions, these vectors point in

the positive x-direction and the positive y-direction. In three dimensions, a third unit

vector points in the positive z-direction. In order to distinguish these as unit vectors,

we give them the symbols %, §, and 2. Their component representation is
x=(1,0,0)

§=(0,1,0) (1.17)



Figure 1.22a shows the unit vectors in two dimensions, and Figure 1.22b shows the
unit vectors in three dimensions.

What is the advantage of unit vectorst We can write any vector as a sum of these
unit vectors instead of using the component notation; each unit vector is multiplied
by the corresponding Cartesian component of the vector:

A=(A,,A,A,)
=(A,,0,0)+(0,A,,0)+(0,0,A,)

1.18
=A,(1,0,0)+ A,(0,1,0)+ A,(0,0,1) (1.18)
=AR+AG+A2
In two dimensions, we have
A=A X+ A (1.19)

This unit vector representation of a general vector will be particularly useful for
multiplying two vectors.

Vector Length and Direction

If we know the component representation of a vector, how can we find its length (mag-
nitude) and the direction it is pointing in? Let’s look at the most important case: a vector
in two dimensions. In two dimensions, a vector A can be specified uniquely by giving the
two Cartesian components, A, and A,. We can also specify the same vector by giving two
other numbers: its length A and its angle 6 with respect to the positive x-axis.

Let’s take a look at Figure 1.23 to see how we can determine A and 8 from A, and A,
Figure 1.23a shows the graphical representation of equation 1.19. The vector Ais the surn
of the vectors A, % and A, §. Since the unit vectors £ and § are by definition orthogonal to
each other, these vectors form a 90° angle. Thus, the three vectors A, A %, and A . form
a right triangle with side lengths A, A,, and A,, as shown in Figure 1.23b.

Now we can employ basic trigonometry to find 6 and A. Using the Pythagorean

Theorem results in
Az,fAi +AZ (1.20)

We can find the angle # from the definition of the tangent function

Ay (1.21)

A
In using equation 1.21, you must be careful that 8 is in the correct quadrant. We can
also invert equations 1.20 and 1.21 to obtain the Cartesian components of a vector
of given length and direction:

f=1an
X

A, =Acost (1.22)

Ay=Asin9. (1.23)

You will encounter these trigonometric relations again and again throughourt intro-
ductory physics. If you need to refamiliarize yourself with trigonometry, consult the
mathematics primer provided in Appendix A.

Scalar Product of Vectors

Above we saw how to multiply a vector with a scalar. Now we will define one way
of multiplying a vector with a vector and obtain the scalar product. The scalar
product of two vectors A and B is defined as

AeB =lﬁ| |I§| cosa, (1.24)

16 VYectors

(b)
FIGURE 1.22 Cartestan unit vectors in

{a) two and {b) three dimensions.

)

FIGURE 1.23 Length and direction of a
vector, (a) Carlesian components A, and 4,;
{b] length A and angle &
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Concept Check 1.6

Into which quadrant do each of the
following vectors point?

Y

Quadrant Ll Quadrant |
90° < § < 1BO°| (° < @< 90°

Quadrane 1l
180° < # < 270°

Quadrant IV

a} A={A, AJwithA, =15cm,
A=-10cm

b} a vector with length 2.3 cm and
direction angle 131°

¢) the inverse vector of 8 ={0.5 cm,
1.0 cm}

d} the sum of the unit vectors in the
x- and y-directions

FIGURE 1.24 Two vectors 7 and B
and the angle o between them.

FIGURE 1.25 Cakulating the angle

between two position vectors.

» X

270° < 8 < 3607

where o is the angle between the vectors A and B, as shown in Figure 1.24, Note
the use of the larger dot (s) as the multiplication sign for the scalar product between
vectors, in contrast to the smaller dot ) that is used for the multiplication of scalars.
Because of the dot, the scalar product is often referred to as the dot product.

If two vectors form a 90° angle, then the scalar product has the value zero. In
this case, the two vectors are orthogonal to each other. The scalar product of a pair
of orthogonal vectors is zero.

If A and B are given in Cartesian coordinates as A = {A,. Ay A;) and

= (B,, B, B,), then their scalar product can be shown to be equal to:

A<B=(A,, Ay, A;)*(B,, B, B,)= AB, +AB, +A,B,. (1.25)

From equation 1.25, we can see that the scalar product has the commutative property:

AeB=BeA (1.26)

This result is not surprising, since the commutative property also holds for the mul-
tiplication of vwo scalars.

For the scalar product of any vector with itself, we have, in component

notation, AeA= A2+ A2 + AZ. Then, from equation 1.24, we find A=A =

|A| |A|cosa —|A| |A| —|A| {because the angle between the vector A and itself is
zero, and the cosine of that angle has the value 1). Combining these two equations,
we obtain the expression for the length of a vector that was introduced in the previ-

ous subsection:
|4 = JaZ+aZ+al. (1.27)

We can also use the definition of the scalar product to compute the angle
between two arbitrary vectors in three-dimensional space:

—

A-B=|/'i| |B|cosa-=>cosn-=—,_—

-

—1 ;i B
4] 18
For the scalar product, the same distributive property that is valid for the con-
ventional multiplication of numbers holds:

— = @ = COS

(1.28)
4] 18

Ae(B+C)=AsB+AC. (1.29)

The following example puts the scalar product to use,

EXAMPLE 1.5 | Angle Between Two Position Vectors
F i — -t
PROBLEM
What is the angle o between the two position vectors shown in Figure 1.25,
A = (4.00,2.00,5.00) cm and B—(450 4.00, 3.00) cm?

SOLUTION
To solve this problem, we have to put the numbers for the components of each of the
two vectors into equation 1.27 and equation 1.25 then use equation 1.28:

|A] = J4.00% +200° +500% cm =671 cm

|B| = V4502 +4.002 + 300% ¢m =673 cm

AeB=A,B_+A,B, + A,B, =(4.00%4.50 + 2.00%4.00 + 5.00x3.00) cm? = 41.0 cm?
x x yy 2%z

2
a=cos”! &—- = 24.7°.
6.71 cmx6.73 cm




Scalar Product for Unit Vectors. On page 26 we introduced unit vectors in the
three-dimensionat Cartesian coordinate system: X = (1,0,0), § = (0,1,0), and 2 =
{0,0,1). With our definition (1.25) of the scalar preduct, we find

Xex=jefj=2e2=1 (1.30)
and

Xrij=Xez=fez=0

ST (1.31)

fex=Zex=2¢5=0

Now we see why the unit vectors are called that: Their scalar products with them-

selves have the value 1. Thus, the unit vectors have length 1, or unit length, according
to equation 1.27. In addition, any pair of different unit vectors has a scalar product that
is zero, meaning that these vectors are orthogonal to each other. Equations 1.30 and
1.31 thus state that the unit vectors %, §j, and 2 form an orthonormal set of vectors,
which makes them extremely useful for the description of physical systems.

Geometrical Interpretation of the Scalar Product. In the definition of the scalar
product AeB —IA| }Bl cosa (equation 1.24), we can interpret ]A1 cosa as the
projection of the vector A onto the vector B (Figure 1.26a). In this drawing, the
line |A| cosa is rotated by 90° to show the geometrical interpretation of the scalar
product as the area of a rectangle with sides |A| cosa and |B| In the same way, we can
interpret |B| cosa as the projection of the vector B onto the vector A and construct a
rectangle with side lengths |B| cosa and |A‘ (Figure 1.26b). The areas of the two yellow
rectangles in Figure 1.25 are identical and are equal to the scalar product of the two
vectors A and B.

Finally, if we substitute from equation 1.28 for the cosine of the angle between
the two vectors, the projection |A| cosa of the vector A onto the vector B can be
written as

—

3:-1
U‘Jl

B _
FIENEC)

and the projection IBlcosa- of the vector B onto the vector A can be expressed as

|A| cosa = |A|

x>}

A«B
Al

|B| cosa =

Vector Product

The vector product {(or cross product) between two vectors A= (A, A, ,A,) and
= (B,. B,, B,) is defined as

E=AxB

C, = A,B, — A,B,

C, = A,B, —AB, (1.32)
C, = AB, —A,B,

e

[Bicos a4p ‘.,_,-—/
AA

{a} (b)
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Self-Test Opportunity 1.1

Show that equations 1,30 and 1.31 are
correct by using equation 1.25 and the
deflnitions of the unit vectors.

FIGURE1.26 Geometrical
interpretation of the scalar product

as an area. (@) The projection of A onto 8.
{b) The projeciion of B onto 4.
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FIGURE 1.27 Vector product.

=Z

C=A+0

W ———*=XE

5
FIGURE 1.28 Hike with a 90° turn.

In particular, for the vector products of the Cartesian unit vectors, this definition implies

Xxfg=12
gxz=2x (1.33)
IxX=1.

The absolute magnitude of the vector C is given by
IEl = '.7\”'B‘| sin 8. (1.34)

Here @ is the angle between A and B, as shown in Figure 1.27. This result implies
that the magnitude of the vector product of two vectors is at its maximum when
A 1 B and is zero when A || B. We can also interpret the right-hand side of this equa-
tiont as either the product of the magnitude of vector A times the component of B
perpendicular to A or the product of the magnitude of B times the component of
A perpendicular to B: llf'| =I.7X Bia =|E] A, p. Either interpretation is valid.

The direction of the vector C can be found using the right-hand rule: iIf vector
A points along the direction of the thumb and vecrtor B points along the direction of
the index finger, then the vector product is perpendicular to both vectors and points
along the direction of the middle finger, as shown in Figure 1.27.

It is important to realize that for the vector product, the order of the factors matters:

BxA=-AxB. (1.35)

Thus, the vector product differs from both regular multiplication of scalars and mul
tiplication of vectors to form a scalar product.

We'll see immediately from the definition of the vector product that for any
vector A, the vector product with itself is always zero:

AxA=0. (1.36)

Finally, there is a handy rule for a double vector product involving three vectors:
The vector product of the vector A with the vector product of the vectors B and C is
the sum of two vectors, one pointing in the direction of the vector B and multiplied
by the scalar product A»C and another one pointing in the direction of the vector C
and multiplied by —A*B:

Ax(BxC)=B(A+C)~C(A+B). (1.37)
This BAC-CAB rule Is straightforward to prove using the Cartesian components in
the definitions of the vector product and the scalar product, but the proof is cum-
bersome and thus omitted here. However, the rule occasionally comes in handy, in

particular when dealing with torque and angular momentum. And the mnemonic
BAC-CAB makes it fairly easy to remember.

SOLVED PROBLEM 1.3 |I Hiking
T — —— ’
PROBLEM
You are hiking in the Florida Everglades heading southwest from your base camp, for |
1.72 km. You reach a river that is too deep to cross; so you make a 90° right turn and |
hike another 3.12 km to a bridge. How far away are you from your base camp?

SOLUTION

THINK If you are hiking, you are moving in a two-dimensional plane: the surface
of Earth (because the Everglades are flar). Thus, we can use two-dimensional vectors
1o characterize the various segments of the hike. Making one straight-line hike, then
petforming a turn, followed by another straight-line hike amounts to a problem of vector |
addition that is asking for the length of the resultant vector.

SKETCH Figure 1.28 presents a coordinate system in which the y-axis points north and

the x-axis points east, as is copventional. The first portion of the hike, in the southwestern |
direction, is indicated by the vector A, and the second portion by the vector #, The figure |
also shows the resultant vector, € = A + B, for which we want 1o determine the length. |

Mark Dierker/McGraw-Hifl Education



RESEARCH Ifyou have drawn the sketch with sufficient accuracy, making the lengths
of the vectors in your drawing to be proportional to the lengths of the segments of the
hike {as was done in Figure 1.28), then you can measure the length of the vector C
to determine the distance from your base-camp ar the end of the second segment of
the hike. However, the given distances are specified to three significant digits, so the
answer should also have three significant digits. Thus, we cannot rely on the graphical
method but must use the component method of vector addition.

in order to calculate the components of the vectors, we need to know their angles
relative to the positive x-axis. For the vector A, which points southwest, this angle
is 8,=225°, as shown in Figure 1.29. The vector B has an angle of 90° relative to A,
and thus 85=135° relative 1o the positive x-axis. To make this point clearer, the start-
ing point of B has been moved to the origin of the coordinate systemn in Figure 1.29.
(Remember; We can move vectors around at will. As long as we leave the direction and
length of a vector the same, the vector remains unchanged.)

Now we have everything in place to start our calculation. We have the lengths and
directions of both vectors, allowing us to calculate their Cartesian components. Then,
we will add their components to calculate the components of the vector C, from which
we can calculate the length of this vector.

SIMPLIFY The components of the vector C are:
Cy=A,+B,=Acosf, +Bcostly
Cy = A, + B, = Asind, + Bsintp.

Thus, the length of the vector C is (compare with equation 1.20)

&= Jci +C§ = J(Ax +B,)? +(A, +By)2

= J(Acosf, + Bcosfp)? +(Asind, + Bsin6)2.

CALCULATE Now all that is left is to put in the numbers to obtain the vector length:

C= J((l.?;! km)cos 225° +(3.12 km)cos135% +((1.72 km)sin 225° +{3.12 km)sin 135>
= J(l.'?Zx(-Jl/_Z)-f- 3.12d=172)° +{(1.724= Ji72) + 312%/172)° km.

Entering these numbers into a calculator, we obtain:
C=3.562695609 km.

ROUND Because the initial distances were given to three significant figures, our final
answer should also have {at most) the same precision. Rounding to three significant
figures yields our final answer:

C=3.56 km.
DOUBLE-CHECK This problem was intended to provide practice with vector concepts.

However, if you forget for a moment that the displacements are vectors and note that

they form a right triangle, you can immediately calculate the length of side C from the
Pythagorean Theorem as follows:

C=vA2+B? =1.722 +3.122 km = 3.56 km.

Here we also rounded our result to three significant figures, and we see that it agrees
with the answer obrained using the longer procedure of vector addition.

16 Vectors

FIGURE 1.29 Angles of the two hike
segments.
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WHAT WE HAVE LEARNED | EXAM STUDY GUIDE

-

’~

B Large and small numbers can be represented using
scientific notation, consisting of a2 manrissa and a
power of ten.

®  Physical systems are described by the Sl system of
units. These units are based on reproducible standards
and provide convenient methods of scaling and
calculation. The base units of the SI system include
meter (m), kilogram (kg), second (s), and ampere (A).

®  Physical systems have widely varying sizes, masses, and
time scales, but the same physical laws govern all of
them.

® A number (with a specific number of significant
figures) or a set of numbers (such as components of
a vecror) must be combined with a unit or units o
describe physical quantities.

" Vectors in three dimensions can be specified by their
three Cartesian components, A=(A x» Ay A;). Each of
these Cartesian components is a number

W Vectors can be added or subtracted. In Carresian
COMpOonents, C=A+B= (A, Ay A 2) +{B,, B, B, )

=(A, +B,, A, +B,, A, +B,).

a  Multiplication of a vector with a scalar results

& Unit vectors are vectors of length 1. The unit vecrors

® The length and direction of a two-dimensional vector

m' The Cartesian components of a two-dimensional vector

B The scalar product, or dot producr, of two

®  The vector product, or cross product, of two

7

in another vector in the same or opposite
direction but of different magnitude,

E=sA=5(A,, Ay, A;)=(sA,, 5A,, 5A,).

in Carresian coordinate systems are denoted by %, §,
and &.

can be determined from its Cartesian components:
A=JAZ+ A2 and 6= tan”' (4,/A))

can be calculated from the vector’s length and angie
with respect to the x-axis: A,=Acos #and A, = Asin 6.

vectors yields a scalar quantity and is defined as
AB=AB, +AB,+A,B,.

vectors yields another vector and is defined as
AxB=C=(A,B,—A,By, A,B, —A,B,, A,B,—A,B,)

ANSWERS TO SELF-TEST OPPORTUNITIES

1.1 Equartion 1.30
Xe%=(,00)+(1,00)=1-1+0-0+0-0=1
}=(0,1,0)+(0,1,0)=0-0+1-1+0-0=1
2+2=(0,0,1)+(0,0,1})=0-0+0-0+1-1=1

Equation 1.31
7=(1,00)+(0,1,0)=1-04+0-140-0=0
2=(1,00)+(0,0,1)=1-04+0-0+0-1=0
2=(0,10)+(0,0,1)=0-0+1-04+0:1=0

i_.'; '=(010)-(]00)=0-1+1-0+0-0=0
2¢%=(0,0,1)¢(1,00)=0-1+0-0+1-0=0
Ze Q—(OOI) (0,1,0)=0:-04+0-1+1-0=0

1
e
-
-

PROBLEM-SOLVING GUIDELINES: NUMBERS, UNITS, AND VECTORS

1. Try to use our seven-step strategy for problem solv-
Ing, even if you have no idez how to arrive at the final
solution. Sometimes the process of making a sketch can
give you a hint about what to do next.

2. In general, you shouid try to convert all given units to
Sl units before you start working with numbers. Working
with quantities in SI units makes computations easier.

3. In most situations, the number of significant figures
your final solution should be rounded to is the number
of significant figures in the least precisely given quantity.

4. Estimating a solution for a problem can be very use-
ful for obtaining an idea of the order of magnitude of the
solution. Often, estimating can be used as a double-check.

5. In working with vectors, you should generally use the
Cartesian coordinate system. Make use of your knowledge
of trigonometry when solving vector problems!

6. The graphical method for vector addirion and subtrac-
tion is useful for making sketches. But the component
method is more precise, and thus preferred if you have to
arrive at a numerical answer,
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Conceplual Questions 27

1.1 Which of the following is the frequency of the musical note C5?

a) 376 ¢ b) 483 m/s ¢) 523 Hz d) 265 |
1.2 If A and B are vectors and B = — A, which of the following is
rue?

a) The magnitude of B is equal to the negative of the magnitude of A.
b} A and B are perpendicular.

€) The direction angle of B is equal to the direction angle of A plus 180°.
dy A+ B=2A

1.3 Compare three Sl units: millimeter, kilogram, and microsecond.
Which is the largest?
a) millimeter

b) kilogram

¢) microsecond
d) The units are not comparable.

1.4 What is(are) the difference(s) between 3.0 and 3.0000!

a} 3.0000 could be the result from an intermediate step in a
calculation; 3.0 has to result from a final step.

b) 3.0000 represents a quantity that is known more precisely than 3.0.
c) There is no difference.

d) They convey the same informatlion, but 3.0 is preferred for ease of
writing.

1.5 A speed of 7 mm/ps is equal 10

a) 7000 m/s b) 70 mvs c) 7 m/s d) 0.07 m/s

1.6 A round object, whose diameter is approximartely 3 centimeters,

is to be used to determine the value of 7 1o three significant figures by
carefully measuring its diameter and {ts circumference. For this calculation
to0 be done properly, the measurements must be made to the nearest ___.

a) hundredth of a mm ¢} mm ¢e) In
b} tenth of a mm d) cm

1.7 What Is the sum of 5.786- 10 m and 3.19-10* m?

a) 602x10% m c) 8976x 10> m

b) 3.77x10°m d) B98x10°m

CONCEPTUAL QUESTIONS

1.8 What is the number of carbon atoms in 0.5 nanomoles of carbon?
One mole contains 6.02 x 10%* atoms.

a) 3.2x 10™ atoms e} 3.19x 10" atoms

b} 3.19x 10* atoms f) 3.x 10" atoms

¢) 3.x 10" atoms

d) 3.2x 10" atoms

1.9 The resultant of the two-dimensional vectors (1.5 m, 0.7 m),
{(—3.2m, 1.7 m), and (1.2 m, =3.3 m) lies in quadrant ___

a) 1 by 11 <y m d) v
1.10 By how much does the volume of a cylinder change if the
radius is halved and the height is doubled?
a) The volume is quartered.

b} The volume is cut in half.

¢) There is no change in the volume,

d) The volume doubles.
) The volume quadruples.

1.11 How is the number 0.009834 expressed in scientific notation?
1) 9.834x 10° c) 9.834 x 10

b) 9.834x 107 d} 9.834x 107

1.12 How many significant figures does the number 0.4560 have?

a) five c) three e) one

b) four d) two

1.13 How many watts are in 1 gigawart (GW)
a) 10° o 10° ) 10"
b) 10° d) 10”2

1.14 What is cthe limit of v = ll\fl —(»/c)?, where c Is a constant
and v — O?

a) v=1 c)y=2
b) y=0 d) y=v
1.15 For the two vectors A = {2, 1,0) and B = (0, 1, 2), what is their
scalar product, A ¢ B

a) 3 b) 6 Q) 2 d) o e 1

1.16 For the two vectors A = (2, 1,0) and B = (0, 1, 2), what is thelt
vector product, A x B

a) (2,4, 2)
b) (1,0, 1)

e) Y=v/2

(202
d) {3.-2,1)

€} {0,0,0)

1.17 In Europe, cars’ gas consumption is measured in liters per 100
kilometers. In the United States, the unit used is miles per gallon.

a) How are these units related!

b) How many miles per gallon does your car get if it consumes
12.2 liters per 100 kilometers?

¢) What is your car's gas consumpticn in liters per 100 kilometers if
it gets 27.4 miles per gallon?

d) Can you draw a curve plotting miles per gallon versus liters per
100 kilometers? If yes, draw the curve.

1.18 If you draw a vector on a sheet of paper, how many compo-
nents are required to describe it How many components does a vec-
tor in real space have! How many components would a vector have in
1 four-dimensional world}

1.19 Since vectors in general have more than one component and
thus more than one number is used to describe them, they are obvi-
ously more difficult to add and subtract than single numbers. Why
then work with vecrors ac allt

1.20 If Aand B are vectors specified in magnitude-direction form,
and € = A + B is 10 be found and 1o be expressed in magnitude-
direction form, how is this done? That is, what is the procedure for
adding vectors that are given in magnitude-direction form?

1.21 Suppose you solve a problem and your calculator’s display reads
0.0000000036. Why not just write this down? Is there any advantage
10 using the scientific notation?

1.22 Since the British system of units is more familiar to most people
in the United States, why is the international {SI) system of units used
for scientific work in the United States?

1.23 is it possible 1o add three equal-length vectors and obtain a
vector sum of zero? If so, sketch the arrangement of the three vectors.
If not, explain why not.

1.24 [s mass a vector quantityl Why or why not?

1.25 Twao flies sit exactly opposite each other on the surface of a
spherical balloon. If the balloon’s volume doubles, by what factor
does the distance between the flies change?
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1.26 What is the ratio of the volume of a cube of side r to that af a
sphere of radius r! Does your answer depend on the particular value of r}

1.27 Consider a sphere of radius r. What is the length of a side of a
cube that has the same surface area as the sphere?

1.28 The mass of the Sun is 2 x 10* kg, and the Sun contains more
than 99% of all the mass in the Solar System. Astronorners estimate
there are approximately 100 billion stars tn the Milky Way and
approximately 100 billion galaxies tn the universe. The Sun and other
stars are predominantly composed of hydrogen; a hydrogen atorn has
a mass of approximately 2 x 1077 kg.

2) Assuming that the Sun fs an average star and the Milky Way is an
average galaxy, what is the total mass of the universe

b) Since the universe consists mainly of hydrogen, can you estimate
the total number of atoms in the universe? .

1.29 A fudile task is proverbially said to he “like trying to empty the
ocean with a teaspoon.” Just how futile is such a task? Estimate the
number of teaspoonfuls of water in the Earth’s oceans.

1.30 The world’s population passed 65 billion in 2006. Estimate the
amount of land area required if each person were to stand In such z way as

tw be unable to rouch another person. Compare this area to the land
area of your home state (or counry).

1.31 Advances in the field of nanotechnology have made it possible ta
construct chains of single metal atoms linked one to the next. Physicists
are particularly interested in the ability of such chains to conduct
electricity with little resistance. Estimate how many gold atoms would
be required to make such a chain long enough to wear as a necklace.
How many would be required to make a chain that encircled the Earth?
If 1 mole of a substance is equivalent to roughly 6.022 x 102 atoms,
how tmany moles of gold are required for each necklace?

1.32 One of the standard clichés in physics courses is to talk about
approximating a cow as a sphere. How large a sphere makes the best
approximation to an average dairy cow?! That is, estimate the radius of
a sphere that has the same mass and density as a dairy cow.

1.33 Estimate the mass of your head. Assume that its density Is that
of water, 1000 kg/m>.

1.34 Estimate the number of hairs on your head.

A blue problem number indicates a worked-out solution is
available in the Student Solutions Manual. One » and two ==
indicate increasing level of problem difficulty.

Section 1.2

1.35 How many significant figures are in each of the lollowing numbers?
a) 401 c) 4 e} 0.0000% g) 7.01x3.1415
b) 4.010 d} 2.00001 fy 2.1 — 1.10042

1.36 Two different forces, acting on the same object, are measured.
One force is 2.0031 N and the other force, in the same direction, is

3,12 N. These are the only forces acting on the object. Find the total
force on the object to the correct number of significant figures.

1.37 Three quantities, the results of measurements, are to be added.
They are 2.0600, 3.163, and 1.12, What is thelr sum to the correct
number of significant figures!

1.38 Given the equation w=xyz, and x=1.1x 10%, y=2.48x 1072,
and 2=6.000, what is w, in scientific notation and with the correct
number of significant figures?

1.39 Write this quantity in scientific notation: one ten-millionth of a
centimeter.

1.40 ‘Write this number in scientific notation: one hundred fifty-
three miilion.

Section 1.3

1.41 How many centimeters are in 30.7484 kilometers?

1.42 What metric prefixes correspond to the following powers of 10
2 10° b) to™? o 10°

1.43 How many millimeters in a kilometer?

1.44 A hectare is 3 hundred ares, and an are is a hundred square
meters. How many hectares are there in a square kilometen!

1.45 The unit of pressure in the SI system Is the pascal. What is
the Sl name for 1 one-thousandth of a pascal?

1.46 The masses of four sugar cubes are measured 10 be 25.3 g, 24.7 g,
26.0 g, and 25.8 g. Express the answers to the following questions in
scientific notation, with standard S] units and an appropriate number of
significant figures.

a) If the four sugar cubes wete crushed and all the sugar collected,
what would be the total mass, in kilograms, of the sugar?

b} What is the average mass, in kilograms, of these four sugar cubes?

#1.47 What is the surface area of a right cylinder of height 20.5 cm
and radius 11.9 cm?

Section 1.4

1.48 You step on your brand-new digital bathroom scale, and it reads
1254 pounds. What is your mass in kilograms?

1.49 The distance from the center of the Mooen to the center of the
Earth ranges from approximately 356,000 km 1o 407,000 km,

a) What is the minimum distance to the Moon in meters?
b) What is the maximum distance to the Moon in meters?

1.50 [n Major League baseball, the pitcher delivers his pitches from
a distance of 60 feet, 6 inches from home plate. What is the distance
in meters?

1.51 A flea hops in a straight path along a meter stick, starting at 0.7 cm
and making successive jumps, which are measured 10 be 3.2 cm, 6.5 cm,
83 cm, 100 cm, 11.5 cm, and 15.5 cm. Express the answers to the
following questions in sclentific notation, with units of meters and an
appropriate number of significant figures. What is the total distance
covered by the flea in these six hops! What is the average distance
covered by the flea in a single hop?

#1.52 One cubic centimeter of water has a mass of 1 gram. A milliliter
is equal to a eubic centimeter. What is the mass, in ktlograms, of a
liter of water? A metric ton is a thousand kilograms. How many cubic
centimeters of water are in a metric ton of water? If a metric ton of
water were held in a thin-walled cubical tank, how long (in meters)
would each side of the tank be?

»1.53 The speed limit on a particular stretch of road is 72.4 kilometers
per hour, Express this speed limit in millifurlongs per microfortnight. A
furlong is ¢ kilometer, and a fortnight is 2 period of 2 weeks,

»1.54 Calculate the welght of a pint of water in grams, assuming that
the density of water is 1000. kg/m” and that the weight of 1.00 kg of 2
substance is 251 pounds. The volume of 1.00 fluid ounce is 29.6 mL
A pint is 16 fluid ounces.



Section 1.5

1.55 If the radius of a planet is farger than that of Earth by a factor of
8.7, how much bigger is the surface area of the planet than Earth’s?

1.56 If the radius of a planet is larger than that of Earth by a factor of
5.8, how much bigger is the volume of the planet than Earth's!

1.87 What is the maximum distance from which a sailor on top of
the rmast of ship 1, at 34 m above the ocean’s surface, can see another
sailor on top of the mast of ship 2, at 26 m above the ocean’s surface?

1.58 You are flying in a jetliner at n altitude of 10,668 m. How far
away is the horizon?

1.59 How many cubic centimeters are in 1.56 barrels of ol

1.60 A car's gasoline tank has the shape of a right rectangular box
with a square base whose sides measure 62 cm. Its capacity i5 52 L.
If the tank has only 1.5 L remaining, how deep is the gasoline in the
tank, assuming the car is parked on level ground?

s1.61 The volume of a sphere is given by the formula 3 @r°, where r
is the radius of the sphere. The average density of an object is simply
the ratio of its mass to its volume. Using the numerical data found in
Table 12.1, express the answers to the following questions in scientific
notation, with 51 units and an appropriate number of significant figures.

a) What is the volume of the Sun?

b) What is the volume of the Earth?

¢} What is the average density of the Sunt

d) What is the average density of the Earth?

«1.62 A tank is in the shape of an inverted cone, having height h = 25 m

and base radius r = 0.75 m. I water is poured into the tank at a rate of
15 L/s, how long will it take to fill the tank?

#1.63 Water flows into a cubical tank at a rate of 15 L/s. If the top
surface of the water in the tank is rising by 1.5 cm every second, what
is the length of each side of the ank?

»»1.64 The atmosphere has a weight that is, effectively, about 6.8 kilo-
grams for every square centimeter of Earth's surface. The average density
of air at the Earth’s surface is about 1.275 kg/m>. If the atmosphere
were uniformly dense (it is not-the density varies quite significantly
with altitude), how thick would it be?

Section 1.6

1.65 A position vector has a length of 40.0 m and is at an angle of
57.0° above the x-axis. Find the vector's components.

1.66 In the triangle shown in the figure, the side lengths are a=6.6 cm,
b=13.7 cm, and ¢=9.2 cm. What is the value of the angle 7! (Hint:
See Appendix A for the law of cosines.)

1.67 Find the components of the )
vectors A, B, €, and D, if their 1
lengths are given by A=75.0,
B=60.0, C=250, D=90.0 and
their direction angies are as shown
in the figure. Write the vectors in
terms of unit vectors.

#1.68 Use the components of the
vectors from Problem 1.67 to find
Athesum A+ B+C+ Din
terms of its components

b) the magnln_l_de a_pd direction of
thesum A - B+ D

Exercises 29

«1.69 The Bonneville Salt Flats, located in Utah near the border with
Nevada, not far from Interstate [80, cover an area of over 30,000 acres.
A race car driver on the Flats first heads north for 4.47 km, then makes
a sharp turn and heads southwest for 2.49 km, then makes another tum
and heads east for 3.59 km. How far is he from where he started?

+1.70 A map in a ship’s log gives directions to the location of a buried
treasure. The starting lecation is an old oak tree. According to the map,
the treasure’s location is found by proceeding 20 paces north from the
oak tree and then 30 paces northwest. At this location, an iron pin is
sunk in the ground. From the iran pin, walk 10 paces south and dig.
How far {in paces) from the oak tree is the spot at which digging occurst

#21.71 The next page of the ship's log contains a set of directions
that differ from those on the map in Problem 1.70. These say the
treasure’s location is found by proceeding 20 paces north from the
old oak tree and then 30 paces northwest. After finding the iron pin,
one should “walk 12 paces nor'ward and dig downward 3 paces to
the treasure box.” What is the vector that points from the base of the
old oak tree to the treasure box? What is the length of this vecton?

»21.72 The Earth’s orbit has a radius of 1.5 x 10*! m, and thar of
Venus has a radius of 1.1x 10'! m. Consider these two orbits to

be perfect circles {though In reality they are ellipses with slight
eccentricity). Write the direction and length of a vector from Earth
to Venus (take the direction from Earth to Sun to be 0°) when Venus
is at the

maximum angular separation in the sky relative to the Sun.

=21.73 A friend walks away from you a distance of 550 m, and
then turns an unknown angle, and walks an additional 178 m in the
new direction. You use a laser range-finder to find out that his final
distance from you is 432 m. What is the zngle between his initial
departure direction and the direction to his final lecation? Through
what angle did he tum? (There are two possibilities.}

Additional Exercises

1.74 The radius of Earth is 6378. km. What is its circumference to
three significant figures!

1.75 Estimate the product of 4,308,229 and 44 to one significant
figure (show your work and do not use a calculator), and express the
result In standard scientific notation.

1.76 Find the vector C that satisfies the equation 3% + 6 — 102 +
C=-7%+ 144

1.77 A position vector has components x=34.6 m and y=—53.5 m.
Find the vector’s length and angle with the x-axis.

1.78 For the planet Mars, calculate the distance around the Equatar,
the surface area, and the volume. The radius of Mars is 3.39-10° m.

»1.79 Find the magnitude and direction of (a) 98 - 34 and
(b) —5A + 8B, where A = (230, 59.0), B = (90,0, — 1500}

«1.80 Express the vectors A = (A, A) = (=300 m, =500 m) and § =
(B.. B) = (30.0 m, 500 m) by giving their magnitude and direction as
measured from the positive x-axis.

#1.81 The force F that a spring exerts on you is directly proportional
ta the distance x that you stretch it beyond its resting length. Suppose
that when you stretch a spring 8.00 cm, it exerts a force of 200. N on
you. How much force will it exert on you if you stretch it 40.0 cm?

+1.82 The distance a freely falling object drops, stanting from rest, is
proportional o the square of the time it has been falling. By what factor
will the distance fallen change if the time of falling is three times as long?
=1.B3 A ptlot decides to take his small plane for a Sunday afternoon
excursion. He first flies north for 155.3 kilometers, then makes a 90° turmn
o his right and flies on a straight line for 625 kilometers, then makes
another 90° tum 1o his right and flies 47.5 kilometers on a straight line.
a) How far away from his home airport is he at this point?

b) In which direction does he need to fly from this point on 1o make
it home in a straight line?

¢} What was the farthest distance from the home airport that he
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reached during the trip?

«1.84 As the photo shows, dur-
ing a total eclipse, the Sun and
the Moon appear to the observer
10 be almost exactly the same
size. The radii of the Sun and
Moon are r, = 6.96 = 10" m and
fy = 1.74 = 10° m, respectively.
The distance between the Earth
and the Moon is dy, = 384 x 10
m Total solar eclipse.
a} Determine the distance from

the Earth to the Sun at the moment of the eclipse.

b) In part (a), the implicit assumption is that the distance from the
observer to the Moon's center is equal to the distance between the
centers of the Earth and the Moen, By how much is this assumption
incorrect, if the observer of the eclipse is on the Equator at noon?
[Hine: Express this quantitatively, by calculating the relative error as a
ratio: (assumed observer-to-Moon distance — actual observer-io-Moon
distance)/(actual observer-to- Moon distance).)

¢} Use the corrected observer-to-Moon distance to determine a
corrected distance from Earth to the Sun.

#1.85 A hiker travels 1.50 km north and wums to a heading of 20.0° north
of west, traveling another 1.50 km along that heading. Subsequently, he
then tumns north again and travels another 1.50 km. How far is he from
his original point of departure, and what is the heading relative to that
initial poing

+1.86 Assuming that 1 mole (6.02 x 10* molecules) of an ideal gas has
a volume of 22.4 1, at standard temperature and pressure (STP) and that
nitrogen, which makes up 78% of the air we breathe, is an ideal gas, how
many nitrogen molecules are there in an average 0.5L breath at STR

«1.87 On August 27, 2003, Mars approached as close to Earth as it will
for over 50,000 years. If its angular size (the planet’s diameter, measured

1.93 Write the vectors A, B,
and C in Cartesian coordinates.

1.94 Calculate the length and
direction of the vectors A, B,

and C.

1.95_Add the three vectors A B,

and C graphically.

1.96 Determine the difference FIGURE FOR PROBLEMS
vector E = B — A graphically. 1.93 THROUGH 1.98

1.97_‘Add the three veciors 4, B,
and € using the compenent method, and find their sum vector D.

1.98 Use the component method to determine the length of the

vector F=8~ A - B

1.99 Sketch the vectors with the components A=(a, A)=(300m,
—500m)and B = (B, B) = (~30.0m, 50.0 m), and find the magni
tudes of these vectors.

by the angle the radius subtends) on that day was measured by an
astronomer to be 24.9 seconds of arc, and its diameter is known w0 be
6784 km, how close was the approach distance? Be sure to use an
appropriate number of significant figures in your answer.

#1.88 A football field's length is exactly 100 meters, and its width is
531 meters. A player stands at the exact center of the field and kicks
the ball to a teammate standing at one comer of the field. Let the
origin of coordinates be at the center of the football field and the x-axis
point along the longer side of the field, with the y-direction parallel to
the shorter side of the field.

a) Write the direction and length of a vector pointing from the player
ta the receiver,

b} Consider the other three possibilities for the location of the
teammate at corners of the field. Repeat parn (a) for each.

+1.89 The circumference of the Cornell Electron Storage Ring is
768.4 m. Express the diameter in centimeters, to the proper number
of significant figures.

#21.90 Roughly 4% to 5% of what you exhale is catbon dioxide.
Assume that 22.4 L is the valume of 1 mole (6.02 x 10?* molecules) of
carbon dioxide and that you exhale 0.5 L per breath.

a) Estimate how many carbon dioxide molecules you breathe out each day.

b} If each mole of carbon dioxide has a mass of 44.0 g, how many
kilograms of carbon dioxide do you exhale in a yean?

#s1.91 The Earth’s orbit has a radius of 1.5 = 10" m, and that of
Mercury has a radius of 4.6 x 10" m. Consider these orbits 1o be perfect
circles (though in reality they are ellipses with slight eccentricity). Write
down the direction and length of a vector from Earth 10 Mercury (take
the direction from Earth o Sun w be 0°} when Mercury is at the maxi:
mum angular separation in the sky relative to the Sun.

221.92 The star (other than the Sun) that is closest to Farth is Proxima
Centauri. lis distance from Earth can be measured using parallax. Parallax
is half the apparent angular shift of the star when observed from Earth at
points on opposite sides of the Sun. The parallax of Proxima Centauri is

1.100 What angle does A = (A,, A,} = (30.0 m, —50.0 m) make with
the positive x-axist What angle does it make with the negative y axis?
1.101 Sketch the vectors with the components A4 = (A, A) = (-300m,
—50.0 m) and B = (B,, B = (300 m, 500 m), and find the magnirudes
of these vectors.

1.102 What angle does B= (B, B) = (30.0 m, 50.0 m) make with
the positive x-axis! What angle does it make with the positive y-axis?

1.103 Find the magnitude and direction of each of the following
vectors, which are given in terms of their x- and y-components:
A= (230, 59.0}, and B = (90.0, —=150.0).

1.104 Find the magnitude and direction of —4 + B, where

A ={230,59.0), B = (300, —1500).

1.105 Find the magnitude and direction of —SA + B , where
= (230, 59.0}, B = (900, —150.0).

A
1.106 Find the magnitude and direction of —7B + 3A , where
A =(23.0, 59.0), B = (90.0, —1500).

1.107 Which of the six cases shown in the figure has the largest
absolute value of the scalar product of the vectors A and B

Atlas Phota Bank/Science Source
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1.108 Which of the six cases shown in the figure has the smallest
absolute value of the scalar product of the vectors A and B?

1.109 Which of the six cases shown in the figure has the largest
absolute value of the vector product of the vectors A and B!

1.110 Which of the six cases shown in the figure has the smallest
absolute value of the vector product of the vectors A and B

#1.111 Rank order the six cases shown in the figure from the smallest
absolute value to the largest absolute value of the scalar product of the
vectors A and B.

#1.112 Rank order the six cases shown in the figure from the smallest
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absolute value to the largest absolute value of the vector product of
the vectors A and B.

1.113 Toward the end of their lives many stars become much bigger.
Assume that they remain spherical in shape and that their masses do
not change in this process. If the radius of a star increases by a factor
of 11.4, by what factors do the following change:

a) its surface area,

b) its circumference,

¢) its volume?

1.114 Toward the end of their lives many stars become much bigger.
Assume that they remain spherical in shape and that their masses do

not change in this process. If the circumference of a star increases by
a factor of 12.5, by what factors do the following change:

a) ks surface area,

b) its radius,

¢) its volume?

1.115 Toward the end of their lives many stars become much bigger.
Assume that they remain spherical in shape and that their masses do
not change in this process. If the volume of a star increases by a factor
of 872, by what factors do the following change:

a) its surface area,

b) its circumierence,

) its diameser?

#1.116 Toward the end of their lives many stars become much bigger.
Assume that they remain spherical in shape and that their masses do
not change in this process. If the surface area of a star increases by a
factor of 274, by what factors do the following change:

a) its radius,

b) its valume,

¢) its density!




