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Chapter 3

Applications of
Differentiation

3.1 Linear Approximations
and Newtons Method

1. (a) f(2) = V.20 = 1
Flao) = F(1) = VI =1

f(@) = 5272

Flao) = 1) =1

So,

L(z) = f(xo) + f'(x0) (x — o)
=1+ % (x—1)
11
RERTE

(b) Using the approximation L(x) to estimate
V1.2, we get V1.2 = f(1.2) = L(1.2) =
1 1
S+ -(12)=11

2 2

2. () flz0) = £(0) = L and
F@) = 2@+ 1)
So, f'(0) = =

The Linear approximation is,
1 1
L(:z:)=1+§(x—0):1—|—§x

(b) Using the approximation L(x) to estimate

V1.2, we get V1.2 = £(0.2) = L(0.2) =

+ %(0.2) = 1.066
3 (a) f(x:\/m;x():o
f<wo>:11‘(0)=m:3
J' (@)= 5 @e+9)7 22

150
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- (a) S(

Foo) = F(0)=(2-04+9) Y2 =1

So,
L(z) = f (xo) + f' (z0) (z — 20)
1
=3+ 5(x—-0)
(b) Using the approximation L(z) to esti-
mate V8.8, we get V88 = f(—0.1) =
1
L(=01) = 34 5(-0.1) = 3~ 0.033 =
2.967

- @) J@)= 2 a0 =1

f(zo) :f(%) =2
f(x) = = and so f/(1) = -2
The linear approximation is
Lz)=2+(-2)(z—1)

(b) Using the approximation L(x) to estimate

2

i 2 = £(0.99) ~ L(0.99) =
099’ e &t 5og £(0.99) (0.99)
2+ (—2)(0.99 - 1) = 2.02

(a) f(z) =sin3z, 20 =0
f(zo) = sin(3-0) =0
f'(x) = 3cos 3z
é/(%) f(0) =3cos(3-0) =3
L(,x) = f(zo) + f'(z0) (x — o)
=0+3(z—0)
=3z

(b) Using the approximation L(z) to esti-
mate sin(0.3), we get sin(0.3) = f(0.1) ~
L(0.1) = 3(0.1) = 0.3

f(z) =sinz, xg=m
f(zo) =sinT =0
1 (x) = cosx

(z
f(xo) = f'(7) =cosm = -1
The linear approximation is,
(z

L(z) = f(z0) + f'(20) (z — z0)
=0+ (-)(z—m)=7m—=x
(b) Using the approximation L(z) to esti-
mate sin(3.0), we get sin(3.0) = f(3.0) =
L(3.0) =7 — 3.0

V16+z, 290 =0
V1I6+0=2

(16 + x)~3/4
(

x)
£(0)
f'(x) =
f'(0) =

n-lk\’—‘»-b-\)—l

16 +0)~ 3/4:3—2
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L(xz) = £(0) + f'(0)(z — 0)

1

1
=2+ —(0.04) = 2.0012
2+ 55(0.04) = 2.00125
1
(b) L(0.08) =2+ 55(0.08) = 2.0025
1
(¢) L(0.16) = 2+ -(0.16) = 2.005

(a) f(x) =sinx, 2o =0

_ V3 (m_%>
2 3
TORRIC R
(a) L(x) = f(20) + >~ 13 (5 —90)

4
L(24) ~ 18 — E(M —20)
=18 —-10.4(4)
= 16.4 games
14 —12
230 —40
f(36) = 12 — E(% —40)
=12-0.2(—4)
= 12.8 games

120 — 84
80 — 60

(b) L(x) = f(40) + (x — 40)

(a) L(z) = f(80) + (z — 80)

L(72) =120+ %(72 —80)
=120 + 1.8(—8)
= 105.6 cans
168 — 120
L = f(1 -1
() o) = £000)+ Sy o= 100)
L(94) = 168 — %(94 —100)
=168 — 2.4(—6)
= 182.4 cans
142 — 128
. L = f(2 —(x — 2
11. (a) L(z) = f(200) +12420_ 200(37 00)
L(208) = 128 + %(208 —200)
=128 4+ 0.7(8) = 133.6
142 — 136
(b) L(x) = f(240) + (z — 240)

220 - 240
L(232) = 136 — (232 — 240)

— 136 — 0.3(—8) = 138.4
14-38

, 10-5
L(8) =14+ £ (-2) =116

12. (a) L(z) = f(10) +

(x — 10)

1438
;105
L(12) = 14+ -(2) = 164

(b) L(x) = f(10) + (z —10)

13. f(x)=234+322-1=0,20=1
f'(z) = 32% + 6z

_ f (o)
R Ty
71713+3~12f1
N 3:12+46-1
.32
)
J— — 1'1
To = T1 f’(!L‘l)
2 (3'+3(3) 1
- 2
5 3(3) +6(3)
:%z0.5486
(b) 0.53209

14. f(x)=a3+42? -2 -1, 39 = -1
f(x) =32%+8x—1

151
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X9 = T1 —

(b) The root is x ~ —0.4064206546.

15. f(z) =2 -322+1=0,20=1
f(z) = 423 — 62

(a) 1 =z — /(o)
fll‘ExO):s 12+1 1
! ( 4.13-6-1 >_2
I f(z1)
f'(@1)
_1 ((5)4—3(5)2“)
2 4(3)°-6(3
5
~ 38
(b) 0.61803

= lm5 =
2y — 2y — LD
f'(1)
1 0.3125
= —5 — 25 = —0.625

(b) The root is x &~ —0.6180339887.

- ]{,((9;"_)) with
f(x) =23 + 422 — 3xl—|— 1, and
f(x) =32 +8x—3

17. Use ;41 = x;

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

18.

19.

X

TTTT T T T T T T T TTTT]
-5/0 -2.5 60 25 5.0
~10—

Start with zg = —5 to find the root near —5:
r1 = —4.718750, x5 = —4.686202,
r3 = —4.6857796, x4 = —4.6857795

From the graph, we see two roots:

f(xi)

Use xj41 =4 o) with

flx) =a* —42% + 2% — 1, and

f(z) = 423 — 1222 + 22

Start with 2o = 4 to find the root below 4:

x1 = 3.791666667, xo = 3.753630030, z3 =
3.7524339, x4 = 3.752432297

Start with = —1 to find the root just above
—1:

1 = —0.7222222222,

x9 = —0.5810217936,

x3 = —0.5416512863,

x4 = —0.5387668233,

x5 = —0.5387519962

- j:/((zi.)) with
flx)=a2°+323 +2 “ 1, and
f'(x) =5zt + 922 + 1

Use xj41 =
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10 r1 = —0.644108, x5 = —0.636751

r3 = —0.636733, x4 = —0.636733

Start with zg = 1.5 to find the root near 1.5:
x1 = 1.413799, x5 = 1.409634

r3 = 1.409624, x4 = 1.409624

5 22. Use Tj41 = T; — ;,((g;ii)) with
f(x) = cosx? — x, and

f(z) =2xsina? — 1

3

Start with o = 0.5 to find the root near 0.5: v
21 = 0.526316, o = 0.525262,
x3 = 0.525261, x4 = 0.525261

vvvvv

fG) WY AT
20. Use zj41 = z; — with x
f'(wi)
f(x) =cosx — x, and
f'(x)=—sinz —1 2

50—
Start with zg = 1 to find the root between 0
and 1:

r1 = 0.8286590991, x5 = 0.8016918647,

x3 = 0.8010710854, x4 = 0.8010707652

(T T Tgor T s
5 -4 -3 -2 -1 _g
. _
- 2
y —2.5—] y
] 1
-5.0—
Start with 2y = 1 to find the root near 1: 2 * 2

1 = 0.750364, zo = 0.739113,
3 = 0.739085, 4 = 0.739085

21. Use x;41 = @3 — ;c,(@)) with
f(x) =sinz — 22 + 1, and Flzs)
f'(z) = cosz — 2 23. Use 41 = x; — @) with
- f(z) =e* +z, and
] flz)=e"+1

2.5—

5 -4 3 -2
X

Start with o = —0.5 to find the root near
—0.5: Start with zg = —0.5 to find the root between
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24.

25.
26.

27.
28.

29.
30.

31.

32.
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0 and -1:
r1 = —0.566311, zo = —0.567143
r3 = —0.567143, v, = —0.567143

Use zj41 = x; — J{/((Z)) with
f(z) =e* —\/x, and
) = o= _ L

““““““““

o

o
o

A
e T T R T
o
n
=
P
o
N

Start with o = 0.5 to find the root close to
0.5:

21 = 0.4234369253, x5 = 0.4262982542,

x3 = 0.4263027510

f(z) = 2% —11; 29 = 3; V11 ~ 3.316625

Newton’s method for /2 near z = 23 is 41 =
(xy + 23/x,). Start with zp = 5 to get:
r1 = 4.8, x5 = 4.7958333, and x3 = 4.7958315.

f(z) =% —11; zg = 2; V11 ~ 2.22398

Newton’s method for ¢z near z = 23 is
Tny1 = (23, + 23/22). Start with zo = 3
to get:

x1 = 2.851851851, xo = 2.843889316, and

x3 = 2.884386698

f(z) =% —24; 29 = 2; V24 =~ 2.059133

Newton’s method for *&x near © = 24 is
Tni1 = 15 (3.62,+24/230). Start with zg = 2
to get:

r1 = 1.995417100, x5 = 1.995473305, and

r3 = 1.995473304

flx)=42® - 722 +1=0,20=0

f(z) = 1222 — 142

flwo) o1

f' (o) 0

The method fails because f’(zg) = 0. Roots
are 0.3454, 0.4362, 1.659.

Tr1 = g —

Newton’s method fails because f' = 0. As long

as the sequence avoids z,, = 0 and x,, = 5 (the

33.

34.

35.

36.

37.

38.

zeros of f’), Newton’s method will succeed.
Which root is found depends on the starting
place.

fl@)=2?+1,20=0

J(@) =20
f (o) 1
= — = 0 —_ =
DT @) 0
The method fails because f’(xg) = 0. There
are no roots.

Newton’s method fails because the function
does not have a root!

422 —8xr +1

flw) = 472 — 31— 7 =0 @=-1

Note: f(zg) = f(—1) is undefined, so New-
ton’s Method fails because zq is not in the do-
main of f. Notice that f(z) = 0 only when
422 — 8z +1 = 0. So using Newton’s Method
on g(z) = 42% — 8x + 1 with zo = —1 leads to
x = .1339. The other root is x ~ 1.8660.

The slope tends to infinity at the zero. For ev-
ery starting point, the sequence does not con-
verge.

(a) With zp = 1.2,
x1 = 0.800000000,
z2 = 0.950000000,
zg = 0.995652174,
x4 = 0.999962680,
x5 = 0.999999997,
z¢ = 1.000000000,
7 = 1.000000000

o = 2.200000, z1 = 2.107692,
T2 = 2.056342, x5 = 2.028903,
x4 = 2.014652, x5 = 2.007378,
xe = 2.003703, z7 = 2.001855,
xg = 2.000928, zg = 2.000464,
210 = 2.000232, x1; = 2.000116,
z12 = 2.000058, x13 = 2.000029,
z14 = 2.000015, x15 = 2.000007,
x16 = 2.000004, x17 = 2.000002,
x18 = 2.000001, x19 = 2.000000,
290 = 2.000000

The convergence is much faster with zg =
1.2.

Starting with zg = 0.2 we get a sequence that
converges to 0 very slowly. (The 20th itera-
tion is still not accurate past 7 decimal places).
Starting with g = 3 we get a sequence that
quickly converges to m. (The third iteration is
already accurate to 10 decimal places!)
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39.

40.

41. f

42.

(a) With o = —-1.1
x1 = —1.0507937,
o = —1.0256065,
x3 = —1.0128572,
24 = —1.0064423,
x5 = —1.0032246,
26 = —1.0016132,
x7 = —1.0008068,
xg = —1.0004035,
xg = —1.0002017,
z10 = —1.0001009,
11 = —1.0000504,
x12 = —1.0000252,
x13 = —1.0000126,
z14 = —1.0000063,
15 = —1.0000032,
z16 = —1.0000016,
x17 = —1.0000008,
x13 = —1.0000004,
x19 = —1.0000002,
x20 = —1.0000001,
z91 = —1.0000000,
92 = —1.0000000

(b) With zp =2.1
xo = 2.100000000,
1 = 2.006060606,
9 = 2.000024340,
x3 = 2.000000000,
x4 = 2.000000000
The rate of convergence in (a) is slower
than the rate of convergence in (b).

From exercise 37, f(z) = (z—1)(x —2)2. New-
ton’s method converges slowly near the double
root. From exercise 39, f(z) = (z —2)(x +1)2.
Newton’s method again converges slowly near
the double root. In exercise 38, Newton’s
method converges slowly near 0, which is a zero
of both x and sinz but converges quickly near
m, which is a zero only of sinz.

(1’) =tanz, f(0) =tan0 =0

f'(z) =sec® z, f'(0) =sec’0=1

L(z) = f(0) + f'(0)(z — 0) L(0.01) =0.01
=0+1(zx—0)=2x

£(0.01) = tan 0.01 =~ 0.0100003

L(0.1) = 0.1

£(0.1) —tan(O 1) ~ 0.1003

L(

I

The linear approximation for /1 +z at x =0
is L(z) = 1+ £z. The error when = 0.01 is
0.0000124, when = = 0.1 is 0.00119, and when
z =11s 0.0858.

1) =
1)—tan1~1557

44.

45.

x)=+V4+z
f0)=vVa+0=2
F(w) = ga+a)7?
FO)= S0 =2
L(z) = f(0) + f/(O)(x —-0)=2+ ix
L(0.01) =2+ = (0 01) = 2.0025
£(0.01) = m ~ 2.002498
L01) =2+ - (0 1) =2.025
f(0.1) = m ~ 2.0248
L(1) =2+ %(1) =2.25

(

F(1) = VAT 1~2.2361

The linear approximation for e* at z = 0 is
L(z) = 1+ z. The error when z = 0.01 is
0.0000502, when = = 0.1 is 0.00517, and when
x=11s 0.718.

(a) £(0) = g(0) = h(0) = 1,
through the point (0, 1).
F(0)=2(0+1) =2,

9'(0) = 2cos(2-0) =2, and

h'(0) = 220 = 2,

so all have slope 2 at z = 0.
The linear approximation at = = 0 for all
three functions is L(z) = 1 + 2.

so all pass

(x+1)2:

(b) Graph of f(x) =

Graph of f(x) =1+ sin(2x):
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46.
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BEEEEERRRERVAS"RERENERAREREEEE!
-3 -2 -1 1 2 3
X —

(a) f(0) = ¢g(0) = h(0) = 0, so all pass
through the point (0, 0).
f/(0) =cos0 =1,
g'(0) = 5o = 1, and
h'(0) = cosh0 =1,
so all have slope 1 at z = 0.

The linear approximation at z = 0 for all
three functions is L(z) = z.

(b) Graph of f(z) = sinz:

vvvvvvvvvvvvvvvvvvvvv

Graph of g(z) = tan~! z:

47.

48.

49.

vvvvvvvvvvvvvvvvvvvvv

Graph of h(z) = sinhx:

sin z is the closest fit, but sinh x is close.

(a) V/16.04 = 2.0012488
L(0.04) = 2.00125
|2.0012488 — 2.00125| = .00000117

(b) V/16.08 = 2.0024953
L(.08) = 2.0025
|2.0024953 — 2.0025| = .00000467

(c) V16.16 = 2.0049814
L(.16) = 2.005
|2.0049814 — 2.005| = .0000186

If you graph |tanx — x|, you see that the dif-
ference is less than .01 on the interval —.306 <
z < .306 (In fact, a slightly larger interval
would work as well).

The first tangent line intersects the z-axis at a
point a little to the right of 1. So x; is about
1.25 (very roughly). The second tangent line
intersects the x-axis at a point between 1 and
x1, 80 o is about 1.1 (very roughly). Newton’s
Method will converge to the zero at x = 1.
Starting with o = —2, Newton’s method con-
verges to r = —1.
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50.

51.

52.

53.
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vvvvv

-2

Starting with x¢ = 0.4, Newton’s method con-
verges to x = 1.

It wouldn’t work because f'(0) = 0. zo = 0.2
works better as an initial guess. After jumping
to x; = 2.55, the sequence rapidly decreases
toward x = 1. Starting with xo = 10, it takes
several steps to get to 2.5, on the way to z = 1.

ey = 1 f(zn)
f'(xn)
x% —c
= x’ﬂ, —_ _—
2z,
x% c
=z, — v
2x, 2z,
Iy c
2 2,

1 + c
=—|x, J—
2 Ty
If 2o < +/a, then a/xzg > V/a, so xg < Va <
a/xo.

The root of ™ — c is /¢, so Newton’s method
approximates this number.
Newton’s method gives

Tit1 = T o),  m e

() na!

= —(nz; —x; +cx} ™),

as desired.

(a) f)=a2?> -2 -1

flx)=2z-1
At(EO:g ,

3 3 1
f(mo)—<2 *5*1:*1
and

By Newton’s formula,
flzg) 3 -3 13
2

r1 = X9

C fwe) 2

(b) f(z)=2*—-2—1
flx)=20x—-1

By Newton’s formula,

f(zo)
f'(o)

Tr1 = Ty —

By Newton’s formula,

f(xo)

f' (o)

-2 8 1 89

X1 =T —

T 575 5

o] oo

(d) From part (a),
sincexrg = & hence z; = iy
Fy’ Fs

From part (b),
since xg = & hence z; = =9
Fy Fyg

From part (c),

. Fys F1q
since xo = — hence 1 = —.
Fy Fig
. . 1
Thus in general if zy = nt , then 1 =

n
F2n+1

implies m =2n+ 1 and k = 2n
2n

F,
e iven g = —, then lim will be
Gi 2 hen i 1 will b
n—oo n
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54.

55.

56.

57. W(x
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the zero of the function f(x) = 2?2 —

x — 1 which is 1.618034. Therefore,
. Fn+1

1 = 1.618034

im Ia 61803

n— oo n

The general form of functionf(x) is,

1 1 1
fn(x) = 5 (2n+2$ — 3) for 27 <zr< F
Hence a2 ) )

2
f(z) = f./(z) = E for o <% < 5oy
By Newton’s method,
3 S (3)

l‘l = - — =

3
(3 4
3
8

LW
—

3/5)

8/5)
Similarly, x5 = % = % and r3 = —

Continuing this, we get, x,_1
also be observed that, for each f,(z)
(1/2n) + (1/2n+1) 3

2 = on+1’
Zo 3 .
Ty = 27 = W m Wthh
is the zero of F. Therefore Newton’s method
converges to zero of F.

e
—

s
= 2731 It may

= .’17n+1 =

For small x we approximate e by x + 1

(see exercise 44)
LeZﬂ'd/L _ 6727rd/L

e2mnd/L + e—2md/L

o0 (1 2]
(150 + (1~ 59)

S8mhex ™
If f(x) = ehc/(kTz) _
approximation we see that
h -5
flz) =~ &T* = 8rkTz™*
1+ 57%) -1
as desired.

, then using the linear

B PR?
(z) = mv Lo
.\ —2PR?
Wia) = (R+x)3
L(x) = W(zo) + W' (20)(x — o)

PR? —2PR2
~@wroe <<R+O>3> =0

=0

=P - —
R

58.

59.
60.

61.

62.

1.

2P
L(z) =120 — .01(120) = P — Tx
190 2-120x
2x
0l="
R
z = .005R = .005(20,900,000)
= 104,500 ft

If m = mo(1 —v?/c*)'/2, then

m' = (mo/2)(1 — v?/c?)"%(—2v/c?), and
m’ = 0 when v = 0. The linear approxima-
tion is the constant function m = mg for small
values v.

The only positive solution is 0.6407.

The smallest positive solution of the first equa-
tion is 0.132782, and for the second equa-
tion the smallest positive solution is 1, so the
species modeled by the second equation is cer-
tain to go extinct. This is consistent with the
models, since the expected number of offspring
for the population modeled by the first equa-
tion is 2.2, while for the second equation it is
only 1.3

The linear approximation for the inverse tan-
gent function at x = 0 is
f(x) = f(0) + f(0)(z = 0)

210N o =1 i
tan™" (z) ~ tan™" (0) + 17

(z —0)
tan~1(z) =~ x
Using this approximation,

b tan-! (3[1 —d/D] - w/2>

D—d
_3[1—-d/D]-w/2
¢~ D—d
If d = 0, then ¢ =~ %. Thus, if w or D
increase, then ¢ decreases.

d'(0) = D(w/6sin )
d(0) = D(1 —w/6) so
d(0) ~ d(0) + d'(0)(6 — 0)
=D(1 —w/6)+0(0) = D(1 — w/6),
as desired.

3.2 Indeterminate Forms and

L’Hopital’s Rule

T+ 2

1m
z>—-2722 -4
_ T+ 2

= e =2




3.2. INDETERMINATE FORMS AND L’HOPITAL’S RULE

10.

. lim

. lim

lim&
z—=2 12 — 3z + 2
:hmw
z—2 (x — 2)(z — 1)
~lim 2y
=21 — 1

L 32242
lim
z—oo ¢ —4
. 3+ 3
= lim T
:xv—)ool—w—2

rz+1

I is type —;
soo 22 + Az +3 P 5o

we apply L’Hopital’s Rule to get

li =

o2t _

is type 9
t—0 1S typ 0’
we apply L’Hopital’s Rule to get

lim 7% (€2t _ 1)

: 0
tgr(l)e?)t—l 1s type o
we apply L’Hopital’s Rule to get

% (sint) cost 1

——— = llm — =
d (.3t 3t
t—0 5 (e — 1) t—0 3e 3

. tan~1t ¢ 0
im is e —;
t—0 sint YPe
we apply L’Hopital’s Rule to get
d -1 2
= (tan™ "t 1/(1+1t¢
lim M — lim M -1

t—0 % (sin t) t—0 cost

sint

0

is type —;

t=0sin~ ¢ yp 0
we apply L’Hopital’s Rule to get

lim % (sint) cost B

At iy ————— =
=0 4 (sin~'t) =0 1/(v1 —12)

sin 2x

. 0
m — 1s type —;
z—m sinx 0

we apply L’Hopital’s Rule to get

2cos2x  2(1)
im
T—T  COSXT -1

cos™!

lim
-1 12 —
7, denominator goes to 0).

&€ .
T s undefined (numerator goes to

11.

12.

13.

14.

15.

16.

17.

159
i sinz —x . ¢ 0
Jim =5 istype
we apply L’Hopital’s Rule thrice to get
cosx — 1 —singx

= JIlm ——— = l1m

z—0 3x2 z—0 6x

lim — cosx 1
= lim =—=

z—0 6 6
I tanx —x | ¢ 0
im —— i —;
L 3 S type 0
we apply L’Hopital’s Rule to get
o osec’z—1
lim ——.
x—0 31’2

Apply L’Hopital’s Rule twice more to get
2

. 2sec®xtanz
lm ———
x—0 6x
o 4sec?ztan®z + 2sectz 1
= lim = -.
x—0 6 3
V-1 . WVt—1 i+l
im ——— = lim .
t—1 t—1 t—1 t—1 Vi+1
(=)
=1 (t—1)Vt+1
I 1 1
=lim— = =
t=1+/t+ 1 2
e e G

we apply L’Hopital’s Rule to get
d 1
£ (Int =
7;”( ):hmizl
t—=1 & (t — 1) t—1 1

.o o0
lim — is type —;
r—o00 et o0

we apply L’Hoépital’s Rule thrice to get

. 3a? . bz
lim — = lim —
x—oo er rz—o00 et
= lim — =0
z—o0 e¥
. v 00
lim — is type —;
T—00 I 00

we apply L’Hoépital’s Rule four times to get
xT xr

. € .
lim — = lim
T—>00 x3 T—00 12372
. e’ e*
= lim — = lim — = 0.

i00 24x mlﬁoo 24

. rcosx —sinz . 00

limg o ————5— is type —;
rsin® x e

we apply L’Hoépital’s Rule twice to get

coSx — rsinx — cosx

hmm’*)O . 92 .

sin® x + 2z sinx cos T

. —xsinz

= lim — -
=0 sin x (sin x 4 2z cos x)
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18.

19.

20.
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—Z

im ——
z—0 sinx + 2z coix

lim -
Iqo cosT + 2cosx — 2xsinx

3

Rewrite as one fraction, we have

. 1 . rcosr —sinx
lim | cotx — — = lm|———F—
z—0 €T z—0 Trsmax

which is of type g

we apply L’Hopital’s Rule to get
<cosac —xsinx — cosx)

= lim

z—0 sinx 4+ x cosx

d
xsinx
= lim dz (= )
z=0 \ < (sinz + z cosz)

< —sinx — zcosx

= lim

. =0
COST + CcosST —xsmx)

Rewrite as one fraction, we have

. z+1 2
lim — —
z—0 T sin 2x
. (z+1)sin2z — 22 , 0
= lim - is type —;
z—0 T sin 2x 0

we apply L’Hopital’s Rule four times to get

) A (z+1)sin2z — 22
lim L -
z—0 4= (zsin 2x)
B sin 2z + 2(x + 1) cos 2 — 2
z—0 sin 2z + 2z cos 2z
_ 4 s1n2m+2(x—|—1)cos?x—2)
= lim
z—0 (sin 2z + 2x cos 2x)
i 2 cos 2z+2c082x74(x+ 1) sin 2z
= lim
z—0 2cos2z + 2cos 2z — 4xsin2x
_ 4
=1
1
(104 525)
lim (tanx + P
=5 Tr — bl

In thls case the limit has the form (oo - 00).

. sin x
Rewrite tanz as and then as one frac-

(01

)
"3

. sin x 1
= lim + —
e—F \cosTr T — 35

. (x—5)51nx—|—cosx . 0
= lim is type =
z—% (:v — 5) cosx 0

we apply L’Hopital’s Rule to get

(sinx + (:1: — 5) coszT — s1nx>

COST — (3? — 5) sinx

tion, we get

lin}r (tan T+

z—%

= lim
TG

21.

22.

23.

24.

25.

26.

27. lim

28.

(x — g) cosx
= hnqr —— =0
z—=3 \ COST — (m— 5) sinz
Inz 0
lim —- is type —
T—00 Jj 0,9]
we apply L’Hopital’s Rule to get
.1z 1
lim *— = lim — =
T—00 2(E T—>00 2.’E2

. Inx . ¢ 00

S, e tvpe

we apply L’Hopital’s Rule to get
1

lim % = lim — =0.
r—00 \/T

.t 00
lim — is type —
t—ooe (0. 9]
we apply L’Hopital’s Rule to get
d
7 (1) 1 1

hrgO T is type6

t
we apply L’Hoépital’s Rule to get
1 1
iy 295
t—o00 _ L
t2
In(Int
lim n(Int)
t—1 Int
As t approaches In from below, Int is a small
negative number. Hence In (Int) is undefined,
so the limit is undefined.

lim (sm (sint)

= lim cos— =1.
t—o0 t

0
is type —
t—0 sint P 0

we apply L’Hopital’s Rule to get

lim (cos (sint) cost) 1

t—0 cost
. sin (sinh ) | ; 0
—— 2 is e —
z—0 \ sinh (sinz) YPED

we apply L’Hopital’s Rule to get
I cos (sinh z) cosh z
cosh (sinx) cos

. <sinxsinhx>
lim | —m——

x—0

z—0 \ cosx — coshz
. 2sinx —e* +e™ %
= lim
z—0 \2cosx —e* —e™®
2¢"sinz —e®* + 1) . ¢ 0
is e —
2e* cosx — e2¢ — 1 P 0
we apply L’Hopital’s Rule twice to get
< 2¢% cos T + 2e%sinx — 2e%* )

—2e*sinx + 2e* cos v — 2e2*
. cosx +sinx — 1Y . 0
=lim (————— ] is type =

= lim
x—0

lim

z—0 \cosx —sinz — 1 0
. —sinx + cosx

=lim ({—mm | =-1
z—0 \ —sinxz — cosx
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29.

30.

31.

32.

33.

34.

INDETERMINATE FORMS AND L’HOPITAL’S RULE

00
we apply L’Hopital’s Rule to get
1/x
lim
z—0+ —csc2 x

= lim ( sinx -

z—0t

ST) — (0)(1) =0.

T
lim i —
z—0+ Inx

nominator goes to —oo).

lim (\/352 +1- ac)

(numerator goes to 0 and de-

T—00
Vrz+1l+z
= lim (\/xz—kl—x)i
$—)DO< ‘/x2+1_~_m

= lim <x +1-a >
T—>00 ‘/x2 _|_:L-

Inz _
x

T = —00 since the

lim Inz — 2 = lim
Tr—r o0 Tr—r0o0

x
numerator goes to —1 and the denominator

goes to 0. (Recall Example 2.8 which shows
Inz

lim — =0.)

r—oo I

1 x
Let y = <1+>
x
1
=hy==zln (1—1—). Then
x

1
lim Iny = lim xIn (1—1—)
x

In (141
= lim 7n( + 1)
200 1/x
i (—22)
= lim &
T—00 —1/x2
= lim T =L
z—oo | 4 =

Hence lim y = lim e™Y =e.

Notice that the limit in question has the inde-
terminate form 1°°. Also, note that as x gets

1 z+1 r+1
arge = .
ol 2| T2 -2
Vr2—4
1
Define y = (w—i— ) . Then
T —2
1
Iny =+v2z2—4In <x+2) and
T —

lim Iny = hm
r—00

2

(v ()

35.

36.

37.

38.

39.

40.

161
<x + 1>
In
. z—2
= lim | ————*
Tr—r 00 513274
This last limit has indeterminate form —, so

we can apply L’Hopital’s Rule and simplify to
find that the above is equal to

_3(x2 _ 4)3/2
lim M and this is equal to 3. So
z—oo —x3 + 22 + 21
lim Iny = 3.
xr—r0o0
Thus lim y = lim ™Y = ¢% ~ 20.086.
T—r00 Tr—r0o0

Jn (- 2)
=i (U )
o (W—x>

we apply L’Hopital’s Rule to get
o 3(5—2) A=)

lim <

e=1 (10 — z)~1/2(-1)

gy VO E 8

B r—1 5—=x B 2

Let y = (1/x)*. Then Iny = xIn(1/z). Then
lim zln(l/xz) = 0, by Exercise

27. Thus hm y= lim ™Y =1.
0+

z—0t

Let y = lim+(cos 2)/*. Then
=0

1
Iny= lim —Incosz
z—0t T
In(cosx) . ; 0
—— is type =
z—0t x P 0
so apply L’Hopital’s Rule to get

z—0t 1
Therefore the limit is y = €° = 1.

t
lim =3y lim (t= 3)t
t—oo \ t + 2 t=o0 ({ +2)

. t
oy, 0= im0
- t . t

e +3) Jim (143)
. 3\t
tlirgo (1 + 73) e -5
= o0~ a2 ¢
Jm (1)

t—3\" —2
lim = lim f
tvo0 \ 2 + 1 100 \2+ L
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' (1 - %)t e=3 we apply L’Hopital’s Rule to get
:thm 7 —thm 912
o0 1/2 —oo 2te
ot (1+ ) i JrCosSnE _ n
z—0mecosmx  m
41. L’Hopital’s rule does not apply. As z — 0, the sin 2 927 cos 12
numerator gets close to 1 and the denominator 50. (a) }12% 2 }13}] o

is small and positive. Hence the limit is oco.
= lim cosz? =1,

ev — 0 e* =0 .
. — — Do . sinxz
42 ;lli% x2 is type g, but hmo is not, so which is the same as lim .
L Hopltal s Rule does not apply to this limit. =0 @
. . 1—cosz?
43. L’Hopital’s rule does not apply. As z — 0, the (b) ili% A
numerator is small and positive while the de- ~ 2rsina?  sina?
nominatorZioes to —oo. Hence the limit is 0. = alclgb T4l Py 922
Also lim ——, which Is lim 22, i f L. sinz® 1
so lim 3/a which equals lim 27, is not o _ 5}011)% =5 (by part (a))

0
the form 0 so L'Hopital’s rule doesn’t apply

hil
here either. e
44. 1 sinx . ¢ 0 but i cosx ¢ I 1—cosx sin x 1( ) 1
. — im = lim ==(1)==
xl—r>n xr2 15 type 0’ v aclg%) T 18 Dot, 80 z—0 2 =0 2z 2 2
L’Hopital’s rule does not apply. This limit is so both of these limits are the same.
undefined because the numerator goes to 1 and (c) Based on the patterns found in exercise
the denominator goes to 0. 45, we should guess
: 3 1— 3 1
45. lim eer lim S 1 and lim s =.
=0+ /T =0 T =0 6 2
In this case limit has the form o L’Hospital’s (¢ +1)(2 +sinz)
Rule should not be used. 51. (a) 2(2 + cosz)
—3/2 T
46. lim = is type i. In this case (b) —
z—0+ In — e
L’ Hospltal’s Rule should be used. © 3+ 1
¢
2 _ 3 1 Xr — 7
47. lim % = 00. In this case limit has 3 _ Sz
r—oo  tan (d)
the form oo. So L’Hoéspital’s Rule should not 1422
be used.
) 52. (a) lim =z —Inx = oo (see exercise 32).
€T T—>00

1
48. lim n( ) is type —. So L’Hospital’s Rule
z oo’

r—o0 e /3

(b) lim va?+1—x =0 (see exercise 31).

should be used. T—00
in3 ¢) lim Va2 +4z — 2
49. (a) Starting with  lim ST we cannot (© &—>00
z—0 sm 2z’ = lim (V22 + 42 — 2)
“cancel sin”to get hn}) —. We can cancel zlﬁoo dx
r— — N
the 2’s in the last limit to get the final an- sy V2 tdxr +x
swser of 3/2. The first step is likely to give _ g 4:El
im

a correct answer because the linear ap-
proximation of sin 3z is 3x, and the linear

U (Va? ¥ A+ x)f
x

approximation of sin 2z is 2z. The linear — lim 4 —9
approximations are better the closer x is zeo f1 44 4 ’
to zero, so the limits are likely to be the L

where to get from the second to

sin na the third line, we have multiplied by
(b) lin}) : is type 9; (Va? +4z + )
z—0 sin mx —_—
(V2 + 4z + x)

same.
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53.

54.

55.

56.

57.

58.

INDETERMINATE FORMS AND L’HOPITAL’S RULE

lim e* = lim 2" = oo

Tr—r00 T—r00
xT
. € . . .
lim — = oo0. Since n applications of
r—o0 M

L’Hopital’s rule yields

z—00 Nl
Hence e* dominates x".

lm Inz = lim 2P = oo.
xTr—r 00 Tr—r 00

. Inz 00
lim — is of type —
z—oo P 00

we use L’Hopital’s Rule to get
1

1
lim 7 = lim — =0 (since p > 0).
T—r00 pxp— T—00 pxp

Therefore, P dominates In x.

lim (e% —t3) Since ez dominates 3. So
t—00

lim (e% —t3> =00

t—o0

lim VT —Inz
r—00

we apply 1L’Hé[l)ital’s Rule to get

T —2

lim <2fl >= lim (”” ﬁ)

T—00 —_— ZT—>00 x
2V

2
= lim (1-—=)=1.
s (1- %)

In (333 + 22 + 1)
z—oo In(22+x+2)
we apply L’Hopital’s Rule
((idz (ln (acg + 2z + 1)))

% (In (2?2 + 2+ 2))

32242
BT r34+2x+1
= Jm 2

z24x+2

3zt + 323 + 822 + 20 +4\ 3
<2x4—|—m3+4x2+4x—|—1) 2
In general, for numerator and denominator the
highest degee of polynomials p and ¢, such that
p(z) > 0 and g(z) > 0 for x > 0,

should be the lim 2@
r—o00 In(q(z))

. 00
1s type —.
00

lim

= lim
Tr—r 00

In (6395 —i—x) . 00
z—o0 In (€27 + 4) .
we apply L’Hopital’s Rule

o ( (n <e3x+x>>>

s \ L (n(e +9)

3e3% 41
= lim ( e te >
z00 \ _2e2%

e2r 44

. (3659” + 12e3% 4 27 4 4)
= lim -

3
2

500 2e5% 4 2xe2w

59.

60.

61.

62.

63.
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In general,when the degree of exponential term
in the numerator and dggominator are differ-
ent, then the lim M

e T (e + q(a))
mials p and g and positive numbers. k£ and c
will be the fraction of degrees that is %

for polyno-

f(z)

— 0, so if lim ——= =L
20 g(x)

If  — 0, then 22

2
then lim LxQ) = L (but not conversely). If
20 g(x?)

a # 0 or 1, then lim f(@)

involves the be-
r—a g(l’)

2
T
havior of the quotient near a, while lim 1 2)
z—a g(x?)
involves the behavior of the quotient near the
different point a?.

Functions f(z) = |z| and g(z) = x work.

x
lim M does not exist as it approaches —1
x—0 g(;L‘

from the left and it approaches 1 from the

2
right, but lim 1) =1.
-0 g(z2)

2.5(4wt — sin 4wt)

w—0 402
2.5(4t — 4t cos dwt)

= lim

w—0 28(4)

2.5(1 in 4

— lim 5(16t° sin dwt) _o

w—0 8

) ™
2.5 — 2.5 sin(4wt + 5)

ul)lg}] 12 is type g;

we apply L’Hopital’s Rule to get
—10t cos(4wt + F)

lim
w—0 ) Sw
40t° sin(4wt + =
= lim ( 2) = 5t2.
w—0 8

I
R @ N

o
n

e T T T B A MY A

o

0.1 0.2 0.3 0.4 0.5 0.6

The area of triangular region 1 is
(1/2)(base)(height)
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64.

65.
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= (1/2)(1 — cos8)(sinb).
Let P be the center of the circle. The area of
region 2 equals the area of sector APC minus
the area of triangle APB. The area of the
sector is 0/2, while the area of triangle APB
is
(1/2)(base)(height)
= (1/2)(cos0)(sin0).
Hence the area of region 1 divided by the area
of region 2 is

(1/2)(1 — cos6)(sin 0)
0/2 — (1/2)(cos0)(sin )
_ (1 —cosf)(sind)
~ #—cosfsinf
sinf — cosf#sin 6

= 79 _cosfsinf
_ sinf — (1/2)sin 260
0 — (1/2)sin 20
sin@ — (1/2) sin 260
0 —(1/2)sin 26
cos 6 — cos 20

Then limy_,¢

= lim
650 1 —cos26
. —sinf + 2sin 260
=lm————
) 2sin 26
. —cosf +4cos20
= lim
60 4 cos 260
-1 +4(1) B §
41 4
1602794 4+ 90

lim ——
w0+ 8z704 4+ 100 .

. 160 4 90z" 160
— L sqog0r — g 20 e
is no light, the pupils will expand to this
size. This is the largest the pupils can get.

1602794 +90 90
zli)n/olo m = E =0. As the amount

of light grows, the pupils shrink, and the size
approaches 6mm in the limit. This is the small-
est possible size of the pupils.

(a) V = /40mgtanh (\/32-t), therefore
lim V

t—o0
— -9 ¢
40m — e 40m
= hm \/40m,
(e\/ 40mt+€ 40mt>
(1 —e —2y 4Umt>

t

40mg lim

t—>oo

= 4/40mg

ast — oo; 2

.,
1+e 2V om

Lt—)oo and

40m

e 2V @mt — 0 This means, when the time
increases indefinitely, its velocity reaches

/40mg.

66.

(b) limV

m—0

1. \/407 eV ﬁtfei\/ ﬁt
= lim mg
m—0 e,/ﬁt_keﬂ/ﬁt

1— 6_2\/%75
= lim /40mg [ — "
m—0 ]_ + 6_2 40771
1— _2\/ 40m t
hm v/40mglim | ———
m—>0 1 +e” ﬁt
=0

2/ -t — oo and
e~2Vmmt 5 0. This means, when the
mass is negligible, its velocity is 0.

as m — 0

(¢) lim V
m—co
eV ﬁt_ei\/ ﬁt
= lim 4/40mg
m—o0 e‘/wimt{-e_‘/ﬁt

. 2/ 2om —1
= am v/ 40mg (ezm +1>
as m — 00; 24/ g5t — 0 and
eVaomt 1
. 1 GE R
= (ez\/gt +1> e (1) A0mg)

_ . 2V b
=(1/2) (2\/2:31t)—>0 ( 24 t 1) (2v51)
— /gt

This means, when the increases indefi-
nitely, its velocity reaches /gt.

c—00

)

lim § = lim {83”02 {(152 +

2[(q2416¢2)%/? —64c?
c— 00
d24+16c2)*” —64c?
= g5 lim [( <) c} is type E;
c—00 o0

we apply L’Hopital’s Rule to get

T 30 2\1/2 _ 2
2461320 2(d +16¢%) "7 (32¢) — 192¢
=2rlim ¢ [(d®+16¢%)"* - 4¢?]

Cc— 00

which on rationalising gives
d? +16¢%) — 16¢* 2
o tim L F C)2 ] _
(@16 a4




3.3. MAXIMUM AND MINIMUM VALUE

3.3 Maximum and Minimum
Values

% on (0,1)U (1, 0)

, —2x

@)=

x = 0 is critical point.

f(0) = —1is absolute maximum value but
0 is not included. Hence f has no absolute
extrema on interval (0, 1) U (1, 00).

1

flx) = a0 (-1,1)
—2x
!
)= —"
0=
x = 0 is the only critical point.
f(0) = —1 is absolute maximum value of

f(x). Hence f has no absolute minimum
on interval (—1, 1)

No absolute extrema. (They would be at
the endpoints which are not included in
the interval.)

f@) = —— on {_éﬂ

(22— 1)

x = 0 is critical point.

f has an absolute maximum value of
f(0) = —1. f assumes its minimum at

two points x = £— and minimum value is
1 1 4
1(-3)=7(2) =5

f(l') = 2 on (_007 1) U (1700)
(x—1)

2x(x —1)% — 222 (z — 1

fay = 2= 20t @)
(z—-1)

x = 0 is critical point.
f has an absolute minimum value of
f(0) =0 at = 0 and no absolute maxi-
mum occurs.

72

f@)= e (1D

) = 2a(x —1)° — 2x42 (x—1)
(z—1)

x = 0 is critical point.

f has an absolute minimum value f(0) =

0 at x = 0 and there is no absolute maxi-

mum.

=0

=0

The function does not have a maximum
or minimum. The minimum would be at
2 = 0 (not included in this interval) while

165

the asymptote at x = 1 precludes an ab-

solute maximum.
2

(d) f(z) = ——5 on [-2, -]
(x—1)
o 2a(r— 1) =222 (z — 1)

fl(z) = (@ — 1)4

_ —2x(x—1)

= <0on [-2, —1]
f(z) is decreasing function on [—2, —1] .
f(z) is maximum at x = —2 and mini-
mum at x = —1.

(a) f(x) =22 +5x—1
fl(x)=2x+5
2 +5=0
x = —5/2 is a critical number.
This is a parabola opening upward, so we
have a minimum at * = —5/2.

(b) f(x) = -2+ 4z +2
f'(x) = —2x+4=0 when z = 2.
This is a parabola opening downward, so
we have a maximum at x = 2.

(a) f(x)=a% -3z +1
f(z) =322 -3
=322 -1)
=3xz+1)(z—-1)=0
x = %1 are critical numbers and f(1) =

-1, f(-1)=3.
This is a cubic with a positive leading co-
efficient so x = —1 is a local max, x = 1

is a local min.

(b) f(z) = —23 + 622 +2
f'(z) = =322+ 120 = —3x(x +4) = 0
when z = 0 and z = —4.
f(0) =2, f(—4) = 162.
This is a cubic with a negative leading
coefficient so x = 0 is a local min and
x = —4 is a local max.

(a) f(x) =23 —32% +6x
() =322 —6x+6
322 — 62 +6=3(2>-20+2)=0
We can use the quadratic formula to find
the roots, which are x =1+ +/—1. These
are imaginary so there are no real critical
points.
(b) f(x)=—2®+32% -3z
' (x)=—32% + 62 -3
:3(—3324—250—1)
= —3(962 —2x+1)
= —3(x—1)
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f'(z) =3(x—1)°= 0 when z = 1.
Since f(x) is a cubic with only one critical
number it is neither local min nor max.

=dz(z—-1)(z+1)
f"(x) =0 when = = 0, +1.
r = 0, £1 are critical numbers. z = 0
is local maximum and z = =+1 are local
minimum.

=22 (42 —9)
fl(x )f()whenxf()
x =0, § are critical pomts T = 4 is local
mlnlmum and x = 0 is neither max nor
min.

. fle)=a2* -3z +2
f’( )—43: — 922
423 — 92% = 2%(42 - 9) =0
x = 0,9/4 are critical numbers

107

|
?1111({'111—1

x =9/4 is a local min; z = 0 is neither a local
max nor min.

. f(z) =2+ 622 -2
f'(z) = 423 + 122 = 0 when z = 0 (minimum).

4—

[TTTTTTNPTIATTTTT]
-2 -1 — 1 2

. fx) = 23/% — 4ot/

1
@)= g~
If © # 0, f'(xr) = 0 when 323/% = 421/4
x =0, 16/9 are critical numbers.
x =16/9 is a local min, = 0 is a local maxi-
mum.

]
N
(4]
IN
o
)
N
®
©
"
o

o

|
(‘Fl111?1111‘?1111’?1111_{1111

. flx) = (m2/5 — 3951/5)2

2 3
/ _ 2/5 _ 1/5 _
Pla) =2 =307 (55 - 5
f'(x) = 0 when z = 3% (minimum) and
5
z={5 (maximum).

J'(x) is undefined when z = 0 (minimum).

N

R

o

LI I B B
50 100 150 200 250 300

o
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11.

12.

f(z) =sinz cosz on [0, 27]
f'(z) = cosxcosz + sinz(—sinx)

=cos?z —sin’ x

cos?x —sin?z =0

cos?z =sin’z

cosx = *sinx

x=m/4,3n/4,57/4,Tr /4

are critical numbers.

x = w/4,57/4 are local max, ¢ = 3n/4,7r/4
are local min.

Also ¢ = 0 is local minimum and z = 27 is

local maximum.

f(z) =/3sinz + cosx

f'(z) = V3cosz—sinz = 0 when tan(z) = /3
or x = /3 + kn for any integer k (maxima for
even k and minima for odd k).

X
3 4 5
e bec b e b e/

2

[

PUNNERENE!

o

=
]
2 -2
Note that = —2 is not in the domain of f.
2z)(z 4+ 2) — (2% — 2)(1
f,(m):( )(z+2) (2 )1
(x+2)
22 +dx— 2?42
B (x+2)2
_a:2—|—4a:+2
- (z+2)

J'(z) = 0 when 2% 4 42 4+ 2 = 0, so the critical
numbers are x = —2 + /2.

167

x:—2+\/§isalocalmin;x:—2+\/§isa
local max.

p0—
o]
[TT T T 7T "‘L;/I'III|IIII|
-10 -5 i 5 10
/\10:
20-]
22—z +4
14. = —
fly =T 2
(z—1)2z—-1)—(z* —2x+4)
! —
f(l‘)— ((E—l)2
_(x—3)(x+1)_0
o (z—-1)2
when z = —1 (maximum) and z = 3 (mini-

mum). f’'(z) is undefined when z = 1 (not in
domain of f).

L L T AL I [TTTTTTTT

-10 -8 -6 -4 2 4 6 8 10
—10—

-20—

f'(z) = 0 when e = ¢7%, that is, x = 0.
f'(z) is defined for all x, so x = 0 is a critical
number. x = 0 is a local min.
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f'(z) is undefined at x = 0 (neither)

[TT T T[T IO T T I T[T T1T71] —
-5.0 -2.5 (0] 2.5 5.0 -10 -8 —
—-2.

-5.

16. f(z) = ve™2*
f'(z) = e — 2ze7%" = 0 when z =  (max-

imum).
5.0
19. f(z) =22vx + 1 =2z(x+1)/2
e 4 s s s 4 s Domain of fis all z > —1.
Lol i1y Lol f/(x):2($+1)1/2+2$(%(x+1)71/2)
2@+ 1)+
Vo +1
3z +2
Vol
f(x)=0for3z+2=0,z=-2/3.
x = —2/3 is critical numbers.
f'(z) is undefined for x = —1.
17. f(x) = 2%/3 4 42'/3 4 4272/3 s
f is not defined at x = 0. 2
4 4 8
iy 13 % —2/3 O _5/3
fl(z) = ix + 3% 3% .
= gx_5/3(x2 +x—2) o
4
= 3P 1) +2) :
x = —2, 1 are critical numbers.
z = —2 and x = 1 are local minima. N ,‘2‘)?3 B
50—
407; z = —2/3 is a local min. x = —1 is an end-
. point and local maximum.
30—
10
x
] 20. f(z) = ——
—QOYJBY—YSY—EUTZYOY;YATJSX{LY1‘0 l‘2+1 x2
22+l - ———
f'(z) = —
18. f(z) = 27/3 — 2821/3 2 +1

7 28
fl(z) = a3 — gx”/?’ = 0 when z = —2 BCEE # 0 for any z, and f(z)

(local maximum) and z = 2 (local minimum). has no critical points.
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21.

22,

Because of the absolute value sign, there may
be critical numbers where the function 2 — 1
changes sign; that is, at * = +£1. For > 1
and for x < —1, f(x) = 2% — 1 and f/(z) = 2,
so there are no critical numbers on these in-
tervals. For —1 < x < 1, f(z) = 1 — 2% and
f'(z) = —2x, so 0 is a critical number.

The graph confirms this analysis and shows
there is a local max at x = 0 and local min
at v = £1.

1
f(x) = /(2 — 322) = (¢® — 32?)°
, 1 322 —6x 1 322 —6x

f ([L‘) = g . 3 = g . 3

(23 — 322)3 (23 — 322)3
when x = 2.
x = 2 is critical number. x = 2 is local mini-
mum. x = 0 is local maximum.

23.

24.

25.
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First, let’s find the critical numbers for x < 0.
In this case,

flx)=2*+22x -1

flz)=22+2=2(x+1)

so the only critical number in this interval is
r = —1 and it is a local minimum.

Now for z > 0,

flz) =2 — 4z +3

flx)=20—-4=2(x—-2)

so the only critical number is x = 2 and it is a
local minimum.

Finally, since f is not continuous and hence not
differentiable at x = 0. Indeed, z = 0 is a local
maximum.

fl(x) = cosz for —m < z < m, and f'(z) =
—sec? x for |z| > 7.
f'(x) = 0 for x = —n/2 (minimum) and
x = /2 (maximum).

10.0—

7.5

TP T T T T TN T TN T T TN
2. Tjo 2.5 5.0 .5 10.0
_2.5 x

J'(x) is undefined for z = (2k+1)7 for integers
k # —1 or 0 (not in domain of f).

f@)=23 -3z +1
fl(x)=322-3=3(22-1)
f'(x) =0 for z = £1.

(a) On [0,2], 1 is the only critical number.
We calculate:
F0) =1
f(1) = —1 is the abs min.
f(2) = 3 is the abs max.
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(b) On the interval [—3,2], we have both 1
and —1 as critical numbers.
We calculate:
f(—=3) = —17 is the abs min.
f(= ) = 3 is the abs max.
fQ) =
f(2)= 3 is also the abs max.
26. f(xr) =a* — 822 +2
f'(z) = 423 —162 = 0 when z = 0 and z = +2.

(a) On [-3, 1]:
f(=3) =11, f(=2) = =14, f(0) = 2, and
f(1) =-5.

The abs min on this interval is f(—2) =
—14 and the abs max is f(—3) = 11.

(b) On [-1, 3]:
f(=1) = —5, f(2) = —14, and f(3) = 11.
The abs min on this interval is f(2) = —14
and the abs max is f(3) = 11.

27. f(z) = 2%/3
f/ x) _ Sx—l/S — 3%\/5
f'(z) # 0 for any «, but f’(x) undefined for
x =0, so x = 0 is critical number.
(a) On [—4, —2]:
0 ¢ [—4, —2] so we only look at endpoints.
( 4) = V16 ~ 2.52
(=2) = V4~ 1.59
So f(=4) = V16 is the abs max and
f(=2) = V/4 is the abs min.
(b) On [—1, 3], we have 0 as a critical num-
ber.
f(-1)=1

f(0) =0 is the abs min.
f(3) = 3%/ is the abs max.

28. f(z) =sinz +cosz
J'(z) = cosz —sinz = 0 when x = 7§ + k7 for

integers k.
(a) On [0, 27]:
and f(27) = 1.

The abs min on this interval is f(57/4) =

—+/2 and the abs max is f(7/4) = V2.
(b) On [r/2, «]:

fm/2) =1, f(m) = -

The abs min on this interval is f(7) = —1
and the abs max is f(7/2) = 1.

29. f(z)=e
f(z) = —2ze
Hence z = 0 is the only critical number.

(a) On [0, 2J:
f(0) =1 is the abs max.
f(2) = e~* is the abs min.
(b) On [-3, 2]
f(=3) = e7? is the abs min.
f(0) =1 is the abs max.
f2)=et

30. f(x) = x26_4”3
f'(w) = 2ze”
x=1/2.

(a) On [-2, 0]:
f(=2) =4e8, £(0) = 0.
The abs min is f(0) = 0 and the abs max
is f(—2) = 4eb.

(b) On [0, 4]:
f(1/2) =e72/4, f(4) = 16e~16.
The abs min is f(0) = 0 and the abs max
is f(1/2) = e 2/4.

32
z—3
Note thaéc x = 3 is not izrzlt)he domain of f.
, x(z —3) — 3z
f (:L') - (J} _ 3)2
622 — 18z — 322
(z —3)?
322 — 18z
(z—3)?
3z(x — 6)
(z —3)?
The critical points are x = 0, z = 6.

(a) On [-2,2]:
f(=2) = —-12/5
f(2) = -12
f(0)=0
Hence abs max is f(0) = 0 and abs min
is £(2) = —12.

(b) On [2,8], the function is not continuous
and in fact has no absolute max or min.

4w _ fp2e=4 = () when z = 0 and

31. f(x) =

32. f(x) =tan"1(2?)
fl(x) = 1+x4:0whenx:0.
(a) On [0,1]:

f(0)=0and f(1) =n/4.
The abs min is f(0) = 0 and the abs max
is f(1) = n/4.

(b) On [-3,4]:
f(=3)~ 146, f(0) =0, and f(4) =~ 1.51.
The abs min is f(0) = 0 and the abs max
is f(4) = tan~' 16.
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x
33. = -
f@) = =
oy Y 1o (2n)
(2 +1)°
(2 4+1)-1—2z-(22) —2?+1
(2 +1)° (a2 +1)*
when x = £1.
x = %1 are critical numbers.
(a) On [0, 2]:
0
f(0) = 21 0 is the abs minimum.
2 2
2 = — = —
f2) 715
fay = 5 is the abs maximum.
(b) On [-3, 3]
&=
f(=1) = ~5 is the abs minimum.
f(y) = 3 is the abs maximum.
3
3)=—
=1
3T
4. = =
34. f(x) 22 +16
() = (2% 416) -3 — 3z - (2z)
(22 4+ 16)°
(2% +16) -3 — 3z - (22)
B (22 + 16)° B
—3x2 + 48
= 7( ;—&-1_6)2 =0 when z = £4.
x
x = %4 are critical numbers.
(a) On [0, 2]:
f(0) = 02 _?_ T 0 is the abs minimum.
2 3 . .
f(2)= Pl 1008 the abs maximum.
(b) on [0, 6]:
£(0) = 0 is abs minimum.
f4) = % is abs maximum.
9
6) = —

35. f'(x) = 423 — 62 + 2 = 0 at about z = 0.3660,
—1.3660 and at = = 1.

(a) f(=1)=-3, f(1)=1L
The absolute min is (—1,—3) and
the absolute max is approximately
(0.3660, 1.3481).
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(b) The absolute min is approximately
(—1.3660, —3.8481) and the absolute max
is (—3,49).

36. f'(z) = 62° — 122 — 2 = 0 at about —1.3673,
—0.5860 and 1.4522.

(a) f(=1) =1, f(1) = =3. f(-0.5860) =
1.8587.
The absolute min is f(1) = -3
and the absolute max is approximately
f(—0.5860) = 1.8587.

(b) f(=2)=21and f(2) =13. f(—1.3673) =
—.2165 and f(1.4522) = —5.8675.
The absolute min is approximately
f(1.4522) = —5.8675 and the absolute
max is f(—2) = 21.

37. f'(z) =sinz 4+ xcosx =0 at x = 0 and about
2.0288 and 4.9132.

(a) The absolute min is (0,3) and the abso-
lute max is (£7/2,3 + 7/2).

(b) The absolute min is approximately
(4.9132, —1.814) and the absolute max is
approximately (2.0288,4.820).

38. f'(x) = 2z + e = 0 at approximately z =
—0.3517.

(a) £(0) = 1 and f(1) = 1 + e ~ 3.71828.
f'(z) # 0 on this interval, so the absolute
min is f(0) = 1 and the absolute max is
F(1) =1+ e ~ 3.71828.

(b) f(~2) ~ 4.1353 and f(2) ~ 11.3891.
£(—0.3517) = 0.8272.
The absolute min is approximately
f(—0.3517) = 0.8272 and the absolute
max is approximately f(2) = 11.3891.

39. On [—2,2], the absolute maximum is 3 and the

absolute minimum doesn’t exist.
5.0—

[T T T T T90
-2 -1
X

TTT T TTT\ ]
1 2

%IIII%IIL
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40.

41.

42.

43.

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

On (—2,2) minimum is 2 and the maximum
does not exist. (The maximum would exist at
the endpoints which are not included in the in-
terval.)

On (—2,2) the absolute maximum is 4 and the
absolute minimum is 2.

Absolute extrema do not exist because of the
vertical asymptote.

fl@)=a3+cx+1

fl(x) =322 +c¢

We know (perhaps from a pre-calculus course)
that for any cubic polynomial with positive
leading coefficient, when z is large and posi-
tive the value of the polynomial is very large
and positive, and when z is large and negative,
the value of the polynomial is very large and
negative.

44.

Type 1: ¢ > 0. There are no critical numbers.
As you move from left to right, the graph of f
is always rising.

Type 2: ¢ < 0 There are two critical numbers
x = ++/—c/3. As you move from left to right,
the graph rises until we get to the first critical
number, then the graph must fall until we get
to the second critical number, and then the
graph rises again. So the critical number on
the left is a local maximum and the critical
number on the right is a local minimum.
Type 3: ¢ = 0. There is only one critical num-
ber, which is neither a local max nor a local
min.

The derivative of a fourth-order polynomial
is a cubic polynomial. We know that cubic
polynomials must have one root, and can have
up to three roots. If p(z) is a fourth-order
polynomial, we know that

lim p(z) =00

r—r—00

lim p(z) =

r—00

if the coefficient of z* is positive, and

is —oo if the coefficient of z* is nega-
tive. This guarantees that at least one of
the critical numbers will be an extremum.
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45.

46.

47.

flx)=a+bx® +cx+d

f'(z) =322 +2bx + ¢

The quadratic formula says that the critical
numbers are

—2b + V4b% — 12¢

6

—b+Vb? -3¢

3 .
So if ¢ < 0, the quantity under the square root
is positive and there are two critical numbers.
This is like the Type 2 cubics in Exercise 53.
We know that as x goes to infinity, the poly-
nomial 2% + bx? + cx + d gets very large and
positive, and when x goes to minus infinity, the
polynomial is very large but negative. There-
fore, the critical number on the left must be a
local max, and the critical number on the right
must be a local min.

f'(x) = 322 +2bz + ¢ = 0 when z =

—2b + V4b% — 12¢

6
gether yields —2b/3.

Adding these values to-

flx)=a*+ca®+1
f'(z) = 423 + 2cx = 22(22% + ¢)
So x = 0 is always a critical number.

Case 1: ¢ > 0. The only solution to 2z (2x2 +
¢)=01isz =0, so z = 0 is the only critical
number. This must be a minimum, since we
know that the function z* + cx? + 1 is large
and positive when |z| is large (so the graph is
roughly U-shaped). We could also note that
f(0) =1, and 1 is clearly the absolute mini-
mum of this function if ¢ > 0.

Case 2: ¢ < 0. Then there are two other crit-
ical numbers x = +1/—¢/2. Now f(0) is still
equal to 1, but the value of f at both new crit-
ical numbers is less than 1. Hence f(0) is a
local max, and both new critical numbers are
local minimums.

48.

49.

50.

51.
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f'(z) = 42% + 3cz? = 0 when # = 0 and
x = —3c¢/4. Ounly z = —3c¢/4 will be an ex-
treme point (an absolute minimum). z = 0
will be an inflection point.

Since f is differentiable on (a,b), it is continu-
ous on the same interval. Since f is decreasing
at a and increasing at b, f must have a local
minimum for some value ¢, where a < ¢ < b.
By Fermat’s theorem, c is a critical number for
f. Since f is differentiable at ¢, f'(c) exists,
and therefore f’(c) = 0.

Graph of f(z) = 22 4+ 1 and g(z) = Ina:

5.0—

[TTT T[T I AT T T
-5.0 -2.5 0 2.5 5.0
X

%IIII$II¢I

hz) = f(z) —g(x) =22 +1—Inzx
WMx)=2x—-1/x=0

222 =1

v =+/1/2

T = \/m is min

fl(z) =2z

§() =1/

7 (ViR) =212 =3
()= =

So the tangents are parallel. If the tangent
lines were not parallel, then they would be
getting closer together in one direction. Since
the tangent lines approximate the curves, this
should mean the curves are also getting closer
together in that direction.

Graph of f(z) = 21
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52.

53.
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C-: vvvvvvvvvvvvvvvvvvvvvvvvv
o 1 2 3 4 5
2z(z% +1) — 2%(2x
oy = 20 1) =)
(22 4+1)
- 2z
T (a2 +1)2
() = 2(x2 +1)2 — 22 -2(z2 +1) - 22
(22 + 1)1
2z +1) [(z2 + 1) — 422
B (22 4+ 1)4
_2[1— 327
o (2 4+ 1)3

" (x) =0 for z = :t%,

1
r=—-—— 0,00
g ¢ 0
T = is steepest point.

V3

2

Graph of f(x) =e":

f(z) is steepest where f'(z) = —2ze=®" is
maximum.

2 2
f'(x) = —2e7% + 422%™ = 0 when z =

+4/2/2. This is where f(x) is steepest.

With ¢ =90 and r = 1/30, we have
377/

P(n) = —|e_3. We compute P for the first few
n

values of n:

54.

55.

56.

3
3e~3
4.5¢=3
4.5¢73

3.375¢ 3

%W[\DHOH

Once n > 3, the values of P will decrease as
n increases. This is due to the fact that to
get P(n + 1) from P(n), we multiply P(n)
by 3/(n + 1). Since n > 3, 3/(n+1) < 1
and so P(n + 1) < P(n). Thus we see from
the table that P is maximized at n = 3 (it
is also maximized at n = 2). It makes sense

that P would be maximized at n = 3 because
(90 mins) <

30 goals/min | = 3 goals.

fp) =pm (1 —p" ™™
f'(p) = mp™~H(1L —p)"

= o —m)(1 — pyrm
To find the critical numbers, we set f'(p) =0
which gives
mpm_l(l _ p)n—m

—p"(n—m)(1—p)" "t =0
mpmfl(l _ p)nfm

— p"(n—m)(1 - p)
m(l —p) = p(n —m)
m—mp=pn—pm
p=m/n.
Since this is the only critical number, f(p) is
continuous, f(0) = f(1) =0 and f(m/n) > 0,
p = m/n must maximize f(p).

n—m—1

y=2a°—42® — 2+ 10, 2 € [-2,2]

y =5zt — 1222 — 1

x = —1.575, 1.575 are critical numbers of y.
There is a local max at z = —1.575, local min
at x = 1.575.

xr = —1.575 represents the top and x = 1.575
represents the bottom of the roller coaster.
y"(z) = 2023 — 242 = 42(522 — 6) = 0

x =0, :I:\/% are critical numbers of y'. We
calculate 3" at the critical numbers and at the
endpoints x = +2:

y'(0) = -1

v (2075) - a1/

y (£2) =31

So the points where the roller coaster is mak-
ing the steepest descent are x = :I:\/%7 but
the steepest part of the roller coast is during
the ascents at £2.

To maximize entropy, we find the critical num-

bers of H.
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57.

58.

59.

Hz)=—-lnz—14+In(l-2)+1=0

where Inz = In(1—z), or where z = 1—x. That
is x = 1/2. This maximizes unpredictablility
since for this value, errors and non-errors are
equally likely.

—t

W(t)=a-e b

as t — oo, —be~ " — 0, so W(t) — a.

W/ (t)=a-e " be !

as t — 0o,be”t — 0, so W'(t) = 0.

W (t) = (a-e b " bet) . bet
Fae ) - (<bet)

=a-e " het [het — 1]
W"(t) =0 when be™t =1

e t=b1
—t=1Inb""
t=1Inb

—1Inb

W/(Inb) = a-ebe - be~Inb
=a-e () ~b~%=ae‘1

Maximum growth rate is ae™! when ¢ = Inb.

(K + [S) R — [SIR
R/([S]) =
(1) I+ (5]
function doesn’t have a true maximum, but

lim R = R,,. The rate of reaction ap-
[S]—o0

proaches R, but never reaches it.

™ #£ 0. The

Label the triangles as illustrated.

A
B

X
tan(A+ B) =3/«
A+ B =tan"!(3/x)

tanB =1/z
B =tan"!(1/x)
Therefore,

A=(A+B)-B
A=tan"! (3/x) —tan~! (1/x)
dA —3/x? B —1/2?
dv = 15 3/a7 1+ (1/2)
1 3
2241 2249
The maximum viewing angle will occur at a
((:ir}{tical value.

dzr

60.

175

T3
z24+1 2249
2> +9=32"+3
212 =6
=3
=3t~ 1.73 ft
This is a maximum because when x is large
and when z is a little bigger than 0, the angle
is small.

(a) For the hockey player, mZAHB is the
shooting angle 6.

A 6 B 1
d
H
Therefore,
7 1
6 = tan~* (d) —tan~! (d)
Hence,
@) (@
L+ () \ /) 1+ (z) \ &
-7 1

T R

To get the maximum angle,

0 = =0
d? +49 + dz+1

T —T4+d*>+49=0

6d> = 42
d=7

(b) For the hockey player, mZAHB is the
shooting angle 6.

A 5 B 1
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Therefore,

6 = tan~ " <2) + tan~! (;)

Hence,

e (@) ()

1
— T dZF25 ~ dZ41

The function is decreasing as the deriva-
tive is negative. Hence the angle is maxi-
mum when 6 is minimum = 0.

(¢) For the hockey player, mZAHC is the
shooting angle, 6.

A 2 C 4 B 1
d
H
Therefore,
6 =tan ! <;) — tan~! (Z)
Hence,

ot

7 4 _5
= —rrm T 7

To get the maximum angle,

/

= — :O
2149 2195
—7d%? — 175+ 5d%> + 245 =0

2d% = 70
d=+/35

3.4 Increasing and Decreasing

Functions

1.y=a%-30+2

Yy =322 -3=3(z%-1)
=3(xz+1)(z—-1)

x = +1 are critical numbers.

(x+1) > 0on (-1,00), (x+1) < 0 on

(_OO’ _1)

(x—1) >0on (1, o), (x—1) < 0 on

3(x+1)(x—1) > 0 on (1, co) U (—

(_007 _1)
00, —1) so

y is increasing on (1, co) and on (—oo, —1)
3(x+1)(x—1) <0on (-1, 1), so y is decreas-

y'=—-6<0atz=-1

Hence the function is a local maximum at
r=—1.

y" =6>0at z=1. Hence y(1) = 0 is a local

minimum.
40—

n
o

[ TTTT T TYT FTTTTTTTT]
-4 ) 2 4
X
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Ly=a3+222+1

y' =32 + 4z = 2(3x + 4)

The function is increasing when z < —%, de-
creasing when f% < x < 0, and increasing
when z > 0.

y' =6x+4

y”:—12<Oatx:—%

Hence f(—3) is a local maximum at 2 = —
y'=4>0atx=0

Hence y(0) is a local minimum at z = 0.

W~

Ly=2a*—822+1

y' =423 — 162 = 4x(2? — 4)

=dz(x —2)(x +2)
r = 0,2, —2 are critical numbers.
42z > 0 on (0, c0), 4 < 0 on (—o0, 0)
(x—2)>0o0n (2, ), (x—2) <0on (—o0, 2)
(x4+2) > 0on (-2,00), (x+2) < 0 on
(—OO, _2)
4(x —2)(x +2) > 0 on (—2,0) U (2, x0), so
the function is increasing on (—2, 0) and on
(2, 00).
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4(x—=2)(z+2) <0on (—oc0, —2)U(0, 2), so y
is decreasing on (—oo, —2) and on (0, 2).
y" =122% — 16
At 2 =0, y” < 0. Hence y(0) is a local maxi-
mum at z = 0.
y" = 12(£2)2 — 16 > 0 at * = +2. Hence
y(£2) are local minima at = 2.

40—
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o
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Ly=x2—-322 -9z +1

Yy =322 -6 —9=3(x—3)(z+1).

The function is increasing when z < —1, de-
creasing when —1 < x < 3, and increasing
when z > 3.

y' =6x—6
y”" = —12 < 0 at x = —1. Hence the function
is a local maximum at x = —1.

y” =12 > 0 at x = 3. Hence the function is a
local minimum at z = 3.

20

10

cy=(z+ 1)2/3
Y =3@@+1)7 = 2
' is not defined for z = —1

2 ot .
3Yarl ~ 0 on (—1,00), y is increasing

?,S‘/%ﬁ < 0 on (—o0,—1), y is decreasing
The graph has minimum at = —1.

177
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6. y=(z—1)/°
y =g@—1)7%5
The function is increasing for all z. The slope
approaches vertical as x approaches 1.
The graph has no extrema.

1.5

7. y=sinx +cosx

y =cosx —sinz =0

cosT = sinzx

x =m/4, br/4, 91 /4, etc. cosx —sinx > 0 on
(=3n/4,7/4) U (b /4,97 /4) U . ..

cosz — sinz < 0 on (w/4,5m/4) U
(97/4,13n/4) U ...

So y = sinx + cosx is decreasing on
(w/4,57/4), (97/4,137/4),

etc., and is increasing on

(=3nw/4,7/4), (57/4,97/4), etc.

y’ = —sinx — cosx

Yy’ = 7% <0atx=m/4, x =97/4, etc.
Hence the function is local maximum at
x =m/4, x =9 /4, etc.

y'=v2>0atz= 5r/4, x = 137 /4 etc.
Hence the function is local minimum at
x = 5n/4, x = 137 /4 etc.



178

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

A

v@xgw

8. y=sinz

y' = 2sinx cos .

The function is increasing for 0 < z < 7, and
decreasing for § < x <, and this pattern re-
peats with period .

y" = 2cos 2z

y'=-2<0at z=mn/2, x=3n1/2, etc.
Hence the function is local maximum at x =
w/2, x = 3w /2, ete.

Yy =+v2>0atz=0, z=m, etc.

Hence the function is a local minimum x = 0,
r =T, etc.

yzezgfl

2 2
y =¥ 1. 22 =2ze® 1
z=0

2z¢* =1 > 0 on (0, o0), y is increasing
22" =1 < 0 on (—00,0), y is decreasing

Yy = 2% 1 [222 + 1]

y”" = 0.736 > 0 at * = 0. Hence the function
is a local minimum at z = 0.

10.

11.

12.

13.

I
Iy o ® .

<
I T T A B B A

N

vvvvvvvvvvvvvvvvvvvvv

2 1 (o] 1 2
y=In(z? — 1)
, 2z
Y=r_1

The function is defined for || > 1. The func-
tion is decreasing for x < —1 and increasing
for z > 1.

The graph has no extrema.

N

N

e T Ty Ty
N
IS

IS

y=at+423 -2

y' =423 + 1222 = 422 (x + 3)

Critical numbers are x =0, z = —3.

422 (x 4+ 3) > 0 on (—3,0) U (0, 00)

4z%(z +3) < 0 on (—o0, —3)

Hence z = —3 is a local minimum and x = 0
is not an extremum.

y=a°—5x%+1

y' =5zt — 10z = 5z (2® — 2).

At ¢ = 0 the slope changes from positive
to negative indicating a local maximum. At
x = +/2 the slope changes from negative to
positive indicating a local minimum.

y=ze 2
Yy =1-e 2 4x. e22(-2)
—e 2 _9pe 2
= e 2%(1 - 21)
r=t
e”2*(1 —2x) >0 on (—o0,1/2)

e (1 —2x) < 0on (1/2,00)
So y = xe~2® has a local maximum at z = 1/2.
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14.

15.

16.

17.

18.

19.

INCREASING AND DECREASING FUNCTIONS

Y= x2e—x

Yy =2ze % — 2% = ze % (2 — ).

At x = 0 the slope changes from negative to
positive indicating a local minimum. At x = 2
the slope changes from positive to negative in-

dicating a local maximum.

y = tan~1(2?)
;L 2z
4= 14 24
Critical number is z = 0.
2x i
1 —2|—x4 >0forxz >0
=Y < 0forz < 0. Hence = 0 is a local
14 24
minimum.
y =sin~* (1 — x—lg)
, 2 1
y =—=-

5 T
® iy
The derivative is never 0 and is defined where

the function is defined, so there are no critical
points.

Yy = L Note that the function is not de-
1423
fined for z = —1.
1(1+ 23) — 2(32?)
(1+27)
1423 —323
1—248
- P
Critical number is z = \S/m
y' >0 on (—oo,—1)U(=1,—/1/2)
y' < 0on ({/1/2,00)
Hence z = 3/1/72 is a local max.

/

- T
A
, (42t -4z 132"
I+t~ (1 4ahH?

Atz = —f/m the slope changes from nega-
tive to positive indicating a local minimum. At
T = {‘/1/73 the slope changes from positive to
negative incicating a local maximum.

y = Va3 + 322 = (23 + 322)1/?
Domain is all x > —3.
1 .
y = i(z3 + 32%)71/2(322 + 6x)
3z? + 6x

2V a3 + 322
_ 3z(z+2)
2V a3 + 322
x = 0,—2,—3 are critical numbers.
y’ undefined at z = 0, —3

20.

21.

22.
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y' > 0on (—3,—2) U (0,00)

y' < 0on (—2,0)

So y = va3 + 3x2 has local max at x = —2,
local min at x = 0, —3.

y = a*/3 4 421/3

4 4 4 z+1
r_ =..1/3 — .
Yy TN B T3 s
At x = —1 the slope changes from negative to

positive indicating a local minimum. At z =0
the slope is vertical and is positive on positive
side and negative on negative side, so this is
neither a minimum nor a maximum.

y' = 4a3 — 4522 — 4z + 40

Local minima at z = —0.9474,11.2599; local
max at 0.9374.

Local behavior near x = 0 looks like

5,000

2,500

-5,00¢

Global behavior of the function looks like
40—

n
o
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1 2

Toii1 T

Yy = 423 — 4822 — 0.2z + 0.5 = 0 at ap-
proximately © = —0.1037 (local minimum),
2z = 0.1004 (local maximum), and z = 12.003
(local minimum).

Local behavior near x = 0 looks like
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23. ¢ = 5x* — 600z + 605
Local minima at x = —1.0084,10.9079;
maxima at x = —10.9079, 1.0084.
Local behavior near x = 0 looks like

10°

N
|

H
|

[T
—20

T T T 1o
—10
X

T 1
10

|
20

'THH-IFHL

Global behavior of the function looks like

24.

25.

local

500—

N

(%)

o
RN RN

TNT T T T
-2 -1
X

T

TT T T[T T TV ]
1 2

%IIII%IIL\

Yy = 43 — 1.52% — 0.04x + 0.02 = 0 at ap-
proximately z = —0.1121 (local minimum),
x = 0.1223 (local maximum), and = = 0.3648
(local minimum).

1.04

I
o
@

I T T YT T YT T N S S B

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

y = (224 1)e 2" + (2% + 2 + 0.45)(—2)e >
Local min at =z —0.2236; local max at
x = 0.2236.

Local behavior near x = 0 looks like

10°

-

[T T T T T T rTor T
5 -4 -3 -2 -1
X

YT

Global behavior of the function looks like



3.4. INCREASING AND DECREASING FUNCTIONS

26. y = 5% In(82?) + x5;67§
= 2*(5In(82%) + 2) = 0 at approximately
x = £0.2895 (a local maximum and local min-
imum). The derivative and the function are
undefined at x = 0, but the slope is negative
on both sides (neither a minimum nor a maxi-
mum).
Locally, near x = +0.2895, the function looks
like

0.002

vvvvvvvvvv T — T
-0.4 -0.2 2 0.4
X

-0.001-

-0.002

Globally, the function looks like a quintic

q

vvvvvvvvvvvvv

o
a
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N
o
o
2

27. One possible graph:
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28. One possible graph:

5
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[(A)

|
N
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o

31. One possible graph:
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32. One possible graph:

10—

o
[ 1]

-5.0 25 do 5 5.0
5
10
22 —1
,x?—1—x(22)
TV
- 22+ 1
@ =1
There are no values of z for which ¢y = 0.

There are no critical points, because the values
for which ¢’ does not exist (that is, z = £1)
are not in the domain.

There are vertical asymptotes at x = 41, and
a horizontal asymptote at y = 0. This can be
verified by calculating the following limits:

X oo xz _ 1
=
z——172 —1
. X
lim = —00

34.

35.

2

y=— 1 has vertical asymptotes at x = £1
72 _
and horizontal asymptote y = 1.
, (2® —1)2z — 22(a?) —2x

RGN
At x = 0 the slope changes from positive to
negative indicating a local maximum.

N

Wi rag
"1
N
w

z? x?

2 —dz+3 (x —1)(z —3)
Vertical asymptotes = 1, = 3. When |z| is
large, the function approaches the value 1, so

y = 1 is a horizontal asymptote.
2z(2? — 4z + 3) — 2%(22 — 4)

y:

!

y:

(22 — 4z + 3)2
_ 223 — 822 + 61 — 223 + 422
N (22 — 4z + 3)?
_ —42% + 6
" mrap
_ 2x(—2x+3)
(22 — 4 + 3)2
_ 2x(—2x+3)
[(z =3)(z - DJ?

Critical numbers are x = 0 (local min) and
x = 3/2 (local max).
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-10 -8 -6 -4 _272_ 2 4 6 8 10
.
y 4
—6—|
o]
“10]
38.
36. y = 1 v 7 has vertical asymptotes at v = +1
—x
and horizontal asymptote y = 0.
1—az%) + 42t 1+ 32%
p_ _
y = A—z2 ~ (17x4)27é0f0rany

z and is defined where the function is defined.

x
37. Yy = ——
Y 2+ 1 39
, Va2 +1—a2?/Va?+1 ’
B 2+ 1
T (@2t 1)32

The derivative is never zero, so there are no
critical points. To verify that there are hori-

zontal asymptotes at y = +1: y =

R 2 +1
Va2 1+ 5
B x
J2l\/1+ 3
Thus,
limg o0 _r 1
|2]y/1+ 3%
lim =-1
r—r—00

[l /1+ 2=

183

-3 -2 -1 1 2 3

2
2
y = % has a vertical asymptote at
x = —1, and a horizontal asymptote at y = 1.
, 2z(z+1)? — (22 +2)2(x+ 1)
N (x+1)4
2(x —2)(x 4+ 1)
(x4 1)*

x = 2 is the only critical number. Since
f(0) < 0 and f'(3) > 0, we see that f(2)

is a local minimum.

y 3
2
1
L2 s s s s s S S S L B S B S B B S s s e e
-4 -2 (o} 2 4 6
v

The derivative is
=3zt + 12023 — 1
T @iy
We estimate the critical numbers to be approx-
imately 0.2031 and 39.999.
The following graph shows global behavior:

500—

400—

300—

200—

/

100—

T T T T T

—-100—]

—200—

y
—-300—

—400—]

-500—

The following graphs show local behavior:
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40. The derivative is
—225 + 3223 — 2x
T @iy
We estimate the critical numbers to be approx-
imately +0.251, £3.992 and = = 0.
The following graph shows global behavior:

/

The following graphs show local behavior:

TTTT T T
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o

°
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o
o
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41.
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—x? — 120z + 1
(22 +1)2
We estimate the critical numbers to be approx-
imately 0.008 and —120.008.
The following graph shows global behavior:

The derivative is ¢y’ =

004 EY

)002EH

vvvvvvvvvvvvvvvvvvvv
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42.

43.

44.

45.

INCREASING AND DECREASING FUNCTIONS

—2? + 120z — 1
x? —1)2
We estimate the critical numbers to be approx-
imately 0.008 and 119.992.
The following graph shows global behavior:

500—

The derivative is 3/ =

250—]

-4

ry

-25

AEEASEEN

-506—

The following graphs show local behavior:

1004E:

1002E:

6EL

1998E:

vvvvvvvvvvvvvvvvvvvvv

Let f(x) = 3+ e~ *; then f(0) = 4, f'(x)
—e™% < 0, so f is decreasing. But f(x)
3+ e~ = 0 has no solution.

Let y1 and ys be two points in the domain
of f~! with y; < y». Let 21 = f~!(y1) and
29 = f71(y2). We want to show z; < 2. Sup-
pose not. Then x5 < x;. But then, since f
is increasing, f(z2) < f(x1). That is yo < y1,
which contradicts our choice of y; and ys.

The domain of sin~' z is the interval [—1,1].
The function is increasing on the entire do-
main.

46.

47.

48.

49.

50.

185

sin ! <2tan1 a:) is defined for all x. The

™
derivative,

>0
m(1+22),/1— (2 tan~! 2)?
for all . The function is increasing every-
where.

TRUE. If 21 < z2, then g(z1
g is increasing, and then f(g(
since f is increasing.

) < g(z2) since

1)) < fg(z2))

We can say that g(1) < ¢g(4) and g(f(1)) <
g(f(4)), but it is not possible to determine the
maximum and minimum values without more
information.

fz) = f(0)

£(0) = limy_yo
f(@)

= lim —=
x—0 X

= lim |:1+2:ESiIl (1>} =1
x—0 x

For x # 0,
f(x)

—142 [msm CC) +a? (;21) “ <alc)]
1 3

=1+4xsin — 2cos

For values of = close to the origin, the mid-
dle term of the derivative is small, and since
the last term —2 cos(1/x) reaches its minimum
value of —2 in every neighborhood of the origin,
/' has negative values on every neighborhood
of the origin. Thus, f is not increasing on any
neighborhood of the origin. This conclusion
does not contradict Theorem 4.1 because the
theorem states that if a function’s derivative
is positive for all values in an interval, then it
is increasing in that interval. In this example,
the derivative is not positive throughout any
interval containing the origin.

We have f/(z) = 322, s0 f/(x) > 0 for all z # 0,
but f/(0) = 0. Since f'(z) > 0 for all z # 0, we
know f(z) is increasing on any interval not con-
taining 0. We know that if zq < 0 then 23 < 0
and if o > 0 then 23 > 0. If 1 < 0 and
29 = 0 then 23 < 03 =0, so f(z) is increasing
on intervals of the form (z1,0). Similarly, f(z)
is increasing on intervals of the form (0, z3).
Finally, on intervals of the form (z1,z2) where
21 < 0 < 29, we have 23 < 0 < 23 so f(x) is
again increasing on these intervals. Thus f(z)
is increasing on any interval.

This does not contradict Theorem 4.1 because



186

51.

52.

53.

54.
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Theorem 4.1 is not an “if and only if” state-
ment. It says that if f(x) > 0, then f is in-
creasing (on that interval) but it does not say
that if f/(z) is not strictly positive that f is
not increasing.

f is continuous on [a,b], and ¢ € (a,b) is a
critical number.

(i) If f'(z) > Oforallz € (a,c) and f'(x) <0
for all = € (¢,b), by Theorem 3.1, f is in-
creasing on (a, ¢) and decreasing on (c, b),
so f(c) > f(x) for all z € (a,c) and
x € (¢,b). Thus f(c) is a local max.

(i) If f'(x) < Oforallz € (a,c)and f'(z) >0
for all z € (¢,b), by Theorem 3.1, f is de-
creasing on (a, ¢) and increasing on (¢, b).
So f(c) < f(z) for all z € (a,c) and
x € (¢,b). Thus f(c) is a local min.

(iii) If f'(x) > 0 on (a,c¢) and (c,b), then
fle) > f(z) for all z € (a,c) and f(c) <
f(z) for all z € (¢,b), so ¢ is not a lo-
cal extremum. If f/(z) < 0 on (a,c) and
(¢, b), then f(c) < f(z) for all z € (a,c)
and f(c) > f(x) for all z € (c,b), so ¢ is
not a local extremum.

If f(a) = g(a) and f'(z) > ¢'(x) for all z > q,
then f(z) > g(z) for all x > a. Graphically,
this makes sense: f and g start at the same
place, but f is increasing faster, therefore f
should be larger than g for all z > a. To prove
this, apply the Mean Value Theorem to the
function f(x) — g(x).

If x > a then there exists a number ¢ between
a and x with

16) - g = U =900) = U0 = gle))
Multiply by (z —a) (and recall f(a) = g(a)) to
get (z —a)(f'(c) = g'(c)) = f(z) — g(x). The

lefthand side of this equation is positive, there-
fore f(x) is greater than g(x).

Let f(z) =2z, g(x) =3 —1/x.
Then f(1) =21 =2, and g(1) =3 -1 =2,

o [0 =)

P = )=

So f'(z) > ¢'(x) for all x > 1, and
f(x):2\/§>3—%=g(x) for all z > 1.

Let f(z) = z and g(x) = sinz.

Then f(0) = ¢(0). f'(z) =1. ¢'(x) = cosx.
cosz < 1 for all z, therefore exercise 52 implies
that > sinz for all z > 0.

55.

56.

57.

58.

59.

60.

Let f(z) =e*, g(x) = 1.

Then f(0) = e’ =1, g(0) = 0+ 1 = 1, so
f(0) = g(0).

Fla)= e, o (2) =1

So f'(z) > ¢'(x) for > 0.

Thus f(z) =e* >z + 1= g(z) for x > 0.

Let f(z) =z —1 and g(z) = Inz.

Then (1) = g(1). f'(z) = 1. ¢'(x) = L.

1/ < 1 for all z > 1, therefore exercise 52
implies that z — 1 > Inz for all x > 1.

flx)=a+ba® +cx+d

f'(z) =322 +2bx + ¢

f'(z) > 0 for all z if and only if
(2b)* = 4(3)(c) <0

if and only if 4b% < 12¢

if and only if b? < 3c.

Using the quadratic formula, we find

,  —3b++/95% — 20¢
xr~ = .

10
Thus, if 95> < 20c, then the roots are imagi-
nary and so f'(z) > 0 for all . If this is not
the case, then we need to consider

oy B E VOB 20c
- i :

Now we need the expression inside the square
root, to be less than or equal to 0, which is the
same as requiring the numerator of the expres-
sion inside the square root to be less than or
equal to 0. So we need both

—3b < vV9b%2 — 20c and
—3b < —v9b2 — 20c.

Of course, both are true if and only if the lat-
ter is true. In conclusion, f(x) is an increasing
function if 96? < 20c or —3b < —v/9b% — 20c.

TRUE. (fog) (¢) = f'(g9(c))g'(c) = 0, since ¢

is a critical number of g.

sty =vVt+4=(t+4)"?

! ]‘ —
s(t) = S(t+4) 12 = N

So total sales are always increasing at the rate

>0

1
of ——— thousand dollars per month.

2Vt +4

, 1
s'(t) =
2Vt +4
resents the total sales so far, then s cannot
decrease. The rate of new sales can decrease,
but we cannot lose sales that already have oc-
curred.

> 0 for all ¢t > 0. If s rep-
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0.0048 — 0.0043
"-10)n —F———
(a) p'(-10) 2= (=8)

~0.0005
-]
= —0.000125

0.0048 — 0.0043
b) W/ (—6) 8 ——————
(0) (-6)~ "2

~0.0005

4

= 0.000125

Whether the warming of the ice due to
skating makes it easier or harder depends
on the current temperature of the ice. As
seen from these examples, the coefficient
of friction p is decreasing when the tem-
perature is —10° and increasing when the
temperature is —6°.

62. We find the derivative of f(¢):

a? + 1% —t(2t)
(a2 1 t2)2
a2 _ t2
T (2122
The denominator is always positive, while the

numerator is positive when a? > 2, i.e., when
a > t. We now find the derivative of 6(x):

o (e) = 1 2 (-2;25)

29.2
1+( 9 5)
X
- 1 (—10.75)
<10.75)2 2
1+

f1t) =

x
—29.25 10.75
2+ (29.25)2 * x2 + (10.75)2°
We consider each of the two terms of the last
line above as instances of f(t), the first as
—f(29.25) and the second as f(10.75). Now,
for any given = where z > 30, this z is our a
in f(¢t) and since a = x is greater than 29.25
and greater than 10.75, f(¢) is increasing for
these two t values and this value of a. Thus
£(29.25) > f(10.75). This means that
0'(x) = —f(29.25) + f(10.75) < 0
(where a = z) and so 0(x) is decreasing for
x > 30. Since 6(x) is increasing for z > 30, the
announcers would be wrong to suggest that the
angle increases by backing up 5 yards when the
team is between 50 and 60 feet away from the
goal post.
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3.5 Concavity and the Second

Derivative Test

. fl(x) =32 -6z +4

f”(x) =6r—6=6(x—1)
f"(z) > 0on (1,00)
f"(z) <0on (—o0,1)
So f is concave down on (—oo, 1) and concave
up on (1, co).
x =1 is a point of inflection.

. f'(x) =42% — 122+ 2 and f"'(x) = 1222 — 12.

The graph is concave up where f”(z) is pos-
itive, and concave down where f”(z) is nega-
tive. Concave up for z < —1 and = > 1, and
concave down for —1 < x < 1.

x = —1, 1 are points of inflection.

f@)=r+l=a+a!

J(e) =122

f(z) =223

f"(z) > 0 on (0, 00)

f"(x) <0 on (—o0, 0)

So f is concave up on (0, oo) and concave down
on (—oo, 0).

x = 0 is a point of inflection.

Ly =1-(1—-2)"? and y" = F(1 —a)5/3

Concave up for x > 1 and concave down for
z <1
r = 1 is a point of inflection.

. f'(x) =cosz +sinx

f"(x) = —sinx + cosx
f'(z) <Oon... (%, %) U
f"(z)>0on...(3, 2)U

f is concave down on . ..

(%

\_//\

concave llp on .

x =k + 7 are the points tion for any
interger k.
2z 2— 695
Lf _ d " _

Concave up for — \/7 {‘/7 and concave
down for z < —il/»andx > \/7
41 L)1 . . .
“\3\3 are the points of inflection.

) = 48 gx’2/3

3
f”(.’l?) _ gl,—Q/S + g$_5/3

42
T 92/3 o
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10.

11.

12.

13.

. fl(x) = e % —4ge~® and f"(z)

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

2 _

The quantity 0278 is never negative, so the 14. f(x) = z 1
x
sign of the second derivative is the same as the , (2%;)(33) — (22 = 1)(1)
. 2 o Fw) = :
sign of 1 — —. Hence the function is concave ) x
x
up for z > 2 and = < 0, and is concave down _r —g 1
x

for0 <z <2.
x = 02 are the points of inflection.

= 8e 47 (22—

Concave up for z > 1/2, and concave down for
x <1/2.
x = 1/2 is the point of inflection.

f@) =2t 4’ -1

f(z) = 423 + 122% = 2% (42 + 12)

So the critical numbers are x = 0 and z = —3.
f(z) = 1222 + 24z

f”(0) = 0 so the second derivative test for
x = 0 is inconclusive.

f"(=3) =36 > 0 so z = —3 is a local mini-
mum.

flx)=a*+42% +1

f(z) = 423 + 8x

So the only critical number is z = 0.

f(z) = 1222 + 8

f7(0) =8> 0so z =0 is a local minimum.

f(x) = we™®

fllx)=e*—ze " =e"(1—2x)

So the only critical number is z = 1.
flla)y=—e*—e*+ze®=e*(-2+2x)
f"(1)=e1(-1) < 0so x = 1 is a local maxi-
mum.

fla)=e

f(x) = —2ze

So the only critical number is x = 0.

f(x) = —2e=%" 4 4a2e~"

f7(0) = =240 < 0soz =0 is a local maxi-
mum.

16.

z? —
floy= =202

(E‘—IE xr — (E2—.’I}
fly - (22— B)e = (2 =5+ ()

2

T
x2—4

22
So the critical numbers are x = +2.

(2z)(2?) — (2?2 —4)(2z) 8z
f//(x) = 74 = ﬁ
f"(2) =1>0sozx=2is alocal minimum.
f"(-2) = =1 < 0 so z = —2 is a local maxi-
mum.

15.

There are no critical numbers and so there are
no local extrema.

y = (2% +1)¥3

Y =2+ 1))
2 -1/3

) = dx(x® +1)

So the only critical number is x = 0.
1

y =
4 9.2
3 [(az? +1)7Y3 4 (x ) (z? + 1)4/3]
4@ +1-2%) 4327 +3-2?)
3 (@241 9 (224 1)4/3

4 (2 +3)

9 (22 +1)4/3

So the function is concave up everywhere, de-
creasing for x < 0, and increasing for = > 0.
Also x = 0 is a local min.

flz)=zhx

fl(z)=Inz+1

So the only critical number is e~ !.
F(w) =1/

f"(e7!) = e > 0so f(z) has a local minimum
at ¥ = e~ L.

The domain of f(z) is (0, 00).

f'(z) < 0on (0,e7t) so f(z) is decreasing on
this interval. f’(z) > 0 on (e”!,00), so f(z) is
increasing on this interval.

f"(z) > 0 for all z in the domain of f(z), so
f(x) is concave up for all z > 0.

Finally, f(z) has a vertical asymptote at = 0
such that f(z) — oo as z — 0%,



17. f(z) =

18. f(z) = .

72 -9
vy 2x(2® —9) — 2?(2x)
f (‘T) - ($2 _ 9)2
13z
(22 -9)?
—18z
{(z+3)(z—3)}?

—18(2? — 9)? + 18z - 2(2? — 9) - 2w
(- 9yt
54x2 + 162

N FEE

_ 54(x? 4 3)

R
() >0 on (—oo0,—3) U (-3,0)
() <0on (0,3)U(3,00)
f"(x) >0 on (—oo0,—3) U (3,0)
f(@) < 01%% (=3,3)

1

f (0) - (_9)3
f is increasing on (—oo, —3) U (—3,0), decreas-
ing on (0, 3)U(3, ), concave up on (—oo, —3)U
(3,00), concave down on (—3,3), z =0 is a lo-
cal max.

f has a horizontal asymptote of y = 1 and ver-
tical asymptotes at © = £3.

fl
fl

xT

+2
The domain of f(z) is {z|z # —2}.
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19.
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There is a vertical asymptote at x = —2 such
that f(z) — oo as x — —27 and f(z) = —o0
as T — 721.2 )

, x —x
I =Gy oy
So there are no critical numbers. Furthermore,
f'(z) > 0 for all x # —2, so f(x) is increasing
everywhere.
1(2) = —A(z +2)3
f"(x) > 0on (—o0, —2) (so f(x) is concave up
on this interval)
f"(x) > 0on (-2, o) (so f(z) is concave down
on this interval)

—10

f(z) =sinz 4 cosx

f'(x) =cosz —sinx

f"(x) = —sinx — cosx

f'(z) = 0 when & = 7/4 + kr for all integers
k. When k is even, f"(r/4 +km) = —v/2 < 0
so f(x) has a local maximum. When k is odd,
(/4 +kr) = v/2 > 0 so f(x) has a local
minimum.

f'(z) < 0 on the intervals of the form (7w/4 +
2km,w/4+ (2k+ 1)m), so f(x) is decreasing on
these intervals.

f/(z) > 0 on the intervals of the form (w/4 +
(2k+1)m, /44 (2k+2)7), so f(x) is increasing
on these intervals.

f"(z) > 0 on the intervals of the form (37/4+
2km,3n/4+ (2k + 1)) so f(x) is concave up
on these intervals.

f"(z) < 0 on the intervals of the form (37/4+
(2k+ 1), 37 /4 + (2k + 2)7) so f(x) is concave
down on these intervals.
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N

Tl
\

g
1+—
2_

20. y=e *sinx
/

21.

Yy = —e Tsinx + e Fcosx = 0 when z =
/4 + kr for integers k.

Yy’ = —2e " cosx = 0 at w/2+ 2k for integers
k. These are inflection points. The function is
concave up for —7/2 < x < 7/2 and concave
down for 7/2 < x < 37/2, and the pattern re-
peats with period 27. The critical values are
all extrema, and they alternate between max-
ima and minima.

LS S e e - e e

f(z) = a3/ — 4z/4
Domain of f(z) is {z|x > 0}.

3 Sz —1
f/($> _ Zl‘ 1/4 —r 3/4 _ %37/4
So z = 0 and = = 16/9 are critical points, but
because of the domain we only need to really
consider the latter.
/(1) = —1/4so0 f(x) is decreasing on (0,16/9).
0.5
1@ = o
(16/9, 00).
Thus = 16/9 is the location of a local mini-
mum for f(x).
f”(l‘) _ %g)x75/4 + %1‘77/4
VIt g
L7/4
The critical number here is * = 16. We find
that f”(z) > 0 on the interval (0, 16) (so f(z)
is concave up on this interval) and f”(z) < 0

> 0 so f(z) is increasing on

22,

23.

on the interval (16,00) (so f(x) is concave
down on this interval).

L L B e o e e
20 25 30

f(z) = x2/3 — 4a1/3

f’(l‘) _ %zfl/S _ %1372/3

e g
22/3

So x = 0 and = = 8 are critical numbers.

f'(=1) < 0so f(z) is decreasing for x < 0.

/(1) < 0so f(x) is decreasing for 0 < z < 8.

f/(27) > 0 so f(z) is increasing on 8 < z.

f”(a:) — —%$_4/3 + %IIJ_5/3
S Y
25/3
The critical numbers here are x = 0 and
T = 64.
f"(-1) < 0 so f(x) is concave down on
(—00,0).

(1) > 0 so f(z) is concave up on (0,64).
f"(125) < 0 so f(x) is concave down on
(64, 00).

50

e o e e SRS e
-100 VIOO 200 300 400 500

X

The easiest way to sketch this graph is to no-
tice that

x2 x>0
f@)ﬂﬂ{_ﬁ e
Since
2x x>0
, . >
f(x) {—230 z <0

there is a critical point at x = 0. However, it is
neither a local maximum nor a local minimum.
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24.

25.

Since
2 x>0
f(z) =
-2 <0
there is an inflection point at the origin. Note
that the second derivative does not exist at

x=0.
30

20

The easiest way to sketch this graph is to no-
tice that
x* <0

() = a?la] = {‘ "

since
-322 <0
flle)y =9,
3z x>0
there is a critical point (and local minimum)
at x = 0. Since
—62x <0
[ (@) =
6x x>0
there is a critical point at the origin but this is

not an inflection point.
30

-3

fz) =25 4+ 1) = 25/5 4 21/5
f/($) _ gxl/S + %x—4/5

= %x74/5(6x +1)
f”(x) — %x_4/5 _ %x—9/5

= %x_9/5(3x -2)
Note that f(0) = 0, and yet the derivatives
do not exist at x = 0. This means that there
is a vertical tangent line at x = 0. The first
derivative is negative for x < —1/6 and posi-

26.

27.

191

tive for —1/6 < < 0 and « > 0. The second
derivative is positive for z < 0 and = > 2/3,
and negative for 0 < x < 2/3. Thus, there is
a local minimum at x = —1/6 and inflection
points at © = 0 and = = 2/3.

fla) =
The domain of f(z) is {z|z > 0}.

Lo 2(1 + VE) - Va(da )

!
€Tr) =
F@) (x + Vx)?
z—1/2
201+ Va)?
The only critical point is * = 0, which we

need not consider because of the domain. Since
/(1) > 0, f(x) is increasing on (0, 00).

f(w) =
—z732(1 + 2)? — 20~ V2 (1 + )2~ /2
4(1+ /x)*
—(z=1/2 4 3)

a1+ x)?
The critical numbers are z = 0 (which we again
ignore) and x = 1/9. Since f”(1) < 0 and
f"(1/16) < 0, f(z) is concave down on (0, 00).

flx) =2 — 2623 +

f(z) =423 —782% + 1

The critical numbers are
—0.1129, 0.1136 and 19.4993.
f'(=1) < 0 implies f(z) is decreasing on

approximately
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28.

CHAPTER 3.

(—00, —0.1129).

f/(0) > 0 implies f(x) is increasing on
(—0.1129,0.1136).

/(1) < 0 implies f(z) is decreasing on
(0.1136,19.4993).

f'(20) > 0 implies f(z) is increasing on
(19.4993, 00).

Thus f(z) has local minimums at x = —0.1129
and x = 19.4993 and a local maximum at
z = 0.1136.

f"(z) = 1222 — 1562 = x(12x — 156)

The critical numbers are = 0 and x = 13.
f"(=1) > 0 implies f(x) is concave up on
(—00,0).

f"(1) < 0 implies f(z) is concave down on
(0,13).

f”(20) > 0 implies f(z) is concave up on
(13, 00).

10°

30
25

20

10

T T
20 40

o]

T T
-20

flx) =22% — 1123 + 1722
f'(z) = 823 — 3322 + 34z

=z(8z —17)(z —2)
The critical numbers are x = 0, z = 2 and
x=17/8.
" (x) = 2422 — 66z + 34
£7(0) > 0 implies f(z) is concave up at z =0
so f(z) has a local minimum here and f(z) is
decreasing on (—o0,0).
f”(2) < 0 implies f(z) is concave down at
x = 2 so f(x) has a local maximum here and
f(x) is increasing on (0, 2).
f7(17/8) > 0 implies f(x) is concave up at
x = 17/8so f(z) has a local minimum here and
f(z) is decreasing on (2,17/8) and increasing
on (17/8,00).
F'(x) = 2(1222 — 33z + 17)
The critical numbers are

= % = 2.0635, 0.6866.

So f(x) is concave up on (—00,0.6866) and
(2.0635,00) and f(x) is concave down on
(0.6866,2.0635).

29.

30.

APPLICATIONS OF DIFFERENTIATION

L S B B L T
-10 -8 -6 -4 -2 O 2 4 6 8 10
x

y= -1

!/
Y T 3@a2 —1)2/3

fined at z = £4/1/2.
2

"_ w is never 0, and is undefined
where ¢/ is.
The function changes concavity at = =
++4/1/2, so these are inflection points. The
slope does not change at these values, so they
are not extrema. The Second Derivative Test

shows that x = 0 is a minimum.

=0 at z = 0 and is unde-

Vasd +1
f(x) is defined for z > —1.

fz) =

Flw) = Sa® +1)712(322)

The critical numbers are x = —1 (which we ig-

nore because of the domain) and = = 0.

f'(=1/2) > 0 so f(x) is increasing on (—1,0).

f'(1) > 0 so f(x) is also increasing on (0, c0)
(

so f(z) has no relative extrema.
f(w) =
3 2a (2% +1)1/2 — 221 (23 + 1)71/2322
2 3 +1
2z(x3 +1) —
T (@34 1)32
f%x‘l + 22
(@3 4 1)3/2
The critical numbers are z = 0 and z = 4'/3
(and x = —1, which we need not consider).



3.5. CONCAVITY AND THE SECOND DERIVATIVE TEST

31.

32.

f"(=1/2) < 0 so f(x) is concave down on

w » o

N

T N T T B M

vvvvvvvvvvvvvvvvvvvvv

D

B
[=]
m
N
@

f(z) = 2* — 1623 + 4222 — 39.6x + 14
f'(z) = 423 — 4822 + 841 — 39.6
f(z) = 1222 — 96x + 84

=12(2% — 8z +7)

=12(x —7)(z—1)
£'(x) > 0 on (.8952,1.106) U (9.9987, o)
#'(z) < 0 on (—o0,.8952) U (1.106,9.9987)

"() > 0 on (—o0,1) U (7,00)

f"(z) <0on (1,7)
f is increasing on (.8952,1.106) and on
(9.9987, 00), decreasing on (—o0,.8952) and on
(1.106,9.9987), concave up on (—oo, 1)U(7, 00),
concave down on (1,7), x = .8952, 9.9987 are
local min, x = 1.106 is local max, x = 1,7 are
inflection points.

10 20 30

y =2 4+ 3222 — 0.022% — 0.8z

y = 4x3 + 9622 — 0.04z — 0.8 = 0 at approxi-
mately x = —24, —0.09125, and 0.09132.

y”" = 1222 + 192z — 0.04 = 0 at approxi-
mately x = 16.0002 and 0.0002, and changes
sign at these values, so these are inflection

points. The Second Derivative Test shows
that x = —24 and 0.09132 are minima, and
that x = —0.09125 is a maxima. The extrema

near x = 0 look like this:

33.

193

The
global behavior looks like this:

100000

50000

vvvvvv

-50000

-100000

f(z) = zvz? — 4; f undefined on (—2,2)
fl(x) =va? -4
+z(3) (2% —4)7 V2 (22)

=224+ —
x? —4

_ 222 — 4

Va2 -4
f(w) =
4zv2? — 4 — (227 — 4) 1 (2% — 4)7V/?(22)

x? —4
_ Ax(a® —4) — (227 — Az
- (22 — 4)3/2
223 — 12x 2z(x? — 6)

- (a:2 _ 4)3/2 - (xz _ 4)3/2
f'(z) >0 on (—o0, —2) U (2,00)
f"(z) >0 on (—v6,2) U (V6,00)
f"(z) <0 on (—o0, —V6) U (2,V6)
f is increasing on (—oo,—2) and on (2,00),
concave up on (—v/6,—-2) U (\@,oo), concave
down on (—oo,—\/é) U (2,\/6), x = ++/6 are

inflection points.
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34.

35.

CHAPTER 3.
100—]
60:
40—
20
L L L L
2 4 6 8 10
36.
2x
T) = ——
f@) = ———
() 2v2? + 4 —22(3)(2? +4)7 222
xTr) =

= @
f'(z) is always positive, so there are no critical
points and f(x) is always increasing.

7(z) = 8(=3)(a® +4)5/2(2a)

(2% +4)

+4)3/2

—24x

APPLICATIONS OF DIFFERENTIATION

f(x) = e * cosx

f'(z) = —2e 2% cosw — e sinx
=e *(—2cosx —sinx)

f"(x) = —2e72*(—2cosx — sinx)

+e 2 (2sinx — cos )
= e 2%(4sinz + 3cos )
f'(x) = 0 when sint = —2cosz so when
x = kr +tan~!(—2) for any integer k.
f"(2km + tan™1(—2)) < 0 so there are local
maxima at all such points, while f”((2k+1)7+
tan~!(—2)) > 0, so there are local minima at

(22 +4)5/2
The only critical point is = 0. Since
f"(=1) > 0, f(x) is concave up on (—o0,0).
Also f"(1) < 0, so f(x) is concave down on
(0,00) and & = 0 is an inflection point for f.

2.0—

The function has horizontal asymptote y = 0,
and is undefined at =z = +1.

;L —2x -
v = x4 — 222 +2 =0
only when = = 0.

g 2(3zt — 227 — 2)

(2t — 222 4 2)2

at approximately x = £1.1024 and changes
sign there, so these are inflection points (very
easy to miss by looking at the graph). The
Second Derivative Test shows that x = 0 is a
local maximum.

=0

all such points.

f"(z) = 0 when 4sinz =
—3cosz or ¥ = km + tan~1(—3/4) for any in-
teger k. All such points x are inflection points.

37. One possible graph:

10—

1

38. One possible graph:
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There are two distinct solutions to the previous
equation (and therefore two inflection points)
if and only if 3% — 8ac > 0.

42. Since f'(0) = 0 and f”(0) > 0, f(z) must have
a local minimum at x = 0. Since we also know
that f(0) = 0, this means that there is some
neighborhood (possibly very small) of 0 such
that for all z in this neighborhood (exluding
xz=0), f(z) > 0.

Similarly, ¢’(0) = 0 and ¢”(0) < 0 implies that
g(x) must have a local maximum at z = 0.

39. One possible graph: Again we know that g(0) = 0, so there is some
10 neighborhood of 0 such that for all « in this
s neighborhood (exluding x = 0), g(z) < 0.
° On the smaller of these two neighborhoods, we
¢ know that g(z) < 0 < f(z).
2
. T 43. Let f(z) = —1 — 2%, Then
5 1 2\3 4 5 f’(x) = —2r
f(@) =2

so f is concave down for all x, but
—1 — 22 = 0 has no solution.

44. The statement is true.

40. One possible graph: 45. f(r) is concave up on (—oo, —0.5) and

(0.5, 00); f(x) is concave down on (—0.5, 0.5).
f(z) is decreasing on the intervals (—oo, 1) and
(0, 1) ; increasing on the intervals (—1, 0) and
(1,00). f(x) has local maxima at 0 and min-
ima at -1 and 1. Inflection points of f(z) are
—0.5 and 0.5.

46. f(x) is concave up on (1, 0o); f(x) is concave
down on (—o0, 1). f(x) is increasing on the in-
tervals (—oo, 0) and (2, 00); decreasing on the
intervals (0, 2). Inflection point of f(z) is 1.

41. f(l’) — (ZIL’S + be +er+d 47. (a) For #45 :

#(x) = 3az? + 2ba + ¢ The interval of incrfsase is (—o0, —1.5)
7"(x) = 6azx + 2b fmd (1.5, 00). Thc interval of decrease
Thus, f”(z) = 0 for = —b/3a. Since f” 15(71.5, 1.5) . Minima a.t z = 1.5 and
changes sign at this point, f has an inflection Maxima at z = —1.5. It is concave up for
point at z = —b/3a. Note that a # 0. (=1,0)U (1, co0). It is concave down for

(=00, =1) U (0, 1). The points of inflec-

For the quartic function (where again a # 0), tion are z — 0 and + 1

f(x) =az* + bad + ca® +dv + e
f(z) = dax® + 3ba? + 2cx +d
1" (z) = 12az* + 6bx + 2c

= 2(6ax? + 3bx + c)

For #46:

The interval of increase is (—%, %) U

The second derivative is zero when (3, 00). 1The 11nterva'l .Of decreas;e 15
(—oo, —f) U (5, 3) Minima at z = jand

. —3b+ V9b% — 24ac 2

Maxima at x = —2,3. It is concave
12a 2

 —3b+ /3(30% — 8ac) up for(—oo, 0) U (2, c0). It is concave

1%a down for(0, 2). The points of inflection
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48.

49.

50.
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are x =0 ,2..

(b) For #45:
It is concave up for (—oo, —1.5) U
(1.5,00). It is concave down for
(=1.5, 1.5). The points of inflection are
z=0and +1.5.
For #46:
It is concave up for (f%, %) U (3, c0). It
is concave down for (—oo, —% U (% 3)
The points of inflection are x :I:%7 3..

If f(¢) < 0, then f’ is decreasing at ¢. Because

f'(c) =0, this means that f' > 0 to the left of
cand f’ < 0 to the right of c. Therefore, by the
First Derivative Test, f(c) is a local maximum.
The proof of the second claim is similar.

Add and subtract 16 to complete square.

zt — 822 +10

= 2% —82% + 16+ 10 — 16

— (2> —4)" -6
Therefore, absolute minimum occurs when
(x2 — 4)2 = 0. That is absolute minimum is
—6 and occurs when x = £2.
Similarly, add and subtract 9 to 2% — 622 + 1.
zt — 62 +1

=2 — 622 +9+1-9

— (2 -3)" -8

Therefore, absolute minimum occurs when
(ﬂc2 — 3)2 = (0. That is absolute minimum is

—8 and occurs whenz = ++/3.

f(x) =a* +ba® 4+ ca® +dx+2
f'(z) = 42® +3b2® + 2cx +d
F (@) = 122° + 6bx + 2¢

To find inflection points, solve f”' () = 0.

_ —6b % /36b% — 96¢

24
x is real only if 365

—96¢c >0
3
=c< =b?

The critical numbers are

6D+ /3662 — 96¢

24
and
_ —6b— 36b% — 96¢

24
Therefore sum of z-coordinates

51.

52.

53.

54.

55.

56.

_ —6b+ /3602 — 96¢ N —6b — /36b2 — 96¢
- 24

24
~ —6b+ /360> — 96¢ — 6b — v/36b> — 96¢
- 24

—12b

b
24 2

We need to know w’(0) to know if the depth is
increasing.

We assume the sick person’s temperature is too
high, and not too low. We do need to know
T’(0) in order to tell which is better.

If 7(0) = 2 and T" > 0, the person’s temper-
ature is rising alarmingly.

If 77(0) = —2 and T" > 0, the person’s tem-
perature is increasing, but leveling off.
Negative T" is better if 77 > 0.

If 7(0) = 2 and T” < 0, the person’s temper-
ature is decreasing and leveling off.

If T(0) = —2 and T” < 0, the person’s tem-
perature is dropping too steeply to be safe.
Positive T" is probably better if 77 < 0.

s(x) = =323 + 27022 — 3600z + 18000

s'(x) = =922 + 540z — 3600

s"(x) = —18x+540=0

x = 30. This is a max because the graph of
s'(z) is a parabola opening down. So spend
$30,000 on advertising to maximize the rate of
change of sales. This is also the inflection point

of s(x).

Q' (t) measures the number of units produced
per hour. If this number is larger, the worker
is more efficient.

Q'(t) = —3t2 + 12t + 12 will be maximized
where

Q" = —6t+12 = 0, or t = 2 hours. (This
is a maximum by the First Derivative Test.)
It is reasonable to call this inflection point the
point of diminishing returns, because after this
point, the efficiency of the worker decreases.

C(x) = .012% + 40z + 3600
el C(z) -1
Clx) = == = 01z + 40 + 3600

C'(z) = .01 — 3600272 = 0

x = 600. This is a min because C”(x) =
7200z~ > 0 for x > 0, so the graph is con-
cave up. So manufacture 600 units to minimize
average cost.

Solving ¢’ = 0 yields t = 19.8616. The Sec-
ond Derivative Test shows this is a maximum.
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57.

Solving ¢’ = 0 yields ¢t = 41.8362. Suppose a
second drug produced a similar plasma concen-
tration graph, with the same maximum, but a
later inflection point. Then the plasma concen-
tration decays faster for the second drug, since
it takes longer for the rate of decay to level off.

Since the tangent line points above the sun, the
sun appears higher in the sky than it really is.

3.6 Overview of Curve

1.

Sketching

f(x) =23 —32% + 3x
= x(2? — 3z + 3)
The only z-intercept is x = 0; the y-intercept
is (0,0).
f'(z) =32% — 6z +3
=3(2%-22v+1)=3(x—1)2
f'(z) > 0 for all z, so f(x) is increasing for all
2 and has no local extrema.
f'(z) =6z —-6=06(zx—1)
There is an inflection point at x = 1: f(x) is
concave down on (—o0,1) and concave up on
(1,00).
Finally, f(z) — oo as ¢ — oo and f(z) — —oc0
as x — —oo.

50—

25—

T T T T LN L L L B L B |
-24 -16_<08 00 038 16 24 32 40 438

_o5+

. fle) =2t -32% + 22

=x(x® — 3z +2)
The z-intercepts are x = —2, x = 1 and x = 0;
the y-intercept is (0, 0).
f(z) =423 — 62 + 2

=2(22% — 3z +1)
The critical numbers are x = —1.366, 0.366
and 1.
f'(z) > 0 on (—1.366,0.366) and (1, c0), so
f(x) is increasing on these intervals. f'(z) <0
on (—oo, —1.366) and (0.366, 1), so f(x) is de-
creasing on these intervals. Thus f(z) has local
minima at * = —1.366 and z = 1 and a local
maximum at z = 0.366.

197

f(x) =1222 — 6 = 6(22% — 1)

The critical numbers here are z = +1/v/2.
f"(z) >0 on (—o0,—1/y/2) and (1/v/2,0) so
f(z) is concave up on these intervals. f”(z) <
0 on (—1/v/2,1/v/2) so f(z) is concave down
on this interval. Thus f(z) has inflection
points at x = +1/1/2.

Finally, f(z) — oo as © — %o0.

3. flx)=a%—-223+1

The z-intercepts are z = 1 and x ~ —1.5129;
the y-intercept is (0, 1).

f'(z) = 5x* — 62% = 22(522 — 6)

The critical numbers are z = 0 and z =
:I:\/%. Plugging values from each of the
intervals into f/(x), we find that f'(x) > 0
on (—o0,—/6/5) and (1/6/5,00) so f(z) is
increasing on these intervals. f/(z) < 0 on
(—=1/6/5,0) and (0,+/6/5) so f(z) is decreas-
ing on these intervals. Thus f(z) has a local
maximum at —m and a local minimum at
V/6/5.

f"(z) = 2023 — 122 = 4x(52% — 3)

The critical numbers are z = 0 and z =
:I:\/%. Plugging values from each of the in-
tervals into f”(x), we find that f”(z) > 0
on (—+/3/5,0) and (1/3/5,00) so f(z) is con-
cave up on these intervals. f”(xz) < 0 on
(—00, —/3/5) and (0,+/3/5) so f(x) is con-
cave down on these intervals. Thus f(x) has
inflection points at all three of these critical
numbers.

Finally, f(z) — o0 as ¢ — oo and f(z) - —o0
as r — —oo.
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Cf@) =2t 4423 -1

The z-intercepts are x ~ —4.01541 and =z =~
0.6012; the y-intercept is (0, —1).

' (x) = 423 + 1222 = 422 (z + 3)

The critical numbers are x = 0 and * = —3.
Plugging values from each of the intervals into
f'(z), we find that f'(x) > 0 on (-3, 0) and
(0, 00) so f(x) is increasing on these intervals.
f'(x) < 0on (—o0, —3) so f(z) is decreasing
on these intervals. Thus f(z) has a local min-
imum at —3.

" (z) = 122% + 24z = 12z (z + 2)

The critical numbers are * = 0 and * = —2.
Plugging values from each of the intervals into
f"(x), we find that f”(x) > 0 on (—o0, —2)
and (0, oo) so f(z) is concave up on (—oo, —2)
and (0, c0). f”(x) < 0 on (—2,0) so f(z) is
concave down on (—2, 0). The graph has in-
flection points at —2 and 0.

Finally, f(z) — oo as x — oo and f(z) — oo
as x — —00.

x 5
-5 4 -3 -2 -1 1 2 3 4 5
L TN T I N 1788 T I T i |

2
f@)=ay =T

This function has no x- or y-intercepts. The
domain is {z|z # 0}.

f(z) has a vertical asymptote at z = 0 such
that f(z) > —oco as ¢ — 0~ and f(z) — oo as
x— 07,

flx)=1—4272% =

x?—4
72

6. fla) = —

The critical numbers are x = 2. We find
that f'(x) > 0 on (—o0,—2) and (2,00) so
f(z) is increasing on these intervals. f/(z) <0
on (—2,0) and (0,2), so f(z) is decreasing on
these intervals. Thus f(z) has a local maxi-
mum at £ = —2 and a local minimum at x = 2.
f”(x) = 83

f"(x) < 0on (—o0, 0) so f(x) is concave down
on this interval and f”(z) > 0 on (0,00) so
f(x) is concave up on this interval, but f(z)
has an asymptote (not an inflection point) at
z=0.

Finally, f(x) - —oc0 as x — —oo and f(z) —
00 as T — 0.

21 1
= Tr— —

There are x—interceptg at x = +1, but no y-
intercepts. The domain is {z|x # 0}.

f(z) has a vertical asymptote at x = 0 such
that f(x) > oo asz — 0~ and f(z) = —o0 as
x— 0.

f'(x) = 1+ 272 > 0, So there is no critical
numbers. f(x) is increasing function.

f”(l‘) = 92773

f"(x) > 0on (—o0,0) so f(x) is concave up on
this interval and f”(x) < 0 on (0,00) so f(x)
is concave down on this interval, but f(z) has
an vertical asymptote (not an inflection point)
at x = 0.

Finally, f(z) — —o0 as ¢ — —oo and
f(z) = 00 as z — 0.
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5 _—4 -3 1 2 3 4 5
X ]
—a—
,
—6—
-8—|
—10—
2
x 44 .
7. f(x) = has no z-interscept and no y-
23

interscept. The domain of f includes all real
numbers z # 0. f(z) has a vertical asymptote

atx:O2 5 2, ) (322
ey = 26 = 6 0 307
(%)
—(x2—|—12)

24
Since f’(2) =0 has no real roots, the graph
has no extrema. f/(z) < 0 on (—o00,0) and
(0,00) so f(x) is decreasing on these inter-
a* (2z) — (22 +12) (42°)

(4)?

vals. [ (z) = —

2 [2? 4 24]

25
f"(z) < 0on (—00,0) so f(zx) is concave down
on this interval and f”(x) > 0 on (0,00) so
f(x) is concave up on this interval, but f(z)
has an asymptote (not an inflection point) at
z=0.
Finally, f(z) = 0 as ¢ — —oo and f(z) — 0 as
x — oo. Therefore, the graph has horizontal
asymptot y = 0.

100—

r—4

8. f(x) = 23

The graph has x-intercepts at x = 4, but no
y-intercepts. The domain of f includes all real
numbers z # 0. f(z) has a vertical asymptote
atz =0

199

3 2
f(2) = x° — (x 42) (322)
(%)
2z +12
o

The critical numbers is * = 6. We find that
f'(z) > 0 on (—00,0) and (0,6) so f(z) is
increasing on these intervals. f/(z) < 0 on
(6,00), so f(z) is decreasing on these intervals.
Therefore, the graph has a local maximum at
r =6.

f'(x) =

_ 6r—48
25

f"(x) > 0 on (—00,0) and (8,00) so f(z) is
concave up on this interval and f”(z) < 0 on
(0,8) so f(z) is concave down on this interval,
but f(x) has an inflection point at x = 8.
Finally, f(z) = 0 as z — —oco and f(z) — 0 as
x — oo. Therefore, the graph has horizontal
asymptote y = 0.

(z%) (=2) = (=22 + 12) (4a?)

(a)”

o
L L L L B L N A A LIS e
-75 -50 -25 = 25 50 75
—a
e
2]
o]
on ]
a 2x
()= 55—
) 2 —1

The graph has x-intercept and y-intercept at
(0, 0). The domain of f includes all real num-
bers x = £1. f(x) has vertical asymptotes at
r = =£1.

2 (2% — 1) — (2z) (22)

fl() = o
B —2 (x2 + 1)
(@2 -1)

Since f’(x) = 0 has no real roots, the graph
has no extrema. f’(z) < 0 on (—o0, —1),
(=1, 0), (0, 1) and (1, o0) so f(x) is decreasing
on these intervals.

£ () = —2 [Qx (932 — 1) [JC2 —1—222— 2]

(@2 —1)"
Az [w2 + 3]
o @2-1)?
f"(z) > 0 on (—1,0) and (1,00) so f(x) is
concave up on this interval and f”(z) < 0 on
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(—o0,—1) and (0,1) so f(x) is concave down on
this interval, but f(x) has an inflection point
at x = 0.
Finally, f(z) - 0 as ¢ — —oo and f(z) — 0 as
x — oo. Therefore, the graph has horizontal
asymptote y = 0.
T T T T T 77
2 4 6 8 10
322
10. = ——
F@)=

The graph has z-intercept and y-intercept at
(0, 0). The domain of f includes all real num-
bers.

2172 xr) — $2 T
oy (& 1) 00) = (3) 20

(22 +1)

_ 6z
(a2 + 1)
f'(z) <0 on (—00,0) so f(x) is decreasing on
these intervals and f’(x) > 0 on (0, 00) so f(z)
is increasing on these interval.
() = (2% +1) [6 (2% 4+ 1) — 2427

(22 +1)"
66— 182

(2 +1)°

The critical numbers are x = :I:\/g . We find

that f”(z) > 0 on (—\/g, \/g> so f(x) is

concave up on this interval and we find that

f"(z) < 0 on (—oo,— %) and (\/g, OO) SO

f(x) is concave down on this interval, but the

graph has inflection points at x = :I:\/g .

Finally, f(x) — 3 asxz — —oc and f(x) — 3 as
x — oo. Therefore, the graph has horizontal
asymptote at y = 3.

11.

12.

APPLICATIONS OF DIFFERENTIATION

f(x) =(x +sinx)

The graph has z-intercepts and y-intercepts at
(0, 0). The domain of f includes all real num-
bers.

f'(z) = 14 cosz > 0,therefore the graph has
no extrema and f(z) is a increasing function.
f"(z) = —sinzx

f"(z) < 0on (2nm, (2n+ 1) 7) so f(z) is con-
cave down on this interval and we find that
f"(x) >0on (2n+1)m2(n+1)7w) so f(x)
is concave up on this interval, but the graph
has inflection points at x = nmx.

Finally, f(z) = —o0 as & — —oo and f(z) —
oo as x — oo. Therefore, the graph has no
horizontal asymptote.

5—

f(x) =sinx — cosx
f'(x) = cosx + sinz is zero for x = nw — Z.

s
4

f" () = —sinx + cosx

When n is even, f”(z) > 0 and so f is mini-
mum at x = nmw — 7.

When n is odd, f”(z) < 0 and so f is maxi-
mum at r = nmw — 7.

J"(x) = 0 for x = nm+ F. So inflection points
are nmw + 7.

f"(z) < 0on (Z+nm 3 +nm) so flz) is
concave down on this interval and we find that
f"(z) > 0 on (3 +nm, & +nr) so f(z) is
concave up on this interval.
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13.

14.

fl@)=zazlnz

The domain is {z|z > 0}. There is an z-
intercept at x = 1 and no y-intercept.
fl(z)=Inz+1

The only critical number is z = e~ 1. f/(z) <0
on (0,e7!) and f'(z) > 0 on (e7!,00) so
f(x) is decreasing on (0,e~!) and increasing
on (e71,00). Thus f(z) has a local minimum
at x =e" 1.

f"(x) = 1/x, which is positive for all = in the
domain of f, so f(z) is always concave up.
f(z) = 00 as x — 0.

f(x) = zInx?

The domain is {z|r # 0}. There are z-
intercepts at x = 1 but no y-intercept.

fl(z) =Inz?+2

The critical numbers are z = +e~ 1. f"(z) =
2/z, so x = —e~! is a local maximum and
r = e~ 1 is alocal minimum. f(x) is increasing
on (—oo,—e~1) and (e}, 00); f(x) is decreas-
ing on (—e~1,0) and (0,e~1). f(x) is concave
down on (—00,0) and concave up on (0, c0).
f(z) - —oc0 as @ — oo and f(z) — oo as
T — 00.

15.

16.
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flz)=+vaz+1

The y-intercept is (0,1). There are no x-

intercepts.
fl@) = 2(a? +1)"Y2%22 = = The only

critical number is x = 0. f/'(z) < 0 when z < 0
and f'(z) > 0 when = > 0 so f(x) is increas-
ing on (0, c0) and decreasing on (—oo,0). Thus
f(z) has a local minimum at z = 0.
() = 2 +1— .’Lé(’l}z +1)"1/222

2 +1

(224 1)3/2
Since f”(x) > 0 for all x, we see that f(x) is
concave up for all z.
f(@) = 00 as x — +o0.

flz) =2z -1

The domain is {z|z > 1/2}. There is an a-
intercept at x = 1/2.

F() = (2w - 1) V2= L

f'(z) is undefined at = 1/2, but this is an
endpoint of f(z) and there are no other criti-
cal points. Since f’(x) is positive for all z in
the domain of f, we see that f(z) is increasing
for all z in the domain.

fl(a) = =522 -1)7?2 = 5=k

f"(x) <0 for all z in the domain of f, so f is
concave down for all = for which it is defined.

flx) = o0 as ¢ — oo.
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17.

18.
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f(x) = (2% — 322 + 290)1/3
3z — 6z + 2
f(x) =

3(z3 — 322 + 2x)2/3

There are critical numbers at z = 7 0,
1 and 2. )
—6z* + 12z — 8
" o
J )= 9(a® — 322 + 22)5/3
with critical numbers x = 0, 1 and 2. f"(x)

changes sign at these values, so these are in-
flection points. The Second Derivative test

3+V3

shows that x = is a minimum, and

3—-V3 . .
Xr = 1S a maximum.

f(z) = —o0 as x — —oo and f(z) — oo as
T — 00.

xT

(z) = (2° — 322 + 22)"/?
(x) is defined for 0 < z < 1 and z > 2.
()

— 00 as T — 00.
322 — 6z +2
2(x3 — 322 4 21)1/2

T

f
f
f
f

() =

There are critical numbers at © =

1 and 2. . 5 )

F(2) = 3z — 122° + 122* — 4

4(x3 — 322 + 21)3/2

with critical numbers z = 0, 1 and 2 and
x ~ —0.4679 and 2.4679. f(z) is undefined at
x = —0.4679, so we do not consider this point.

19.

f"(z) changes sign at x = 2.4679, so this is an
inflection point. The Second Derivative test

shows that z = is a maximum.

At =0, 1, 2, f(x) is minimum.

104

o :
f(x)= z5/3 — 5p?/3
The domain of f includes all real numbers.
@) = 2at - Do
-3 3

= g (x% — Qx_é)

5 (x—2

e ( g )
Critical number is z = 2.
f'(z) > 0 on (—o00,0) and (2, 00).
increasing on these intervals.
f'(x) < 0on (0,2) and so f(z) is decreasing
on this interval.
Therefore f(x) is maximum at = 0 and min-
imum at x = 2.

2 2
' (x) = g (Sxé + 3z§>

So f(x) is

= D (ah )
9

10 fx+1
9 \ 43

The critical number is at z = 0, —1. f"(z)
changes sign at these values, so these are in-
flection points. f(z) = —o0 as & — —oo and
f(z) = 00 as x — 0.
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20. f(x):x?’—ix:xx

2 R —
400 ( 400)
The y-intercept (also an z-intercept) is (0, 0)

and there are also z-intercepts at 2 = 4/3/20.
3
fla) =32% =

400
The critical numbers are = +1/20.
f"(x) = 62, s0 x = —1/20 is a local maximum

and z = 1/20 is a local minimum. f(z) is in-
creasing on (—oo,—1/20) and (1/20,00) and
decreasing on (—1/20,1/20). It is concave up
on (0,00) and concave down on (—o0,0), with
an inflection point at z = 0.

fl@) = —oc0 as ¢ — —oo and f(z) — oo as
T — 00.

1072

10

-1

21. f(z) =e %/

22

f’(l‘) _ e—2/x <2) — %e—Q/x

X
—4 2 2
" _ —2/x —2/x
@)= e+ e <x)
4 —2/x 4 —2/x
= e T e

f(z) > O:l(:)n (—oo,O)xU (0, 00)

f"(x) >0 on (—o00,0)U(0,1)

f"(z) < 0on (1,00)

f increasing on (—o0,0) and on (0,00), con-
cave up on (—o0,0) U (0,1), concave down on
(1,00), inflection point at & = 1. f is unde-
fined at x = 0.

lim e 2" = lim —— =0 and

x—0+ z—0+ €2/

lim e %% = 00

z—0~

So f has a vertical asymptote at =z = 0.
lim e 2/* = lim e 2/*=1

Tr—r 00 r—r—00

So f has a horizontal asymptote at y = 1.
Global graph of f(x):

22.

23.

203

10 5 g 5 10
ki
]
~10
Local graph of f(z):
0.
0.
y (o] T
0.5 1 1.5 2 2.5 3
X
-0.
-0.
fla) = et/

The function has a vertical asymptote at x = 0
such that f(x) — oo as x approaches 0 from
the right or left. There is a horizontal asymp-
tote of y = 1 as x — Fo0.

-2
fll@)=—- et/

x
f'(x) > 0 for < 0, so f(x) is increasing on
(—00,0) and f'(z) < 0 for z > 0, so f(x) is
decreasing on (—o0,0).

2e1/7 (322 4 2)
f(x) = 6
is positive for all  # 0, so f(z) is concave up
for all x # 0.

10:
J 5
A TP
: X
5]
10:
1
flz) = x3—3x22— 9z + 1
3x° —6x—9
f(z) =—

(23 — 322 — 9z + 1)*
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24.
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The critical numbers are x = —1, 3.
() 6 (62* — 4% — 72% + 122 + 2)
€Tr) =
(23 — 322 — 9z + 1)°
The Second Derivative test shows that the

graph has a local minimum at x = —1 and
a local maximum at z = 3. The graph has
a vertical asymptote at x = —1.9304. Sim-

ilarly, the graph has vertical asymptotes at
x = 0.1074 and 4.8231.

f(z) > 0asz — —oo and f(z) — 0as z — oo.
Therefore, the graph has horizontal asymptote
y=0.

L L T 1% 1 T T T
-6 -5 4?2 -1 :Fz 3 4 5 6

_2_5j
,5,05
1
f(z)= x3+3x22—i—4x—|—1
3z° +6x +4
fi(x) =~

(23 + 322 + 4z + 1)°
Since f’(x) = 0 has no real roots, the graph
has no extrema.
£ (2) = 122% + 4823 + 7822 + 66x + 26

(23 + 322 + 4z 4+ 1)°
The Critical number is =z = —0.316722.
/" (xz) > 0 on (—0.3176722,00) so the graph
is concave up on this interval. f”(z) < 0

on (—o0,—0.3176722) so the graph is concave
down on this interval. the graph has a vertical
asymptote at © = —0.3176722. f(z) — 0 as
x — —oo and f(z) — 0 as x — 0.

Therefore, the graph has horizontal asymptote
y=0.

26.

2(32 — 6z + 2)
3(x3 — 322 + 2x)1/3

@) =

3+v3
There are critical numbers at x = 3\[
1 and 2.

1 18x% — 7223 + 8422 — 242 — 8

fr(x) =
9(x3 — 322 + 22)%/3
with critical numbers z = 0, 1 and 2 and
x ~ —0.1883 and 2.1883. f”(x) changes sign
at these last two values, so these are inflection
points. The Second Derivative test shows that

34+3
xr =

occur at x =0, 1 and 2.
f(x) = 00 as © — +o0.

’07

are both maxima. Local minima

f(x) = 25 —102° — 72t + 8023 + 1222 — 192x
f(z) = 00 as x — +o0.

f(z) = 6x° —502* — 2823 + 24022 + 242 — 192
Critical numbers at approximately =z =
—1.9339, —1.0129, 1, 1.9644, and 8.3158.

" (x) = 30x* — 2002 — 8422 + 480z + 24
Critical numbers at approximately =z =
—1.5534, —0.0496, 1.5430, and 6.7267, and
changes sign at each of these values, so these
are inflection points. The Second Derivative
Test shows that x = —1.9339, 1, and 8.3158
are local minima, and x = —1.0129 and 1.9644
are local maxima. The extrema near z = 0

look like this:

vvvvvvvvvvvvvvvvvvvvvvvvvv

The inflection points, and the global behavior
of the function can be seen on the following



28. f(z) = —
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graph.
10000
X
y) 2 1 2 a 6 8 ]!0
-10000:
-20000:
-30000
-40000
-50000
2

- +1

27. f(2) = o5
3z2 -1

Note that z = +4/1/3 are not in the domain

of the function, but yield vertical asymptotes.
~ 22(32% — 1) — (2® + 1)(6x)

f (l’) - (3I2 o 1)2
_ (62® — 2z) — (62° + 6x)
N (322 —1)2
_ —8x
B (3z2 —1)2

So the only critical point is x = 0.

f'(x) >0forz <0

f(x)<0forz>0

so f is increasing on (—oo,—+/1/3) and on
\/7 0); decreasing on (0, \/7 and on

( 1/3,00). Thus there is a local max at « = 0.

1 922 + 1

f (‘T) =38 (31_2 — 1)3

1) > 0on (e 1/3) U (v/1/3.0)

F1(2) < 0 on (—/1/3,/1/3)

Hence f is concave up on (—oo, —4/1/3) and on

(/1/3,00); concave down on (—/1/3,/1/3).

Finally, when |z| is large, the function ap-
proached 1/3, so y = 1/3 is a horizontal asymp-
tote.

I
9

o
T Y B R

q

Qi 1Yy

=

5x

o —x+1
Looking at the graph of z3 — z + 1, we see
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that there is one real root, at approximately
—1.325; so the domain of the function is all x
except for this one point, and =z = —1.325 will
be a vertical asymptote. There is a horizontal
asymptote of y = 0?;
1—-2x

"(2) =bs—"—=
F@) (3 —x —1)2
The only critical point is x = {/1/2. By the
first derivative test, this is a local max.

3x° 4+ 2% — 627 4+ 1

§(w) =105 T

(23 —z+1)3
The numerator of f” has three real roots,
which are approximately z = —.39018, x =

43347, and « = 1.1077. f’(x) > 0 on
(—00, —1.325) U (—.390,.433) U (1.108, 00)
F"(z) < 0 on (—1.325,—.390) U (.433, 1.108)
So f is concave up on (—oo,—1.325) U
(—.390,.433) U (1.108,00) and concave down

n (—1.325,—.390) U (.433,1.108). Hence z =
—.39018, z = .43347, and x = 1.1077 are in-
flection points.

~10—

29. f(z) = 2®V22 -9

f is undefined on (-3, 3).

f/(ac) =22\ 22 — 94 22 <;($2 _ 9)71/2 . 233)

3
=22V22 -9+ ———
vaz -9

2z(z% — 9) + 23

Va2 -9
_ 32® — 18z 3x(2? —6)
V22— 9 V229
_ 3u(o+ V)@ - V)
B Va2 -9

Critical points £3. (Note that f is undefined

at x =0, :I:\/é)
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(92% — 18)Vz2 — 9

1"
f (ZL’) - xQ -9
(323 —18z) - (22 —9)"V/2 . 22
B 22 -9
(922 — 18)(2% — 9) — (32> — 18x)
= (z2 — 9)3/2
(621 — 8122 + 162)
= (22 — 9)3/2
f"(xz) = 0 when
o 81+ /812 —4(6)(162)
B 2(6)
_ 81 :|:1\2/2673 _ i(??:l: \/29—7)

So x =~ £3.325 or z &~ +1.562, but these latter
values are not in the same domain. So only
+3.325 are potential inflection points.

f'(z) >0 on (3,00)

f'(z) <0 on (—oo,—3)

f"’(x) > 0 on (—o0,—3.3) U(3.3,00)

f"(x) <0on (-3.3,-3)U (3,3.3)

f is increasing on (3,00), decreasing on
(—00,—3), concave up on (—o00,—3.3) U
(3.3,00), concave down on (—3.3,—3)U(3, 3.3).
x = £3.3 are inflection points.

Global graph of f(z):

Local graphs of f(z):

w P
I ST SRR

N

I

vvvvvvvvvvvvvvvvvvvv

o
L1
N
a
w
w
o
IS

30.

31.

TT T T T T T T
w B
o o

T

N
o

i
o

TT T T T T T T T

vvvvvvvvvvvvvvvvvvvv

IS
@
14
@
N
14
No

f@) = VIT=1

, 4z
F@) = spm 1y
f'(x) = 0 at * = 0 and is undefined at
x=14/1/2.
() = —4(222 + 3)
9(222 — 1)5/3
f"”(z) is never 0, and is undefined where f’
is. The function changes concavity at x =
+4/1/2, so these are inflection points. The
slope does not change at these values, so they
are not extrema. The Second Derivative Test
shows that x = 0 is a minimum.
f(z) = o0 as x — +o0.

f(x) =e *sina

f'(z) = e ?*(cosw — 2sinx)

f(x) = e 2*(3sinx — 4cosx)

f'(x) = 0 when cosxz = 2sinx; that is,
when tanz = 1/2; that is, when z =
km +tan~1(1/2), where k is any integer.

f'(z) < 0, and f is decreasing, on intervals of
the form (2km + tan™*(3), (2k + 1)7 + tan='(3))
f'(z) > 0 and f is increasing, on intervals of
the form ((2k — 1)m + tan~'(3), 2km + tan='(3))
Hence f has a local max at =z = 2km +
tan=!(1/2) and a local min at x = (2k +
)+ tan~1(1/2).

f"(x) = 0 when 3sinz = 4cosx; that
is, when tanz = 4/3; that is, when z =
km + tan=1(4/3). The sign of f” changes at



3.6. OVERVIEW OF CURVE SKETCHING

each of these points, so all of them are inflec-
tion points.

32. f(z)=sinz — isin2x
f'(z) = cosx — cos 2x
f'(x) = 0 when z = 2km, 27/3 + 2km, or
47 /3 + 2km.
f"(x) = —sinx 4 2sin 2z
f"(x) = 0 when x = 0, 7 and approximately
+1.3181, and the pattern repeats with period
2m. f” changes sign at each of these values, so
these are inflection points. The First Deriva-
tive Test shows that x = 2k is neither a min-
imum nor a maximum. The Second Derivative
Test shows that the other critical numbers are
extrema that alternate between minima and
maxima.

33. f(z) = 2t — 1623 + 4222 — 39.62 + 14

f/(x) = 4a3 — 4822 + 84z — 39.6

f(x) = 1222 — 962 + 84

= 12(22 — 8z + 7)

=12(x—7)(z-1)
#/(x) > 0 on (.8952,1.106) U (9.9987, o)
F/(x) < 0 on (—o0,.8952) U (1.106,9.9987)
f"(x) >0 on (—o0,1) U (7,00)
f"(x) <0on (1,7)
f is increasing on (.8952,1.106) and on
(9.9987, 0), decreasing on (—o0,.8952) and on
(1.106,9.9987), concave up on (—oo, 1)U(7, 00),
concave down on (1,7), x = .8952, 9.9987 are
local min, x = 1.106 is local max, x = 1,7 are
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inflection points.
f(x) = 00 as © — +o0.
Global graph of f(z):

4000
3000
2000

1000

o S R e e E
-10 -5 s 5 ——ro— 15 20
X

Local graph of f(z):

vvvvvvvvvvvvvvvvvvvvvvvvvvv

34. f(x) = 2* + 322% — 0.022% — 0.8z
f'(z) = 423 + 962% — 0.042 — 0.8
f'(x) = 0 at approximately =z = —24,
—0.09125, and 0.09132.
f(x) = 1222 + 192z — 0.04
f"(z) = 0 at approximately = = 16.0002 and
0.0002, and changes sign at these values, so
these are inflection points. The Second Deriva-
tive Test shows that x = —24 and 0.09132 are
minima, and that x = —0.09125 is a maxima.
The extrema near x = 0 look like this:

The global behavior looks like this:
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35.
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100000

50000

vvvvvv

-50000

-100000

25— 50V/22 +0.25

f(z)
X
1—2vVa2 1 o.25>
X

=25

_ o5 1—+v4z?2 +1
N x
Note that x = 0 is not in the domain of the
function.
1—+V4x? +1
") =25 | ————rr
F@) x2V/4r2 + 1
We see that there are no critical points. In-
deed, f’ < 0 wherever f is defined. One can
verify that

f"(x) > 0 on (0,00)

f"(z) < 0on (—00,0)

Hence the function is concave up on (0, c0) and
concave down on (—o0,0).

25 — 5022 + 0.25

lim
T—00 x
I 25  50v22+0.25
- lim —— —
r—00 T Xz
T /1+ 0;:25
= lim 0 - 50—
Tr—r00

T
0.25
= lim —501/1+ —5 = —50
T—00 €T

25 — 50v/x2 + 0.25

lim
T——00 x
~ lim 25 50vx2 + 0.25
I e x
(—x)4/1+ %
= lim 0—- 50—
T——00 T

0.25
= lim 504/1+ —5 = 50
T—00 €T

So f has horizontal asymptotes at y = 50 and
y = —50.

36.

37.

38.

f(r) =tan™? (le_1>

The function has horizontal asymptote y = 0,
and is undeﬁneQd at = +1.

, —2x
@) = x4 — 222 +2
f'(x) =0 only when z = 0.
() = 2(3x* — 222 - 2)

(xt — 222 + 2)?

f"(z) = 0 at approximately x = =+1.1024
and changes sign there, so these are inflection
points (very easy to miss by looking at the
graph). The Second Derivative Test shows that
x =0 is a local maximum.

1.5

f(x) = 2* + ca?

f(z) = 423 + 2cx

(z) =122 + 2¢

¢ =0: 1 extremum, 0 inflection points
¢ < 0: 3 extrema, 2 inflection points

¢ > 0: 1 extremum, 0 inflection points
¢ — —oo: the graph widens and lowers
¢ — 4o00: the graph narrows

flx)=a*+ca® +

f(z) =423 + 2ca + 1

f(x) = 1222 + 2¢

If ¢ is negative, there will be two solutions to
f"” =0, and these will be inflection points. For
¢ > 0 there will be no solutions to f” = 0,
and no inflection points. For ¢ = 0, f” = 0
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39.

40.

41.

42.

OVERVIEW OF CURVE SKETCHING

when z = 0, but does not change sign there,
so this is not an inflection point. f’ = 0 has
one solution, corresponding to a minimum, for
all ¢ > —1.5. For ¢ = —1.5, there is a second
critical point which is neither a minimum nor
a maximum. For ¢ < —1.5 there are three crit-
ical points, two minima and a maximum. As
¢ — oo the curve has one minimum, and nar-
rows. As ¢ — —oo, the two minima get farther
apart and drop lower. The local maximum ap-
proaches (0,0).

2
f(l‘) - 1’2 + 022
, 2c°x
f (Z‘) - (1’2+C2)2
F(2) = 2c¢* — 6c22?

(22 4 ¢?)3
If c=0: f(x) =1, except that f is undefined
at x = 0. ¢ < 0, ¢ > 0: horizontal asymp-
tote at y = 1, local min at = = 0, since the
derivative changes sign from negative to posi-
tive at = 0; also there are inflection points at
r = +c/V3. As ¢ = —o0, ¢ — +oo: the graph
widens.

fla)=e /e
-2
fla) ===l
Cc
—2c + 422
[y = = e

For ¢ > 0 the graph is a bell curve centered
at its maximum point (0, 1), and the inflection
points are at z = :tm. As ¢ — oo, the
curve widens.

The function is not defined for ¢ = 0.

For ¢ < 0, there are no inflection points, and
x = 0 is a minimum. The graph is cup shaped
and widens as ¢ — —o0.

When ¢ =0, f(z) =sin(0) = 0.

Since sinz is an odd function, sin(—cx) =
—sin(cz). Thus negative values of ¢ give the
reflection through the z-axis of their positive
counterparts. For large values of ¢, the graph
looks just like sinz, but with a very small pe-
riod.

When ¢ = 0, we have f(z) = 22v/—22, which
is undefined.

Since #2v/c2 — 22 = 22,/(—c)? — 22, the func-
tion is the same regardless of whether c¢ is neg-
ative or positive. The function is always 0 at
x = 0 and undefined for |z| > |¢|. Where it

43.

44.

45.
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is defined, f(z) > 0, attaining its minimum
at ¢ = 0. It reaches its maximum value at
x = £4/2¢%/3. At these points, f attains the
value 2v/3|c[3/9. The function looks generally
the same as |c| gets large, with the domain and
range increasing as |c| does.

322 —1 1
= =3z — =

fla) === -

y = 3x is a slant asymptote.
15—

THH%HHTHJ

3z2 -1 2
= =3 34+ ——

f(x) — T+3+——7,

so the slant asymptote is y = 3x + 3.

20

15

-15

3 — 222 +1 1

fla) = =

y = x — 2 is a slant asymptote.
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so the slant asymptote is y = x.
y
6 a2 9 2 4
5]
10]
4
z
47. f(z) =

Y e
3 +1 x3+1
y = x is a slant asymptote.

5.0

49. One possibility:

322
1@ =@y
50. One possibility:

x
2 —1

fz) =

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

51.

52.

53.

One possibility:

2x

T e

One possibility:

222
J@) = @3
. 2t —a2?+1 9
Jzﬂo[ma_l‘x}
, {x4—x2+1—x2(m2—1)]
= lim 5
T—00 2 —1
. 1
_zlgr;olixz—l]_o
4 2
— 1
Thus f(z) = xQL has 22 as an asymp-
22 —
tote.
6,000:
5,000:
(xxwx[xwxvjxwxwywxwx\
4
x
@ @)=
_x4—1+1
x4+
(224 1) (z+1)(z—1) 1
= +
r—1 z+1
1
2
= 1 )+ ——
(2?2 +1) (= + )+
One possible polynomial is p(x) =
(22 +1) (x+1). Then |f(z) —p(z)| =
1
m‘—>0asw—>oo.
|
b -
0) f@) =2
2412
x4+
4 3 2 2
=z -2+ —z+1—- ——
rx+1

One possible polynomial is p(z) = z* —

23+ 2% —x+ 1. Then |f(z)—p(z)| =

2
m‘%Oasx—M)o.
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6
© fla) =27
(2% —1) (z® +1) -1
B z+1 ]
(*=1)(@+1) (22 —2x+1) -1 ::
z+1 ]
3 2 1
=@ ) e ) - o

One possible polynomial is p(z) =
(2 — 1) (#* =2+ 1). Then |f (z) — p(z)| =
Ll 5 0as z — oo

r+1
56. For y = sinhz we need to use —e™" instead
of %e*m. To explain the enveloping behavior,
note that:
T _ ,—T
. T _ @ lim sinhx = lim
55. f(z) =sinhz = BT r——00 r——oco 2
—x
e +e 7 — 1 _ €
f’(x) = — L B
f'(x) > 0 for all x so f(x) is always increasing L L et —e "
and has no extrema. Ill{‘;o sinhz = JE{&O
. et —e™” o
) = S .
f"(z) = 0 only when z = 0 and changes sign Free
here, so f(z) has an inflection point at = = 0. s2—|
2.4:
3 1.6:
2 O.B:
———
N T T T T T T T T T
-2 -1 _0.8: 1 2
.
.
.

To explain the enveloping behavior for y =
cosh x, note that:

et +e " @ -z
f(z) = coshz = 9 lim coshz = lim ¢ te
T e r——00 T——00 2

f'(@) = e

= lim —
f'(z) = 0 only when z = 0. z—c0 2
) = S lim cosha — lim & ¢

(@) = - S coshr = i

f"(z) > 0 for all z, so f(z) has no inflection s
points, but x = 0 is a minimum. = lim —
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1 2
57. f(z) = xe™
f(0)=0
f(x) >0 forxz>0
. —bx 1 i T _
Jim g™t = lim oo = Jim 5z =0

(by L’Hopital’s rule)

f'(z) = 7% (1 — bx), so there is a unique crit-
ical point at = 1/b, which must be the maxi-
mum. The bigger b is, the closer the max is to
the origin. For time since conception, 1/b rep-
resents the most common gestation time. For
survival time, 1/b represents the most common
life span.

58. From the graph we can count 15 maxima and
16 minima in the range 0 < x < 10. Using a
CAS to solve
f'(x) = —sin(10z + 2 cos 2)(10 — 2sinz) = 0,
we find the following values of x at the extrema.

Minima | Maxima
0.11549 | 0.44806
0.80366 | 1.18055
1.57080 | 1.96104
2.33793 | 2.69353
3.02610 | 3.33776
3.63216 | 3.91326
4.18477 | 4.45009
4.71239 | 7.97469
5.24001 | 5.51152
5.79261 | 6.08702
6.39868 | 6.73125
7.08685 | 7.46374
7.85398 | 8.24422
8.62112 | 8.97672
9.30929 | 9.62094
9.91535

X

59. f(z) = A = tan"! (295525> T (10.75)

60.

fi(z) =

x? (—29.25)
22 + (29.25)° \ 2?2

22 (—10.75)
22+ (10.75)> \ 2

—99.95 10.75

22 + (29.25)°
x=17.73 ft.
Substitue z = 17.73 in f ().

29.25 10.75
A=tan ' | === ) —tan" ! [ =——
o (17.73) o (17.73)
= 58.78 — 31.23
— 27.55°

2?2 4 (10.75)%

Now z is increased to (x + 15).
fle+15)=A

- 2025\ - 10.75
h x4+ 15 x4+ 15

I (x+15)

B 1 ( —29.25 )
B 1+(29.25)2 (z +15)°

x+15

1 < ~10.75 )
- 2 2
, 15
e () e
~29.25
(z +15)% + (29.25)
10.75

(z 4+ 15)° + (10.75)°

fl@)=0=2=273 ft.
Substitute x = 2.73 in f (x).
29.25 10.75
A=tan ' [ Z222) —tan ' [ —
o ( 2.73 > o ( 2.73 )
=84.67 — 75.75

= 8.92°
Therefore, A decreases by 18.63°.

2. 2.
z(t) = —515 - —52 sin 4wt
w w
Since 0 < ¢ < 0.68. Hence

0<az(t) < (M ~ 25 g (dw (0.68)))

w 4w?
1.7 2.5 o:
< (7 — 4oz sin (2.72w))
< 6.8w—2.5sin(2.72w)
4w?

Taking limit as w — 0

lim 0 < lim z (¢) < lim (—6'81”_2455?(2'721”))
w—0 T w—0 — w—0 w

(by L’Hopital’s rule)
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. 6.8w — 2.5s8in (2.72w)
lim
w—0 4w2
. 6.8—6.8cos(2.72w)
= lim
w—0 Sw

(by L’Hopital’s rule)
18.496 sin (2.72w)

lim =0
w—0 8

Hence

lim 0 < lim z(¢) < 0.
w—0 w—0

As w — 0, z(t) — 0 that is the knuckleball
will move in a straight direction.

3.7 Optimization

1. A=2y=1800

1800
y:

v 1800
P:2x+y:2x—|—7
P,:2_18(2)0:O

X
222 = 1800
r =30

P'(z) >0 for z > 30
P'(z) <0for 0 <z <30
So x = 30 is min.
1800 1800
So the dimensions are 30" x 60’ and the mini-
mum perimeter is 120 ft.

. If y is the length of fence opposite the river,
and x is the length of the other two sides, then
we have the constraint 2z + y = 96. We wish
to maximize

A =zy = x(96 — 2z2).

A’ =96 — 4x = 0 when z = 24.

A" = —4 < 0 so this gives a maximum. Rea-
sonable possible values of z range from 0 to 48,
and the area is 0 at these extremes. The maxi-
mum area is A = 1152, and the dimensions are
r =24,y =48

. P=2x+3y=120
3y =120 — 2z

2

—40- =

Y 0 395
A=uzxy

213
2
Alx) ==z (40 - -z
3
2 2
4
4
z =30

A'(x) >0 for 0 <z <30
A’(z) <0 for x > 30.

2
Sox=30ismax,y:40—§~30220.

So the dimensions are 20" x 30’.

. Let = be the length of the sides facing each

other and y be the length of the third side.
We have the constraint that xy = 800, or
y = 800/z. We also know that z > 6 and
y > 10. The function we wish to minimize is
the length of walls needed, or the side length
minus the width of the doors.
L=(y—10)+2(z—6)=800/x + 2z — 22.
L' = —800/2% +2 = 0 when x = 20.

L" = 1600/z3 > 0 when x = 20 so this is
a minimum. Possible values of z range from
6 to 80. L(6) = 123.3, L(80) = 148, and
L(20) = 58. To minimize the length of wall,
the facing sides should be 20 feet, and the third
side should be 40 feet.

A=uzxy
P=2x+2y
2y =P —2x
P
by=95-7

x
(x) >0for 0 <z < P/4
)

A/
A'(z) <0 for x > P/4

So x = P/4 is max,

P P P P
L I
So the dimensions are % X %. Thus we have a
square.
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6. We have a rectangle with sides = and y and

9.

area A = xy, and that we wish to minimize
the perimeter,

A
P=2x+2y=2c+2-—.

T
24

P'=2—- = =0 when z = VA
T

P"” = 4A/2® > 0 here, so this is a minimum.

Possible values of x range from 0 to co. As x
approaches these values the perimeter grows
without bound. For fixed area, the rectan-
gle with minimum perimeter has dimensions
=y =/A, asquare.

V=I1l-w-h
V() =(10-2z)(6 —2x) -2, 0<x <3
V(@) = =2(6 — 22) - + (10 — 22)(=2) - @
+ (10 — 2z)(6 — 2x)
= 60 — 64x + 1222
= 4(3z* — 16z + 15)

=0

16+ /(—16)2 —4-3-15
€r =

6

_8 V19

373

8 V19

=-+-— >3

3773

X
V'(x) >0 for x < 8/3 —/19/3
V'(z) <0 for > 8/3 —/19/3
8 V19

Soxr = - — —— is a max.

3 3

. If we cut squares out of the corners of a 12” by

16” sheet and fold it into a box, the volume of
the resulting box will be

V =212 — 22)(16 — 2x)
= 423 — 5622 + 192z,

where the value of x must be between 0 and 6.
V' =1222 - 11224192 =0
when x = % ~ 7.07 and 2.26. The crit-

ical value xz = % V13 is outside of the rea-

sonable range. The volume is 0 when z is 0
or 6. The First Derivative Test shows that
T = 714%@ gives the maximum volume.
(a) V=1l-w-h
The volume of the first box (without top)
is
Vi = Vi(z) = (6 —2x2)%(x) = 42(3 — z)?
where 0 < =z < 3. The volume of the
second box (without top and bottom) is
Vo = Va(x) = a3,
Thus, we find the absolute maximum of

10.

the continuous function
V =V(z)=Vi(x)+Va(x) = 42(3 — 2)°+
3

x

on the interval 0 < x < 3.

V'(z) =43 — 2)® + 42 (2 (3 — z) (1)) + 32°
=4(9—6x+2%) —8z(3—x)+32”
= 152 — 487 + 36
= (x —2) (152 — 18)

Now compare the value of the function at

the critical points.

V(1.2) = 17.28

V(2) =16

Therefore, the value x = 1.2 maximizes

the sum of volumes of the boxes.

(b) The volume of the first box (without top)
is
Vi =Vi(z) = (6 — 22)(4 — 22)(x)
=423 —x)(2— ), where 0 < z < 2
The volume of the second box (without
top and bottom) is
Vo = Vo(x) = a3.
Thus, we find the absolute maximum of
the continuous function
V=V(z)=Vi(x)+ Va(x)
= 42(3 — z)(2 — =) + 2°, on the interval
O<z <2
We have,
Viiz)=4B—2)(2—2)+42(2—2)(-1)
+4x (3 — ) (=1) + 322
=4(6 -5z +2%) — 4z (2 —x)
—4x (3 —x) + 322
= 1527 — 40z + 24
Now compare the value of the function at

the critical points.
V(0.91169) = 9.0

V(1.75496) = 5.4
Therefore, x = 0.91169 maximizes the
sum of volumes of the boxes.

The volume of the first box (without top) is
Vi =Vi(z) = (6 — 22)(d — 2x)(z),

where 0 < z < min{$, 3}

The volume of the second box (without top and
bottom) is

Vo = Va(x) = a3,

Thus, we find the absolute maximum of the
continuous function

V =V(z) =Vi(z) + Va(z)

= 2(6 — 2x)(d — 2x) + 2*, on the interval

0 < z < min{¥, 3}

We have,
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12.
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V'(z) = (—2x)(d — 2z) — 22(6 — 21)

+ (d — 2x)(6 — 2x) + 322

= 152” — 24z — 4dx + 6d

= 1527 — (24 + 4d) + 6d = 0
To get real values of z, (24+4d)?—4-15-6d > 0
and this is ture for all d > 0.

Therefore for each d > 0, we can find = such
that V' is maximum.

d=/(x—0)2+(y—1)
y=a’
d=+/22 4 (22 - 1)2
— ($4 — 22 + 1)1/2
d'(z) = %@;4 — 1) M2 (40P — 22)
_ 2z(22% — 1) —0
20t — a2 +1
z=0,++/1/2;

F0) =1, f(/1/2) = 3/4, f(=/1/2) = 3
Thus ¢ = +4/1/2 are min, and the points on
y = x? closest to (0,1) are (1/1/2,1/2) and

7\/Wa 1/2)

Points on the curve y = x° can be written
(z,2?). The distance from such a point to (3, 4)

D:\/(x—3)2+(x

2

2 4)2
= Vat — 722 — 6z + 25.
We numerically approximate the solution of
203 —Tx — 3
D = < < = 0 to be z ~
—7x2 — 62 + 25

2.05655, and two negative solutions. The neg-
ative critical numbers clearly do not minimize
the distance. The closest point is approxi-
mately (2.05655, 4.22940).

d=+/(z —0)2+ (y —0)2
Y = COST
=+/z2 +cos?x
d'(z) = 2z — 2coszsinz _ 0
2vVx? + cos? x
T =cosxsinx
x=0

So x = 0 is min and the point on y = cosx
closest to (0,0) is (0, 1).

Points on the curve y = cosx can be written
(x,cosx). The distance from such a point to

(1,1) is

15.

16.

17.

18.
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D=\r-1)+

= \/:1:2 —2x +cos2x —2cosx + 2
We numerically approximate the solution of
D z—1—cosxsinz + sinx

Va2 — 22+ cos?2x — 2cosT + 2

=0
to be x ~ 0.789781. The First or Second
Derivative Test shows that this is a minimum
distance. The closest point is approximately
(0.789781,0.704001).

For (0,1), (1/1/2,1/2) on y = 22, we have

Y =2z, (/1/2) =2-/1/2 = V2 and
-1 1
m=————=—.
V2
For (0,1), (—/1/2,1/2) on y = 2%, we have
Y (—/1/2) = 2(—+/1/2) = —V/2 and
For (3,4), (2.06,4.2436) on y = 22, we have
¥/ (2.06) = 2(2.06) = 4.12 and
4.24

(cosx —1)2

SIS

=

. — 1
= BN 02501~ -
K YT R T
For (3,9), (1,8) on y = 9 — 22, we have
Qxy() —2-1=-2and
m_8—9 1
1-3 2

For (5,11), (0.79728,8.364) on y = 9 — 22, we
have y'(0.79728) = —2(0.79728) = —1.59456
and

8.364

—11

Cost: C = 2(2mr?) + 27rh
Convert from fluid ounces to cubic inches:
12floz =12 fl oz - 1.80469 in®/fl oz

1.59456°

= 21.65628 in®
Volume: V = mr2h s
V2L 65628
ot 7r70221 65628
C = dnr? 4 2nr | ——— 5 )
wr

C(r) = 4mr? + 43.31256r 1
C'(r) = 8mr — 43.31256r 2
83 — 43.31256

2

[43.31256
r={/——— =1.1989"
8

when C’(r) = 0.
C'(r) < 0 on (0,1.1989)
C'(r) > 0 on (1.1989, c0)

Thus 51:6 %612%89 minimizes the cost and
h=—"—""""—_=4.7957".
7(1.1989)2

If the top and bottom of the cans are 2.23 times
as thick as the sides, then the new cost func-
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tion will be

21.6562
C(r)=2n (2.23r2 + 6568) .
wr
21.65628
Then C'(r) = 27 (4.46r — 2) =0
mr

/21.65628
h = ¢/ & 1.156.
when r 146m 56

The First Derivative Test shows this is a mini-
mum, and we can verify that the cost increases
without bound as r — 0 and r — oo.

Let x be the distance from the connection
point to the easternmost development. Then
0<z <5
f(x) = VB + (5 —2)2 + V42 + 22,

0<x<5h
fl@)==09+6-2)>)""*06-x)

- %(16 + 2272 (2x)

_ r—5 n T
VI+(B—2)2 V16 + 22
=0
20
= ~ 2857
=7

£(0) =4+ V34 ~ 9.831

f (270) = /74 ~ 8.602
f(5) =34+ V41 ~ 9.403

So x = 20/7 is minimum. The length of new
line at this point is approximately 8.6 miles.
Since f(0) =~ 9.8 and f(5) ~ 9.4, the water
line should be 20/7 miles west of the second
development.

Say the pipeline intersects the shore at a dis-
tance x from the closest point on the shore
to the oil rig. Then x will be between 0
and 8. The length of underwater pipe is then
W = v/22 + 252, and the length of pipe con-

structed on land will be L = /(8 — x)2 + 52.

The total cost will be C = 50W + 20L.

We numerically solve
50x 10(2z — 16)

V625 + 22 /22 — 162 + 89
to find z ~ 5.108987. The first derivative test
shows that this gives a minimum. The cost at
this value is $1391 thousand. The cost when
x = 0 is $1439 thousand, and the cost when
x = 8 is $1412 thousand, so x = 5.108987 gives
the absolute minimum cost.

/

21.

22.

(a) C(z) =516+ 22 4 21/36 + (8 — z)2
0<z <8

C(z) = 53/16 + 22 4 21/100 — 162 + 22

C'(z) =5 (;) (16 + %) 712 . 2

1
+2 (2> (100 — 162 + 22)~Y/2(22 — 16)
5x 2x — 16

V16 +22 V100 — 16z + 2
=0

z ~ 1.2529

C(0) = 40

C(1.2529) ~ 39.0162
C(8) ~ 56.7214

The highway should emerge from the
marsh 1.2529 miles east of the bridge.

(b) If we build a straight line to the inter-
change, we have x = (3.2).

Since C(3.2) —C(1.2529) ~ 1.963, we save
$1.963 million.

(a) Say the road intersects the edge of the
marsh at a distance z from the closest
point on the edge to the bridge. Then
x will be between 0 and 8. The length of
road over marsh is now M = vx2 + 42,
and the length of road constructed on dry

land will be L = /(8 — )2 + 62. The to-

tal cost will be C' = 6 M + 2L.

We numerically solve
, 6z 2z — 16

V16 +22 /a2 — 162 + 100
to find x = 1.04345. The first deriva-
tive test shows that this gives a minimum.
The cost at this value is $43.1763 mil-
lion. The cost when we use the solution
r = 1.2529 from exercise 19 is $43.2078
million, so the increase is $31,500.

(b) C(z) =5V16 + 22 + 3/36 + (8 — z)?

0<z <8
C'(z) = 5x 3z — 24
V16 + 22 /100 — 162 + 22
Setting C’(z) = 0 yields
r ~ 1.8941
C(0) =50

C(1.8941) ~ 47.8104
C(8) ~ 62.7214
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23.

24.

The highway should emerge from the
marsh 1.8941 miles east of the bridge. So
if we must use the path from exercise 21,
the extra cost is

C(1.2529) — C(1.8941)

= 48.0452 — 47.8104 = 0.2348

or about $234.8 thousand.

Let r denote the running speed, and s be the
swimming speed and let f(y) be the time to
get to the ball. Since time = distance/speed,
we have

r S

ST

/r2 — g2

Solving f'(y) = 0 for y, we get y =

Substitute £ = 4m and z = 8m. Therefore, we
have

(0.9) (4)
(6.4)% — (0.9)
~ 0.56815.

y:

Therefore, Elvis should enter into the water at
y =~ 0.56815.

From the equation y =

s+ 1\/r]s — e

get that the value of y is independent of z > 1.

Let r denote the running speed, and s be the
swimming speed and let f(y) be the time to
get to the ball. Since time = distance/speed,
we have

r S

ST

Solving f/(y) = 0 for y, we get y = —.
r2 —s

Substitute » = 6.4 and s = 0.9.

0.9
y = z ~ 0.144z

(6.4)* — (0.9)

Therefore, for any = the optimal entry point is
approximately y = 0.144x.

25.

26.

27.

28.
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1 2 14+ (2—2)2
Ty = Y12 VIHCo0)
U1 V2
T'(x) = 1. 1(1 +22)712 2z
U1 2
1
+—1+2-2)) V2. 2-2)(-1)
Vo
- T + r—2
nvV1i+z2  vyy/1+4(2—1x)?
Note thatl
T
TI )= —  —
(@) v1 1+ 22
_1 2o
U2 14+ (2—1x)2
1
= —sinf; — —sinfy
U1 (%)
When 7"(x) = 0, we have
1
— Sin91 = — Sin92
U1 (%)
sin 64 _u
sinfls w9
The distance light travels is

D=v22422+ /124 (4—2)2.
We maximize this by solving
;o x + 2z — 8 _
Va+ 22 222 -8z + 17
to find x = 8/3. For this value of z,
1 = 0, = tan—1(3/4). (Or simply note similar
triangles.)

V(r)=cr?(ro — 1)
V'(r) = 2¢cr(ro — r) + cr?(—1)
= 2¢crrg — 3er?
= cr(2rg — 3r)
V'(r) = 0 when r = 2r¢/3
V'(r) > 0 on (0,2r9/3)
V'(r) <0 on (2r¢/3,00)
Thus r = 2ry/3 maximizes the velocity.
r = 2r9/3 < 1o, so the windpipe contracts.

We wish to minimize

E(G):CSCH 1fcot6'

r + R4
We find

1+ cot? 6
E'(0) = — o 7
B —cosOR* + 1t

r4R4sin? 0

csc b cot O

This is zero when cosf = r%/R% so 0 =
cos~(r*/R*). The derivative changes from
negative to positive here, so this gives a mini-
mum as desired.
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(z) = Vi
T Ry
VIR+2)2-V3z-2(R+2x
oy = VARE 22 Vi 2R 42
(R+ )
V2R2 —V2.172
 (R+2)
p(z) =0 when x = R
p'(xz) > 0on (0,R)
p'(z) <0 on (R, 00)
Thus z = R maximizes the power absorbed.

If the meter registers 115 volts, then v =
115v/2. The function V(t) = vsin(27ft) has
amplitude v, so the maximum value of the volt-

age is 115v/2.

mr+4r+2w =84+
84T —r(r+4)

2

7T’I“2

A(?") = 7 —i- 27"11]
2

:%+r(8+7r—r(7r+4))
=12 (<= Z) +r(8+m)
Al(r) = —2T(4+*)+(8+7T)=0
A(r)=0whenr=1
A'(r) >0on (0,1)
A'(r) <0 on (1,00)

Thus r = 1 maximizes the area so
8+ m—(m+4)

The dimensions of the rectangle are 2 x 2.

Let x be the distance from the end at which the
wire is cut. Due to symmetry, we may consider
0 < z < 1. We wish to minimize the area of
the squares formed by the two pieces. The to-
tal area is

a@ = (2 + (232

_2x2—4x—|—4
B 16 '
We compute
Al(z) v_1 0 when z =1
= — — — = W = .
4 4

A = 1> 0, so this is a minimum.
We check A(0) = 1/4 and A(1) = 1/8 and see

that cutting the wire in half minimizes the area
of the two squares.

I xw=92 w=92/l

Ay =(1+4)(w+2)
=({+4)(92/1+2)
=92+368/l+21+38
=100 + 3680~ + 21

34.

35.

A'(l) = —368172 +2
B 212 — 368
= 7
A'(l) = 0 when [ = /184 = 21/46
A’(I) < 0 on (0,2+/46)
A'(l) > 0 on (2v/46, 0)
So I = 24/46 minimizes the total area. When
= 2\/75 w = ﬁ = V/46.

For the minimum total area, the printed area
has width v/46 in. and length 2v/46 in., and
the advertisement has overall width v/46+2 in.
and overall length 24/46 + 4 in.

Let  and y be the width and height of the ad-
vertisement. Then zy = 120 and y = 120/x.
We wish to maximize the printed area

120

A=(z-2(-3)=@-2)(— -3

— 126 30— 220
x
24
We find A" = 73+f0—0whenzf4f

The first Derivative Test shows that this is a
maximum. The smallest x could be is 2, and
this gives A(2) = 0. The largest x could be is
40, and this also gives A(40) = 0. Thus, we
see that the dimensions which maximize the
printed area are x = 4+/5 and Y= 6/5.

(a) Let L represent the length of the ladder.
Then from the diagram, it follows that
L =asech +besch.

Therefore,
dL

0 asecftant — beschcot 6

0 =asecHtanfd — besccot
asecftant = besclcot O
b secf tand

a  cscOcotd
1 sinfdsinf sinf

cosfcosf 1 cosf
=tan> 6
Thus,
tanf = {/b/a
6 = tan~! (\3/ b/a)
1 (Var5)
~ 0.748 rad or 42.87 degrees
Thus, the length of the longest ladder
that can fit around the corner is approxi-
mately
L =asech +besch
= 5sec(0.748) + 4 csc(0.748)
~ 12.7 ft

= tan
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(b)

From part (a), we have that 6 =
tan~!({/b/a) is the critical number lim-
iting the length of the ladder. Thus
tanf = b'/3/a'/3. We can then draw
a right triangle with € as one angle and
the length of the side opposite 0 equal to
b'/3 and the length of the side adjacent
to 6 equal to a'/3. By the Pythagorean
Theorem, the hypotenuse of this triangle
is (a/3 +b%/3)1/2. From this triangle, we
find

g b1/3 d
Smv = (@273 1 b2/3)1/2 an
o ql/3
cosv = (a2/3+b2/3)1/2
SO
2/3 4 p2/3)1/2
cscl = % and
(a2/3 +b2/3)1/2
0T
us

L =asecH +besch
(a2/3+b2/3)1/2

(a2/3 + b2/3)1/2

al/3 pl/3

_ a2/3(a2/3 +b2/3)1/2 +b2/3(a2/3 +b2/3)1/2

_ (a2/3 +b2/3)(a2/3 +b2/3)1/2
— (a2® —|—b2/3)3/2.
Using the result of part (b) and solving
for b:
L — (a2/3 + b2/3)3/2
I2/3 — q2/3 4 2/3
b2/3 — L2/3 _ a2/3
b— (L2/3 _ a2/3)3/2
_ (82/3 _ 52/3)3/2
~ 1.16 ft

This was already done in part (c) while

solving for b:
b= (L3 — a2/3)3/2.

35z — x2

R(z) = ———

(@)= "2 13s

2
fon . ardT 20 —35
R'(z) = 357@32 3572
= _35w

(22 4 35)2

Hence the only critical number for z > 0
is = 5 (that is, 5000 items). This
must correspond to the absolute maxi-
mum, since R(0) = 0 and R(z) is nega-

37.

38.

(a)
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tive for large . So maximum revenue is
R(5) = 2.5 (that is, $2500).

To maximize
2

cr —
R(z)=2"%
(2) 2 +c’
we compute
R(z) = c(c— 2z — 2?)

@ 1o
This is zero when 22 4 22 — ¢ = 0, so

—2+ 4+ 4c
r=——

The First ]%erivative Test shows that
24+ v4+4c

is a maxirm%m.
Q' (t) is efficiency because it represents the
number of additional items produced per
unit time.
Q(t) = —t3 + 12t% + 60t
Q'(t) = —3t% + 24t + 60

= 3(—t% + 8t + 20)
This is the quantity we want to maximize.
Q"(t) = 3(—2t + 8) so the only critical
number is ¢ = 4 hours. This must be
the maximum since the function Q’'(¢) is
a parabola opening down.

The worker’s efficiency, @’ is maximized
at the point of diminishing returns be-
cause at this point )" changes from pos-
itive to negative. The First Derivative
Test applied to Q' shows that Q' has a
local maximum at this point. (This as-
sumes that the graph of () changes from
concave up to concave down at the inflec-
tion point. If this was reversed, the inflec-
tion point would not be a point of dimin-
ishing returns, and the efficiency would be
minimized at such a point.)

Let C(t) be the total cost of the tickets.
Then
C(t) =(price per ticket)(# of tickets)
C(t) = (40 — (¢ — 20))(t)

= (60 — t)(t) = 60t — t2
for 20 < t < 50. Then C’(t) = 60 — 2¢, so
t = 30 is the only critical number. This
must correspond to the maximum since
C(t) is a parabola opening down.

If each additional ticket over 20 reduces
the cost-per-ticket by c dollars, then the
total cost for ordering x tickets (with z
between 20 and 50) is
C(z) = (40 — ¢(z — 20))x

= (40 + 20¢)x — cx?.
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This is a downward facing parabola with

. 20 4 10c
one maximum at £ = —. If we

c
want the maximum cost to be at x = 50,
we must choose ¢ so that the peak of the

parabola is at or to the right of 50. The

20 + 10c

value of x = increases as ¢ de-

c
creases, and equals 50 when ¢ = % Any
discount of 50 cents or less will cause the
maximum cost to occur when the group
orders 50 tickets.

202 cos? 0

g
2

— [2cos@(—sin 0)(tan O — tan 3)

(tand — tan j3)

X
—
5
=
I

+ cos? 0 - sec? 9]

202 in 6
- {—2 cosfsin - s

g cosf
+2cosfsinf tan g

+cos? 0 -

cos? 9}

21}2 . 9 .
= — [~2sin” 0 + sin(26) tan 3 + 1]
=2 [—2sin” 6 + sin(20) tan 3

g
+(sin® 0 + cos? 0)]

202
= [sin(26) tan 5

+(cos®  — sin® 0)]

— 2;}2 [sin(26) tan 5 4 cos(26)]

R'(#) = 0 when

_ —cos(20)
tanﬁ = W COt(QH)
= —tan T_ 20
G
= tan (29 — 5)

Hence B=20—7/2, so

 (0+3)

% .

I Y5
s T1- 3 t®
i. B=10° 6 =50°
i. B=0°,0=45°
i. B=—-10°, 0 = 40°

A= day

d
=4(zy +y)

dx
d

To determine y' = d—y, use the equation for the
T

ellipse:

41.

PR
b2
0= 2z 2yy
T a? B
2yy’ 2x
Rl
, b x
=-—=-

Substituting this expression for 3’ into the ex-

pression for —, we get
dA ,
aw Y
b2 x
a*y
b2 22
== 4y

Zero:

b2 z2
=—=—+
a? y 4
b2 2
@y =
z27y2
P

Substituting the previous relationship into the

equation for the ellipse, we get
22 Y21

2 p2
and therefore,

b
V2
Thus, the maximum area is

a b
A=4—— =2ab
V22

a
r=— and =
5 Yy

Since the area of the circumscribed rectangle
is 4ab, the required ratio is

2ab:7rab:4ab:1:g:2

Let V. be the volume of the cylinder, h be the
height of the cylinder and r the radius of the
cylinder so that

V, = har?.

Let V; be the volume of the sphere and R be
the radius of the sphere so that

Vy = %WR?’.

Draw the sphere on coordinate axes with cen-
ter (0,0) and inscribe the cylinder. Then draw
a right triangle as follows: draw a straight line
from the origin to the side of the cylinder (this
line has length 7, the radius of the cylinder);
draw a line from this point to the point where
the cylinder meets the sphere (this line has
length h/2; half the height of the cylinder);
connect this point with the origin to create the
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42.

hypotenuse of the triangle (this line has length
R, the radius of the sphere). Thus we see that

()"

Now we have

R? =172+

4 B2\ 3/2
Vs = 37r r? 4 1
Taking the derivative of both sides with respect
to h gives

5 2\ 1/2 , h
O—27r<r —|—Z 27‘1"—1—5
Solving for r’, we find ' = —h/4r. Taking the
derivative with respect to h of both sides of the
ﬁdo‘r/mula for the volume for the cylinder yields

dh

Plugging in the formula we found for r’ gives

ave. h
= 7r? + 2hwr ( i )

9 hin
=7r° — —.

= 71r? + 2harr’.

To maximize the volume of the cylinder, we set
this equal to 0 and find that the volume of the
cylinder is maximized when h? = 2r2. In this
case, the formula relating R, r and h above
gives

4 2R
h=y|-R2=22
3 \f

m vo

The maxim
V.= h7r7"2

e (\QT)
5 (57)

e

= S'

olume of the cylinder is then

&%\

Suppose that ¢ = b in the isoscles triangle, so
that
A% =s(s—a)(s—b)(s —c) = s(s —a)*(s —¢)

1
5((1 + b+ ¢), it follows that
= L(2a+¢) = a+§,s0that s—a = §. Thus,

(S

= (57 =)

Since s =

Since s is a constant (it’s half of the perimeter),
we can now differentiate to get

dA s
2Ad— 1 (236 — 3¢ )

c
0 =c(2s — 3c¢)

221

Thus, the area is maximized when 2s — 3¢ = 0,
which means ¢ = %s Solving for a, we get

2

a=s 5 = s = 33.

Thus, the area is maximized when a = b = ¢;
in other words the area is maximized when the

triangle is equilateral.

c

[SCRRVA

The maximum area is

IO}
BRI

3.8 Related Rates

1.

3.

V(t) = (depth)(area) = g [7)“(lt)}2

(units in cubic feet per m
! _ 1 / _ 1 ’
V'(t) = 15 2r(t)r'(t) 24r(t)r (t)
We are givenWV’(t) = % — 16.

Hence 16 = ﬂr(t)r’(t) SO

1oy (16)(24)
(a) When r = 100,
vy~ 1920 _ 96
1007 25m

~ 1.2223 ft /min,
(b) When r = 200,
16)(24 4
vy - 102D _ 18

200 257
~ 0.61115 ft/min

1// 1 /
. V = (depth)(area). 3 —95
V(t) = gsmr(t)?.
av. 2m . dr
Differentiating we find 96 (t)a

Using 1 ft* = 7.5 gal, the rate of change of vol-
90
ume is — = 12. So when r(¢) = 100,

7.5
12 = —100d and
96 dt’
dr % feet per minute.
dat ~ 2mn P
(a) From #1,
v _ T 1y — ’
50 — = —(1 6) = 2.
50 24( 00)(.6) = 2.5,

so g = (7.5)(2.5)m
= 18.75m ~ 58.905 gal/min.

(b) If the thickness is doubled, then the rate
of change of the radius is halved.
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4.

5.

8.
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(a) t = hours elapsed since injury
r = radius of the infected area
A = area of the infection
A=qr?
A'(t) = 2mr(t) - r'(¢)
When r = 3 mm, ' =1 mm/hr,
A" =27(3)(1) = 67 mm?/hr

(b) We have A’(t) = 27rr'(t), and 7'(t) = 1

mm /hr, so when the radius is 6 mm we
have
A'(t) =27 -6-1=12rmm?/hr.
This rate is larger when the radius is
larger because the area is changing by
the same amount along the entire circum-
ference of the circle. When the radius
is larger, there is more circumerence, so
the same change in radius causes a larger
change in area.

Vit = gﬂmm3

V/(t) = dxlr(t)]*r'(t) = Ar'(t)
If V/(t) = kA(t), then
Vi) | kA®)

"O=Zm T A

. We have A'(t) = 2nrr/(t), and 7/(t) = 5

ft/min, so when the radius is 200 ft we have
A'(t) = 27 - 200 - 5 = 2,0007 ft* /min.

(a) 10% = 22 4 92

dx dy
=2r— + 2y—
0=200 T2 g
dy _ wde
dt y dt
6
= -0
= —2.25 ft /s
(b) We have

t
cosf(t) = %
Differentiating with respect to t gives

/
t

_sino) o) = S0
When the bottom is 6 feet from the wall,
the top of the ladder is 8 feet from the
floor and this distance is the opposite side
of the triangle from theta. Thus, at this
point, sinf = 8/10. So

3

8
—— 0 (t) = —
10 ®) 10

0'(t) = —% rad/s.

40 20
N a1 (&Y
(a) 6 =7 —tan (60—90) tan <x)

“ 10 (5 1)2 . 3

() )

When x = 30, this becomes

2
a9 40(55) 300
o 14 (8 1+ (B)°
1
= ~1695 rad/ft
a9 _ db dr
dt  dx dt

()

~ —0.00246 rad/s

As in the solution to #8(a), let x be the
distance from the 20’ building to the per-

son. To find the maximum 6, we set

d—e = 0 and solve for z:

dx )
40 1 20
60 — 2
= 7t 2
60 — x T
20 40
2 +40 (60 —x)2+1

0 = 2022 + 2400z — 56000

0 = z? + 120z — 2800

Using the quadratic formula, we find two
roots:

x = —60=+80

We discard the = value obtained from the
minus sign as it is negative and does not
make sense for our problem. The other
value is = 20. We find 6'(10) > 0 and
6'(30) < 0, so z = 20 must be a maximum
as desired.

We know [z(t)]? + 4% = [s(t)]*. Hence
2x(t)x'(t)(t:) ?(st()t)sl(t)éz(c)) "

Z'(t) = o0 = ) . When z =
40, s = /402 +42 = 4y/101, so at that
moment

2 (t) = (=240) S*/W) —24V/101.

So the speed is 241/101 ~ 241.2mph.

From #9(a), we have
(t) = s(t)s'(t) _ —240s(t)
(1) a(t)

This time the height is 6 miles, so s =

V402 + 62 = 24/409, so at that moment
—240)(2v4
2'(t) = w = —12/400.
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11.

12.

13.

14.

15.
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So the speed is 124/409 = 242.7mph. The
difference in height does not make a large
difference in the speed of the plane.

(a) If the police car is not moving, then
2'(t) = 0, but all the other data are un-
changed. So

PNIEGEIORST0VI0
FOE + LOP
~(1/2)(50)
VI/A+1/16

-1
= —100 ~ —44.721.

This is more accurate.

(b) If the police car is at the intersection, then
the rate of change the police car measures
is

0-(—40) + 3 - (—50)

= —50,
\/i+0
the true speed of the car.
x(t)a’(t) +y(t)y'(t)
[z()]* + [y(1)]?
_ —(1/2)(v2 - 1)(50) — (1/2)(50)
V1/4+1/4

d'(t) =

= —50.

The radar gun will read less than the actual
speed if the police car is not at the intersection,
and is travelling away from the intersection.

From the table, we see that the recent trend is
for advertising to increase by $2000 per year.
A good estimate is then 2/(2) ~ 2 (in units of
thousands). Starting with the sales equation
s(t) = 60 — 40e~0:052(t),
we use the chain rule to obtain
s'(t) = —40e0-052()[0.052/ (t)]

_ 2%'(15)670'05‘70@).
Using our estimate that z'(2) ~ 2 and since
2(2) = 20, we get s'(2) ~ 2(2)e”! ~ 1.471.
Thus, sales are increasing at the rate of ap-
proximately $1471 per year.

The year 2 rate of change for the average cost

— —94
is given by C' (t) = — - 2'(t).
x
From the table we see that in year two z = 9.4

and 2’ = 0.6, so

— —94

C(t) = o2 -0.6 = —0.6383 per year.
— 100

_ -1

C'(a(t) = =22 2/(1)

x2

16.

17.

18.

223

6/(10) = —1(2) = —2 dollars per item, so av-
erage cost is decreasing at the rate of $2 per
year.

The rate of change of sales is

s’ = 0.8e70-04g/(¢).

We are given z = 40 and 2/(t) = 1.5, so

5" = 0.8e70-0440 . 15 = (.242 thousand dollars
per year.

(a) We have tanf = g, S0

d (tanf) = 4 (x)

dt T dt\2
sec?0 -0 = lx’
2
, 1 o x’ cos?
~ 2sec26 B 2
z 0
ata:zO,wehavetan9=§25809:0
and we have 2’ = —130ft/s so
—130) - 20
¢ = % = —65 rad/s.

(b) & = 2tané, so v _ QSGCZG%. =0
(and secd = 1) as the ball crosses home
g 1dz

T For this to be less

than 3 radians per sec, the pitch must be
less than 6 ft/sec.

plate, so

(a) t = number of seconds since launch
x = height of rocket in miles after ¢ sec-

onds
0 = camera angle in radians after t sec-
onds "
tanf = —
2
d d /x
= £ (3
dx( an 6) dx \2
1
sec?0 -0 = ix’
cos?f -z’

0 =
2
When x = 3, tanf = 3/2, so cosf =
2//13.

2
y_ ) 2
2
(b) If the height of the rocket is z, then
r = 2tan6, and

~ .03 rad/s

dx df
= = 2sec?—.
7 sec Hdt
dx
When z = 1 and I 0.2, we have
5 df do .
02 =2- 1@ and i 0.08 radians

per sec. This is larger because the angle
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19.

21.

22,
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changes more quickly when the rocket is
close to the ground. When the rocket is
far away, large changes in height result in
small changes in the angle, since the angle
is approaching a limit of 7/2.

(a) Let € be the angle between the end of
the shadow and the top of the lamppost.

Then tanf = § and tanf =

s s—i—x’so
x+s_s
18 6
d (xz+s _d s
dx( 18 )_dx(6)
o +s
18 6
2+ 5 =3¢
! x/
S =3

Since o' =2, 8 =2/2 =1 ft/s.
(b) From #19(a), s’ = 2//2. Since #’ = -3,

s’ =-3/2 ft/s.

(a) P(t) - V'(t) + P'(t)V(t) =0
Pty  P(t) ¢
Vi) V(@) V(D)2

(b) Solving Boyle’s Law for P gives P = %
Then differentiating gives

P(V)= V2’ the same as P’ (t)/V'(t).

Let 7(t) be the length of the rope at time ¢ and
x(t) be the distance (along the water) between
the boat and the dock.

r(t)? =36 + x(t)?

2r(t)r' (t) = 2x(t)a’ (t)

oy - T _ 2
(t) a(t)
_ —2v/36 + 22
x
When z = 20, 2’ = —2.088; when z = 10,
= —2.332.

—7r?h, and we

Lo | =

The volume of a cone is V' =

h
know that this cone has r = 5 so we have
V= 17r—2h3 . Differentiating gives
av _wh® dn
d 4 dt’

av
We are given that i 5 m3/s, so when h = 2

meters, we have

23.

24.

25.

2 an
B dt’
@ = § meters per nd
SO i eters per seco
1 T 110
IO =55\ % = 20y
—110
A _ A

When L = 1/2, f(t) = 220 cycles per second.
If L' = —4 at this time, then f'(t) = 1760 cy-
cles per second per second. It will only take
1/8 second at this rate for the frequency to go
from 220 to 440, and raise the pitch one octave.

4
V=_mrd
dv 4 dr dr
A — A2
dt 37Td(3T ik

r

1 =d4mr’—

r 0
ﬂi 1
dt — 4mr? J 5500
When r = .01, o

ddt 2571'

When r = .1, "

At first, the radlus expands rapidly; later it

expands more slowly.

(a) Let R represent the radius of the circular
surface of the water in the tank.

V(R) = [602(602 RV
1 2 213/2 2 3
5 (607 = R?)*/% 4+ 260
[ 1
— =71 |60? (2) (602 — R%)~Y2(—2R)—

% (Z) (60% — RQ)”Q(—?R)]

—602R
=7 | =t RA\/602% — RQ}
L V6

<R [—602 + 602 — RT
V602 — R?
_ —TR3
- V602 - R2
dR  dV/dt
dt — dV/dR
10
- dV/dR
_ —10v60% — R?
N mR3
i. Substituting R = 60 into the previ-

ous equation, we get i 0.
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26.

ii. We need to determine the value of R
when the tank is three-quarters full.
The volume of the spherical tank is

4
577603, so when the tank is three-

quarters full, V(R) = 7603. Substi-
tuting this value into the formula for
V(R) and solving for R (using a CAS,
for example) we get R &~ 56.265. Sub-
stituting this value into the formula

for dR/dt, we get
wn —10v/602 — 2
dt T TR3

_ —10v/60% — 56.2652
- 756.2653

~ —0.00037 ft/s

(b) Assuming the tank is at least half full, we
can represent the height of the water in
the tank by h(t) = v60%2 — R2 + 60.
Differentiating gives

1
R (t) = 5(602 — RH™Y2(—2R)R'(t)
= —(602 — R)™Y2R. R'(t)

_ —(60% — R?)~Y2R - (—10v60% — R2)

= 73 }
Here we have used the expression for R/ (t)
found in exercise 35.

i. Substituting R = 60 into the previ-
ous equation, we get h'(t) = 0.

ii. Substituting R = 56.265 into the for-
mula for h'(t) gives h'(t) ~ 0.001006
ft/s.

(a) The volume of the conical pile is V' =

gm"zh. Since h = 2r, we can write the

volume as )
V= 1 (h> h= Lp? Thus,
3 2 12
AV wh? dh
dt 4 dt
762 dh

V=" @

dh 20

dt — 9m

dr 10

dt — 9r

(b) In this case, we have r = h so

3

V= éwhzh = %

Thus V'(t) = wh?h/(t) so when the height
is 6 feet,

W) = () = o = 2

:367_97T'

27.

225

(a) Let an object move around the circle
22(t) + y%(t) = 2. Both x and y coor-
dinates are the functions of ¢ and r is a
constant.

Therefore, on differentiating w.r.t. ¢, we
get

22(t)2’(t) + 2y(t)y'(t) = 0

z(t)z'(t) +y(t)y'(t) =0

a0
Therefore, (yt)(t?(t—) o0 d
/ o y)y
Y=

Thus, if 2(¢t) = 0, then y'(t) = 0 and if
y(t) =0, then z'(t) =0

From the graph it can be observed that:
At z(t) = 0 the tangent is horizontal

!
t
which means M _ 0=y'(t) =0 and
a!(t)
At y(t) = 0 the tangent is vertical which
/
t
means ;v/( ) =0=2'(t)=0
y'(1)

(b) An object move around the asteroid
2?/3(t) + y*/3(t) = 1. Both z and y

coordinates are the functions of time.

Therefore, on differentiating w.r.t. ¢, we

get
2 2
327 P20 + 5y Py () = 0

=)y O +y@) ' ()] =0
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' (t) =
thus, if () =0, then y(t) =1, 2/(¢) =0
and if y(t) = 0, then x(¢t) =1, y/'(t) =0
From the graph it can be observed that,
at x(t) = 0 the tangent is vertical which

!
t

means x/(t) =0=2'(t) =0 and

Y
at y(t) = 0 the tangent is horizontal which

y'(t) '

=0=y(t)=0

means () y'(t)

28. (a) Let 6 be the angle of the light at the
shadow as shown in figure below:

0]
64 — h(t)
100
h(t)
0
10 x— 10 S
Then,
A 100
tan 6 = m - %
= l‘(t) = m
iy~ L0008 (0)
[100 — A(t)]?
~ 8000/(64 — h(t))
B [100 — h(t)]?
At h =0,
o) - _00V(61-0)
B [100 — 0]
64000
10000
=—6.4
(b) |2'(t)] = SOOOM
[100 — h(t)]
Adt maxima or minima of |z’(¢)],
()] =0

—3(64 — h(1))~'2H' (1)
[100 — h(t)]?

29.

30.

3.9

L V- h(tg () 0
[100 — A(t)]
= — 1/ (){(100 = h(t)) — 4(64 — h(t))} = 0
= I/(t) = 0 or 100—256—h(t)+4h(t) = 0
f)

= h'(t) = 0 or h(t) = 52
AL B (H)=0:|2'(t)] =0
At h(t) =52:
|2/ (t)| = go0p Y 0= ). h(t)2
[100 — A(t)]
= 8000(1(()24__52)22) =12.02

Therefore, h(t) = 52 is the height in which
|’ (t)| is maximum.

(a) d(t) =/ (x () — 8)° + (0 — 4’

therefore d’ (t) = _(@®)-8)z’(t)
(z(t)—8)2+16

Now d’ (t) = 0.9 and 2’ (t) = 6.4
gives x (t) = 8.5681
z(t)—x(0) _ 8. —
L0 — B268L _ 1.3388
(b) Thus the location at this moment is
(8.5681, 0)

6 = tan~! (j;)
do (—%s) v 20 (1)
dt 1+ (&)

hence t =

 —2sT' (1)

T T2p2 4 482

For T=1,s=0.6 and v'(t) = 1,
do —-1.2

dT ~ 2+ 144
(®) do —-1.2

= 5ar © —0.4918 rad/s
(b) e —1.2

T —0.2206 rad/s

Rates of Change in
Economics and the Sci-
ences

. The marginal cost function is

C'(z) = 322 + 40z + 90.

The marginal cost at x = 50 is C'(50) =
9590. The cost of producing the 50th item is
C(50) — C(49) = 9421.
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2. The marginal cost function is 9
C'(x) = 423 + 28z + 60.
The marginal cost at x = 50 is C'(50) =
501460. The cost of producing the 50th item
is C(50) — C'(49) = 486645.

3. The marginal cost function is
C'(z) = 322 + 42x + 110.

The marginal cost at z = 100 is C’(100) = 10.

34310. The cost of producing the 100th item
is C(100) — C'(99) = 33990.

4. The marginal cost function is
C'(x) = 322 + 22z + 40.
The marginal cost at = 100 is C’(100) =
32240. The cost of producing the 100th item
is C(100) — C'(99) = 31930.

_ 2.2
5. C'(x) = 3z* — 60z + 300 11.

C"(x) =62 —-60=0

x = 10 is the inflection point because C”(x)
changes from negative to positive at this value.
After this point, cost rises more sharply.

6. A linear model doesn’t reflect the capacity of
the stadium, or the presence of a certain num-
ber of fans who would attend no matter what
the price, but away from the extremes a linear
model might serve adequately. For ticket price
x, the revenue function is
R(z) = 2(—3,000z + 57,000)

= —3,00022 + 57,000z.
We solve
R'(z) = —6,000z + 57,000 = 0
and find that x = 9.5 dollars per ticket is the
critical number. Since R” = —6,000 < 0, this
is a maximum.

7. C(z) =C(x)/z =01z + 3 + @
C'(x)=0.1— 2220

Cyitical number is z = 100v/2 ~ 141 4.

C' () is negative to the left of the critical num-

ber and positive to the right, so this must be

the minimum.

8. The average cost function is

— 223 +4 4
C’(:c):o x° 4 4x + 4000

= 0.2z 2+4+@.

4000

6/(:10) = 0.4z — =0
when z ~ 21.54. Thls is a minimum because
' =04+

. C(z) =C(x)/z =10

12.

13.

60.02:70

€T

x
_ .02z —1
C'(z) = 1002 (O x2 )

Critical number is z = 50. 6/(90) is negative to
the left of the critical number and positive to
the right, so this must be the minimum.

The average cost function is

o 3
Cla) = Y2800 d
X
3
_ —1
Oy = 201600
2x2v/ 23 + 800

This is zero when z = v/1600. This is a mini-

mum because 5 .
—n 5,120,000 4 12,800x° — = .
C = 129 (5 1 800)5/2 > 0 at this

x.

(2) C(z) = 0.012 + 40z + 3600
C'(z) = 0.02z + 40

C(x) = Cl) =0.01z +40+@
xT T

C’'(100) = 42

C(100) = 77

so C'(100) < C(100)
C(101) = 76.65 < C(100)

(b) C'(z) = 0.022 + 40
C’(1000) = 60

0.01z2 + 40z + 3600
(z) =

X
C(1000) = 53.6

C(1001) = 53.6064
c’

Ql

3600
() =0.01 - == =0

so z = 600 is min and
C’(600) = 52
6(600) =52

(a) P(z) = R(z) - C(z)
Pl(x) = R'(x) C'(x) =
R/(x) = C'(x)

(b) P(z) = (10x — 0.0012%) — (2z + 5, 000).
P'(z) = 8 — 0.002z = 0 if = = 4, 000.
This is a maximum because P”(zx)

—0.002 < 0.
P
E=—f(p
f(p) (2) »
=——(-200) = ——
200(30 — p) ( ) p—30
To solve P < —1, multiply both sides
p—30
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by the negative quantity p — 30, to get p >
(=1)(p — 30) or p > 30 — p, so 2p > 30, so
15 < p < 30.

14. po /') _ p(=200) _ p

flp) ~ 200(20-p) p—20
< —1 when p > 20 — p, so demand is

p—20
elastic when 10 < p < 20.

15. f(p) = 100p(20 — p) = 100(20p — p?)

P

=75\

f(p) p( )
= —(100)(20 — 2

100p(20 7p)( ) p)
20-2p
 20—p

—2p . .
To solve 20— p < —1, multiply both sides by

the positive quantity 20 — p to get 20 — 2p <
(—=1)(20 — p), or 20 — 2p < p — 20, so 40 < 3p,
so 40/3 < p < 20.

16, g PI'®)

f(p)
p(600 — 120p)  2p — 10

60p(10 —p)  p—10

2p — 10
it 2P < —1 for positive p, then p — 10
p—10
2p — 10
must be negative. this means L 0 < -1
p—

when 2p — 10 > 10 — p, so demand is elastic
20
when 3 <p<10.

17. [pf(p)] <
if and only if p'f(p) +pf'(p) <0
if and only if f(p) + pf'(p) <0
if and only if pf’(p) < —f(p)
if and only if p;(z(f)) < -1

18. The percentage change in quantity purchased

: : o QU I
(using the chain rule) is ol0i)

. The percent-

age change in income is 17/
The income elasticity of demand is then
QU)I I Q) I

o T %Y o) -

19. (a) Rewrite 2’ (t) as f (z) = 2z[4 — z].
f(x)=2(4—-x)+2x(-1)

=8 -4z
f'(x) =0 = x = 2 where the f(z) is
maximum

(b) The critical points of 2’ (t) = 2z[4—z] are
r=0and z =4.

20.

21.

22,

23.

24.

2 (t)>0,0<z(t)<4

2 (t) <0, z>4o0rx<0
Therefore, the limiting concentration is 4.

(a) Rewrite 2/ (t) as f (z) = 0.5x[5 — z].
f'(£)=05(5—1z)+ 0.5z (1)

=25—-z
f'(x) =0 = x = 2.5 where the f(z) is
maximum.

(b) The critical points of 2’ (t) = 0.5z[5 — z]
are z =0 and x = 5.
2 (t)>0,0<x(t)<5b

2 (t) <0, z>5orxz<0
Therefore, the limiting concentration is 5.

2(t)=c- ch(t)[l — x(t)]
= ra(t)[1 —x(t)]
r=cK
The given conditions translate into equations
3=c-2(K —2)and 4= c-4(K —4). Solving

the first equation for ¢ and substituting into
the second equation gives

4:42%5231) = K =8and c=1/4.

z'(t) = [a — z(t)][b — =(t)]

for z(t) = a,

2'(t)=[a—a]lb—a]=0

So the concentration of product is staying the
same.

If a < b and z(0) =
0<zx<a<d

2'(t) <0fora<ax<b
Thus z(t) = a is a maximum.

0 then 2/(t) > 0 for

1— (b—a)-0
2(0) = AL —¢ ]
1—(a)€ (b—a)-0
1-1
TS
1-(4)
. _ a[l-0] __
o) = 4o

For a = 2 and b = 3 the graph looks like this:
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25. The first inflection point occurs around f =

1/3, before the step up. The second occurs
at the far right of the graph. The equivalence
point is presumably more stable. The first in-
flection point would be hard to measure, since
the pH takes drastic leap right after the inflec-
tion point occurs.

26. Recall that we are assuming 0 < f < 1. As

=17,
P/(f):ﬁ—“)o
rr
. = >
27. R(x) k+1;€7$_0
-
R(z) = ——

There are no critical numbers. Any possible
maximum would have to be at the endpoint
2 =0, but in fact R is increasing on [0, c0), so
there is no maximum (although as x goes to
infinity, R approaches r).

28. PV7/5 =¢

diP (Pv7/5) = dip(c) =0

7 av
75 4 Lpy2/stl
Vv +: 174 Iz 0
7 dV
av._ 5V
P~ 7 P’

But V7/5 = ¢/P, so V = (¢/P)*". Hence
v -5V

P~ 7 P
=5 (C/P)5/7 B —5c5/7
-7 P 7PWT

As pressure increases, volume decreases.

29. m/(x) = 4 — cosz, so the rod is less dense at

the ends.

30. m/(z) = 3(x — 1)? + 6.

Density is maximum at the ends and at a min-
imum in the middle.

31.

32.

33.

34.

35.

36.

37.

38.

39. p'(t) =
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m/(z) = 4, so the rod is homogeneous.

m/(z) = 8z.
Density increases from 0 at the left end to a
maximum at the right end.

Q'(t) = e - (=2)(cos 3t — 2sin 3t)
+e 2 ((—sin3t - 3) — 2cos 3t - 3)
= e %'(—~8cos 3t + sin 3t) amps

Q' (t) = e'(3 cos 2t + sin 2t)
+ et (—6sin 2t + 2 cos 2t)
= be'(cos 2t — sin 2t) amps

As t — oo, Q(t) — 4sin3t, so e 3 cos2t is
called the transient term and 4sin 3t is called
the steady-state value.
Q'(t) = e 3. (=3) cos 2t
+e 3 (—sin2t-2) +4cos3t-3
= e 3(—3 cos 2t — 2sin 2t)
+ 12cos 3t
The transient term is e ~3!(—3 cos 2t — 2sin 2t)
and the steady-state value is 12 cos 3t.

Q'(t) = —2e % (cost — 2sint)

+e 2 (—sint — 2cost)

+ 73t — 3te 3" — 8sin 4t
Q'(t) = e ?!(—4cost + 3sint)

+ e 3 (1 — 3t) — 8sin4t
The transient term is e 2!(—4 cost + 3sint) +
e 31 — 3t) and the steady-state value is
—8sin 4¢.

The rate of population growth is given by
f(p) = 4p(5 —p) = 4(5p — p*)

f'(p) =4(5 — 2p),

so the only critical number is p = 2.5. Since
the graph of f is a parabola opening down, this
must be a max.

The rate of growth R = 2p(7 — 2p), so R’ =
14 —8p = 0 when p = 7/4. This is a maximum
because R’ = —8 < 0.

—B(1+ Ae=#ty
—B(—kAe™ k)
kABe™*t
kABe *t
1+ 2Ae kt 1 A2 2kt
- kAB

CeFt £ 2A 4 A2e Rt
As t goes to infinity, the exponential term goes
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40.

41.

42.

43.

44.
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to 0, and so the limiting population is

B
—— =1DB.
1+ A(0)
If the inflection point is p = 120, then the max-
imum population is B = 240. If the initial pop-
ulation is p(0) = 40, then

40 = ——.

1+ A
We solve to get A = 5. If then p(12) = 160, we
have the equation

240
160 = —
60 1+ 5e—12k
which we can solve to get
In10
k= ——.
12
70
For a = 70, b = 02, f(t) = m =
70(1 + 3¢ 02!
J2) = 13m0 ~ 23
f/(t) = =70(1 + 3¢~ 22)72(3e70-2)(~0.2)
42¢70-2t
(14 3e70-26)2
42 0.2-2
7(2) = € ~ 3.105

(1 + 36_0‘2‘2)2

This says that at time ¢t = 2 hours, the rate at
which the spread of the rumor is increasing is
about 3% of the population per hour.

70
lim f(t)= —— =70

t—o0 1+0
so 70% of the population will eventually hear

the rumor.

J'(t) = —0.02¢70-02¢ 4 (0.42¢~0-42¢
f'(t) = 0 when 0.42e=04%t = 0.02¢ 092 or
e~04t = 0.02/0.42. So we see that

In 0.04761
_InO.047619 - o113

is the critical value. The Second Derivative
Test shows that it is a maximum.

—64x~ 14 (42794 + 15
f'(x) = 70(.4 2 )
(4z + 15)
(160204 + 90)(—1.62~14)
(4x=04 +15)2
—8162~ 14
L —— ()
(4x=04 +15)2
So f(z) is decreasing. This shows that pupils
shrink as light increases.

1 1
T(r) =102 — éxZ + ﬂx?
To maximize |T"(x)|, we find all extrema of
T’(x) and compare their magnitudes.

— 1
T (z) = — — 2.
(2) 3 x+18x

45.

46.

47.

-1 1
T"(2) = ?—i-@x:OWhenx:?).
We test the critical numbers and the endpoints:
-1
T7(0) = 0, T'(6) = 0, and T'(3) = ER The

dosage that maximizes sensitivity is 3 mg.

If v is not greater than ¢, the fish will never
make any headway. E'(v) = U((J’:f)g) so the
only critical number is v = 2c. When v is large,
E(v) is large, and when v is just a little big-
ger than ¢, E(v) is large, so we must have a

minimum.

We wish to minimize P = % + cvs.

P = %21+3cv2 =0 when v = {‘/i.
P” = Z +6cv > 0 at this velocity, so this gives
the minimum power.

(a) zy=c
y=<
Time spent to cover y miles = 4
1

. . T
Time spent to cover x miles= —
T2

x
So, the total time spent (T') = EANN
1 T2
Now by taking f (z) =T we get:
y
f@)=(L+2
1 T2
( cl = )
= _— + —_
M X T2
, —c 1 1
)= —+ —+ —
f'(@) rox% 1y
F(@)=0=
—crg+ 122 =0
7"11’2 = CrIg
2 CTrg
72 = 22
8!
Cra
x=,/—
1
cr
Substitute x = , /=2 in y==:.
1
c
y =
cra
Vo
_ T1C
=\ 0
cr
Therefore, when =z = =2 and y =
1
ric .
——, the time spent by the commuter
T2

1S minimum.

(b) Time spent driving at r; = 1
1



CHAPTER 3 REVIEW EXERCISES

48.

T2 C
1 172
Time spent driving at ro = —
T2
racC
1 C
T2 172

Therefore, equal time is spent driving at
r1 and ro.

=0
b
CL:?Z
v? = -
a
v==+ é
%
C"(v) = =%

v
C"(v) >0atv= \/E.

Therefore, v = \/g to minimize C (v).

2

C(U):apviv +bv—pv

, (v —v.) (2v) — v?
C" (v) =a

(v) p[ o) ]

—bp
_|_ [ —
(v— Uc)2‘|
1 2
= m [2apv (v — ve) — apv® — bp]
1
= m [apv2 — 2apv.v — bp]
Cw)=0=

apv® — 2apv.v —bp =0
2apv, £ \/(2apvc)2 + 4abp?
v =

2ap

/ b
V=10, E/v2+ —
a
b ...
Therefore, v = v, & {/v.2 + — minimizes
a

C (v)
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Ch. 3 Review Exercises

1.

. From the graph of f(z) =«

1
dy=——
) 1—

f(il') = 63a:a To = Oa

7'(z) = 3c

L(x) = f(x0) + f'(w0)(x — x0)
= f(0) + f(0)(z — 0)
— 30 4 330,
=143z

L(z) = f(zo "(z0)( — o)
=f(8)+ f'(8)(z —8)
= V84 3(8)"%3(xz —38)
=2+ (z—38)

L(7.96) = 2+ 4(7.96 — 8) ~ 1.99666

. sin3 is close to sinw. If y = sinx, y = cosz.

The point is (m,0) and the slope is —1. The
linear approximation of sinxz at x = 7 is

L(z) = —(x — ), so

sin3 ~ —(3 — 7) &~ 0.14159.

. From the graph of f(x) = 23 + 5z — 1, there is

one root.

f'(z) =322 +5

Starting with o = 0, Newton’s method gives
x1 = 0.2, x5 = 0.198437, and =3 = 0.198437.

3 _ e® there is

one root.

fl(z) =322+ e

Starting with ¢y = 1, Newton’s method gives
x1 = 0.8123, x5 = 0.7743, and x3 = 0.7729,
which is accurate to 4 decimal places.

. Near an inflection point, the rate of change

of the rate of change of f(z) is very small so
there aren’t any big dropoffs or sharp increases
nearby to make the linear approximation inac-
curate.

1
(1—x)*
For “small” z, x is near 0. The point on the
curve when = 0 is (0, 1), and the slope is 1,
so the linear approximation is L(z) = = + 1,
and this is valid for “small” x.

, then 3y =
x

3 _
lim < is type 2
z—1 232 — 1

0
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L’Hopital’s Rule gives

. sinx
10- 0 23

L’Hopital’s Rule gives

is type %;

CcosS T 1

+502r +3 3

2z

11. lim ——

. .
o I Is type o;

applying L’Hopital’s Rule twice gives:

i 26212
wggo 43
) 462a: ) 8621:
= lim = lim
z00 1222 z500 242
. 16e2%®
= lim =00

z—oo 24

2

. _ . - .
12. lim (2% %) = lim —— is type &;
T—00 r—00 3T o

applying L’Hopital’s Rule twice gives:

I 2x
zioo 3e3z
- :clggo Qe3T =0
Var2—4
13. L= lim |21
z—2+ |x — 2
. r+1
InL= lim (V22 —-4Iln
z—2+ r—2
1
o In %
T oo | @2 - a2

3(x? — 4)3/2 )

— /&\
8

+

[a—y

=
8
|

\V)

S~—

x—2)12(x + 2)3/2>

x(x+1)
InL =
L=1
1 In(1+2
14. lim zIn (1+) = lim u
T—00 T z—00 i

is type % so we can apply L’Hopital’s Rule:
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15.

16.

17.

18.

19.

1 (—SC72)

1+1
lim (+s) —
T —00 —x
= lim =1
Yy
. ) Inz
lim (tanzlnz) = lim
2—0+ z—0+ \ cotx
1
= lim ( /x2 )
z—0+t \ —csc? x
<Sin2x)
= lim —
z—0+ x
sin x
= — lim < smx)
z—0t T
— (-1)(0) =
. tan"laz | 0
lim T— is type §;

z—=0 sin” " x

we can apply L'Hopital’s Rule:
1 )

22 _ i yi-2* o
= =

T —0 1—{—:1}2

fl(x) =322 +6x — 9 =322 +2x—3)
=3(x+3)(x—-1)

So the critical numbers are x = 1 and ©z = —3.

f'(x) >0 on (—oo,—3)U(1,00)

f'(x) <0on (=3,1)

Hence f is increasing on (—oo,—3) and on

(1,00) and f is decreasing on (—3,1). Thus

there is a local max at x = —3 and a local min

at z = 1.

f"(z) =32z +2)=6(x+1)

f"(z) >0 on (—1,00)

f"(x) < 0on (—o0,—1)

Hence f is concave up on (—1,00) and concave
down on (—oo, —1), and there is an inflection
point at x = —1.

fl(z) =423 — 4

f'(x) = 0 when z = 1, and this is the only
critical number. The function is decreasing for
z < 1 and increasing for > 1.

f" = 1222 > 0 when 2 = 1, so this is a lo-
cal minimum. f” = 0 when z = 0, but does
not change sign there, so there are no inflection
points. The function is concave up everywhere.

lim
x—0

f(z) = 423 — 1222 = 42%(z — 3)

x = 0, 3 are critical numbers.

f'(z) > 0 on (3,00)

f'(z) <0 on (—o0,0)U(0,3)

f increasing on (3,00), decreasing on (—o0, 3)
so x = 3 is a local min.

f(x) = 1202 — 242 = 122(z — 2)
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20.

21.

22,

23.

f"(z) > 0 on (—00,0) U (2,00)

f"(z) < 0on (0,2)

f is concave up on (—o00,0) U (2,00), concave
down on (0,2) so z = 0, 2 are inflection points.

f(z) =322 — 62 — 24 = 3(x — 4)(z + 2)

f'(x) =0 when x = 4 and x = —2. The func-
tion is increasing for x < —2, then decreasing
for -2 < x < 4, and increasing for =z > 4.
xr = —2 represents a local maximum, and z = 4
represents a local minimum.

f'(z) =6x—6

f"(x) = 0 when z = 1, and changes sign there,
so x = 1 is an inflection point. The function
is concave down for z < 1 and concave up for
x> 1.

fl(x) = e 4 ze™%(—4) =
x = 1/4 is a critical number.
f'(z) >0 on (—o0, 1)
f'(z) <0 on (%,00)
f increasing on (—oo, i), decreasing on
(—%,00) so z =1/4is a local max.
f'(x) = e 4(—4)(1 — dz) + 717 (—4)

= —4e~4%(2 — 4x)
f"(z) >0 on (3,00)
f"(z) <0 on (—o0, 1)
f is concave up on (%,
(foo, %) so z = 1/2 is inflection point.

e~ (1 — 4z)

oo), concave down on

(z)=2zInz+2z=22lnz+1)

(r) = 0 when Inz = —1/2, so x = e~ /2.
(z = 0 is not a critical number because it is not
in the domain of the function.) The function
is decreasing for 0 < = < e~1/2| and increasing
for 2 > e~1/2. The critical number z = e~1/2
represents a minimum.

f'(x) =2Inx+3

f"(z) = 0 when z = e3/2 and the sign
changes from negative to positive there, so this
is an inflection point. The function is concave
down for 0 < z < e~3/2 and concave up for
x> e 32,

f/
fl

2?2 — (x —90)(2z)
4

—(z — 180)

23
x = 180 is the only critical number.
J'(xz) < 0on (—o0,0) U (180, 00)
f'(z) >0 on (0,180)
f(z) is decreasing on (—o0,0) U (180, 00) and
increasing on (0, 180) so f(x) has a local max-
imum at x = 180. ) )
F1(a) = o —(z . 80)(3x4)

fiz) =

24.

25.

26.

27.

233

—2x + 540
v
f"(z) <0 on (—o0,0) U (0,270)
f"(z) > 0 on (270,00) so = = 90 is an inflec-
tion point.
, 4z

f (l’) - 3(.’172 _ 1)1/3
f'(x) =0 at x = 0 and is undefined at x = +1.
The function is decreasing for x < —1, increas-
ing for —1 < z < 0, decreasing for 0 < x < 1,
and increasing for 1 < z. Critical numbers
z = +£1 are minima, and z = 0 is a maximum.
f”(CL’) — 4(372 — 3)[

92 _1)1/3
f"(x) = 0 when x = ++/3, and undefined
for x = 4+1. The function is concave up for
T < —\/g, concave down for —v/3 < z < -1,
concave down for —1 < z < 1, concave down
for 1 < z < /3, and concave up for v/3 < z.
The inflection points are = = +/3.

2% +4 — x(27)

(x2 +4)2

4 — 22
o (22 +4)2

x = %2 are critical numbers.
f'(x) > 0on (-2,2)
f(z) <0 on (—oo,—2)U(2,00)
f increasing on (—2,2), decreasing on
(=00, —2) and on (2,00) so f had a local min

f'z) =

at x = —2 and a local max at x = 2.
[ (@) =
—2x(2? +4)? — (4 — 2H)[2(2? + 4) - 22]
(2 4 4)*
223 — 24
- (22 +4)3

f"(z) > 0on (—\/ﬁ7 0) U (\/ﬁ, oo)
f"(z) <0 on (—o0, —v12) U (0, V12)
f is concave up on (—\/ﬁ, O) U (\/ﬁ, oo)7
concave down on (—oo, —\/ﬁ) U (0, \/ﬁ) SO
x = ++/12, 0 are inflection points.
2

!
f (17) - (.132 +4)3/2
f/(x) is never zero and is defined for all z, so
there are no critical numbers. The function is
increasing for gll x.

" —ox
f (LU) - (1’2+4)5/2
f"(x) = 0 when = 0. The function is con-
cave up for z < 0, concave down for z > 0, and
the inflection point is z = 0.

f'(z) =32% + 62— 9
=3(x+3)(x—-1)
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28.

29.

30.

31.
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r = =3, x = 1 are critical numbers, but
x=-3¢10,4].

f(0)=02+3-02-9-0=0
f(4)=4%2+3-42-9.-4=176
f)y=1+3-12-9.1=-5

So f(4) = 76 is absolute max on [0,4], f(1) =
—5 is absolute min.

First note that f(z) = x(x —1)(x —2) is
only defined on [0, 1]U[2, 00). So we are looking
at the intervals [0, 1] U [2, 3].

3z2 — 6z + 2
Va3 — 322 + 22

The numerator has roots z = %, but f(x)

is only defined at % The denominator has
zeros at x = 0, 1 and 2. Plus we have to check
the values of f at the endpoint x = 3. We find:
f(0)=0

F(E203) ~ 0.6204

f(1 ) =0

f(2)=0

f(3) = V6 ~2.4495

Thus f(z) has an absolute maximum on this
interval at x = 3 and absolute minimums at
r=0,z=1and z =2.

f'(x) =
x = 0 is critical number.

2) = (—2)*° ~ 1.74
)= (35 ~ 241
)= (0)*°=0
£(0) = 0 is absolute min, f(3) = 3%/° is abso-
lute max.

fi(z) =

4..-1/5
5.13

f(=
(3
f(0

fl(x) =2we™® — 2% % = xe (2 — 1)

f'(z) = 0 when x = 0 and x = 2. We test f(z)
at the critical numbers in the interval [—1,4],
and the endpoints.

F(=1) = e~ 2.718

f(0)=0

F(2) = 4/e2 ~ 0.541

f(4) =16/e* ~ 0.293

The absolute maximum is f(—1) = e, and the
absolute minimum is f(0) = 0.
f(z) =322 + 8z +2
f'(z) = 0 when

_8+V6i-21_ 4 VIO

B 6 373

4 /10 , 4 10,

r=-—-— 1sloca1max,w:—§+ 3 is
local min.

32.

33.

34.

35.

36.

37.

f/(z) =42® — 62 +2
=2(x—1)(222 + 2z - 1)

—-14++3
f'(x) =0when z =1 and z = 7\[, and

the derivative changes sign at these values, so
these critical numbers are all extrema.

fl(z)=52* -4z +1=0
r ~ 0.2553, 0.8227

local min at = ~ 0.8227,

local max at x =~ 0.2553.

f'(z) =52+ 8z — 4

f'(z) = 0 at approximately x = —1.3033 and
xz = 0.4696 (found using Newton’s method,
or a CAS numerical solver). The derivative
changes sign at these values so they correspond
to extrema: x = —1.3033 is a local max and
z = 0.4696 is a local min.

One possible graph:

5+

One possible graph:

Ll

f(z) = 423 + 1222 = 42%(4x + 3)
f(z) = 1222 + 242 = 122(z + 2)
f’(:z:) >0 on (—3,0) U (0, 00)
f'(xz) < 0on (—o0,—3)
f"(x) >0 on (—o0,—2) U
f"(z) <0on (—2,0)
f increasing on (—3,00), decreasing on
(=00, —3), concave up on (—oo,—2) U (0, 00),
concave down on (—2,0), local min at x = —3,

(0, 00)
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inflection points at x = —2, 0.
f(x) = 00 as © — +oc.

38. f'(x) = 42 + 8x
f'(z) =0 when z = 0.
f" =122 +8 > 0 at = 0, so this is a min-
imum. f”(x) > 0 for all « so there are no
inflection points.
f(z) = 00 as & — +o0.

39. fl(z) =4a® +4=4(z>+1)
f(x) = 1222
f'(z) >0o0n (—1,00)
f'(x) <0 on (—o0,—1)
f"(x) >0 on (—00,0) U (0,00)
f increasing on (—1,00), decreasing on
(=00, —1), concave up on (—o0,00), local min
at z = —1.
f(z) = 00 as x — +o0.

235

40. f'(x) = 42% — 8x
f'(z) =0 when 2 = 0 and = = £/2.
f" =1222 —8 < 0 at = 0, so this is a max-
imum. f”(z) > 0 for x = +v/2, so these are
minima.
f"(z) = 0 when x = +4/2/3, and changes sign
there, so these are inflection points.
f(x) = 00 as © — +o0.

22 +1—2(27)
(z2 + 1)2
1— 22
- (22 +1)2
f(x) =
—2z(2?2 +1)2 — (1 — 22)2(2® + 1)22
(x2 +1)4
_ 2z(z® - 3)
(22 +1)4
() >0on (—1,1)
() <0 on (—oo0,—1)U(1,00)
f"(z) > 0on (—v3,0) U (v/3,00)
f"(x) <0on (—oo7 —\/3) U (O7 \/g)
f increasing on (—1,1), decreasing on
(=00, —1) and on (1, 00), concave up on

41. f'(x) =

f/
f‘l

(—\/g, O) U (\/g, oo) ,
concave down on
(—oo, —\/§> U (O, \/5) ,

local min at x = —1, local max at x = 1, in-
flection points at 0, ++/3.

. T
lim 5 =

r——o0 T4 + 1

So f has a horizontal asymptote at y = 0.
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42.

43.
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reon 2 +1
f(l‘)——m

is undefined when f(z) is undefined, and is
never zero. There are no extrema. There are
vertical asymptotes at © = 41, and horizontal
asymptote y = 0.

P 22 (2% + 3)
f(z) = 1P

f”(xz) = 0 when z = 0, and this is the inflec-
tion point: f(x) is concave down on (—oo, —1)
and (0,1); f(z) is concave up on (—1,0) and
(1, 00).

_ (2z) (22 + 1) — 22(2z)

(22 +1)2

_ 2z

_(x22—1)22 2

2(x 1) —2x-2(x 1)2z

R

_ 2 — 622

" @y
’x)>00n(Ooo)

(
f'(x) <0on (—

f(x) >Oon< \/;,f)
F'(x) <0 on (=00~ /3) U (y/4.0)

f increasing on (0, 00) decreasing on (—o0, 0),

@) =

concave up on

SE!

concave down on

—00 —\/T U \/T o0
) 3 3’ )
local min at x = 0, inflection points at x =
++/1/3.

.'L'Q .'I}Q
lim =
z—00 T2 + 1

lim =
z——oco 12 + 1

So f has a horizontal asymptote at y = 1.

N

I
T S R T R

vvvvvvvvvv

;.‘
o
3
4

LB SRRV

2z
@
f'(z) = 0 when = = 0, and is undefined when
f(x) is undefined. There is a local maximum

at x = 0. There are vertical asymptotes at
x = %1, and horizontal asymptote y = 1.

2(3z% 4+ 1)

f//(x) = (932 — 1)3

f"(z) # 0 for any z, and there are no inflec-
tion points: f(z) is concave up on (—oo, —1) U
(1,00) and concave down on (—1,1).
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45.

46.

3z%(z% — 1) — 23(22)
-1
_ zt — 322
C (a2 1)
" (4'1'3 — 63’;)(3’;2 — 1)2
f (.’L‘) - T2 — 1)4
(2t — 32%)2(2% — 1)2x
(2 - 1
B 2z° + 6x
x2 —1)4

f'(z) >0 on (—o0, —v3) U (V/3,00)
f'(z) < 0on (—v3,-1) U (=1,0) U (0,1) U
(1,v3)
f"(xz) >0o0n (-1,0) U (1,00)
f"(x) <0on (—oo,—1)U(0,1)
f increasing on (—oo0, —v/3) and on (v/3,00);
decreasing on (—v/3,—1) and on (—1,1) and
on (1,/3); concave up on (—1,0)U(1, o), con-
cave down on (—oo, —1)U(0,1); z = —+/3 local
max; = v/3 local min; z = 0 inflection point.

f is undefined at © = —1 and = = 1.
3

f'(x) =

im = 00, and
=1t 22 —1 ’

3

lim

= —00
r—1— 2 -1

So f has vertical asymptotes at z = 1 and
z=-—1

vvvvvvvvv

-1

foN 8x

(@212
f'(x) = 0 when = 0, and is undefined
when f(x) is undefined. f(x) is increasing
on (—oo,—1) and (—1,0); f(z) is decreasing
n (0, 1) and (1,00). There is a local maxi-
mum at z = 0. There are vertical asymptotes
at x = 1, and horizontal asymptote y = 0.

N 8(3x2 4+ 1)
f(z) = 21

f"(z) # 0 for any z, and there are no inflec-
tion points. f(z) is concave up on (—oo, —1)

47.

48.

49. C

50.
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and (1,00); f(x) is concave down on (—1,1).

_5<\
-10-

d=/(z -2+ (y — 1)
=/(z —2)2 + (222 — 1)2
fa) = (x—2)° + (227 — 1)?
f(z) =2(z —2) +2(22% — 1)4z
= 1623 — 62 — 4
f'(z) = 0 when = =~ 0.8237
() < 0on (—o0,0.8237)
f'(z) > 0 on (0.8237,00)
So z = 0.8237 corresponds to the closest point.
y = 222 = 2(0.8237)% = 1.3570
(0.8237,1.3570) is closest to (2,1).

We compute the slope of the tangent line to
y = 2z% at the closest point (0.8237,1.3570).
When z = 0.8237, we get 3y = 3.2948.
The slope of the line between (2,1) and
(0.8237,1.3570) is

1—1.3570
——— = —0.3035 =
2 —0.8237 3.2948’
so the lines are perpendicular.
z) =6,/42 + )2 +2v22 + 22
C’( )
6316 + (4 —2)?]7Y2 . 2(4 — 2)(—1)
+24(4+22)7 V2 20
6(x — 4) 2x
~ VI6+( VA + z?

C'(x)=0 When x 2 864

C'(x) < 0 on (0,2.864)

C'(z) > 0 on (2.864,4)

So x & 2.864 gives the minimum cost. Locate
highway corner 4 — 2.864 = 1.136 miles east of
point A.

Let F(v) = e/2. Then F'(v) = —0.5¢7"/2,
so F'(v) < 0 for all v. Thus F(v) is decreasing
for all v. This says that as the speed of contrac-
tion increases, the force produced decreases.
Let P(v) = ve~*/2. Then

P'(v) = e /21— 1v).
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P'(v) = 0 when v = 2. We check that and so
P'(0) > 0 and P'(4) < 0 so v = 2 is in fact ) 1 H+P
a maximum. 0'(z) = 1+ (H;;P)Q ( 2x2 )
51. Area: A =2nr? + 27nrh H-P
Convert to in?: B H-P\2 \ 232 )°
.. 3 1 +( 2x )
16 fl 0z =16 fl 0z - 1.80469 in”/fl 0z
= 28.87504in> We set this equal to 0:
Volume: V = 7r2h 0 —2(H + P) 2(H — P)
= 42 2 2 — P2
Vol  98.87504 422+ (H + P) 422 + (H — P)
h = 2 = 2z and solve for x:
2(H + P) 2(H — P)
28.87504 =
A(r) =2n <r2 i ) 4a? + (H + P)? 422 + (H — P)?
28.87504 82%(H + P) — 82*(H — P)
Al(ry=2r2r - ——— 9
2 =2(H — P)(H + P)
3 _

,[28.87504 82%(2P) = 2(H — P)(H + P)(2P)
r = T =~ 1663 ) H2 o P2

€T =
4
A'(r) <0 on (0,1.663)
A'(r) > 0 on (1.663, c0) YHE - P2

Tr = 9

So r ~ 1.663 gives the minimum surface area.
54. From exercise 53 we know that

~ 3.325 0'(z) = —2(H + P) 2(H — P)
422 + (H+ P)? 422+ (H — P)?

and that the function 6(x) is maximized at

~ 28.87504
~ 7(1.663)2

52. If O(x) = 0.0222 + 4z + 1200,
then C’(z) = 0.04z + 4 > 0 for positive values r=Y H? — PQ.
of  (number of items manufactured). This 2

must be positive because the cost function

must be increa§ing. It must cost more to man- for high school shows that 6(z) is maximized
ufacture more items. ] by x ~ 23.9792. This is not in the range spec-
C"(z) = 0.04 > 0. This means that the cost ified. In order to find out whether §(z) is in-
per item is rising as the number of items pro- creasing or decreasing in the interval specified
duced increases. (For an efficient process, the we plug the H and P values into the expression
cost per item should decrease as the number of for 6 (z) and then plug in a value in our inter-
items increases.) val, say 55. We find that 6’(55) ~ —0.00392.
Since this is negative, 6(x) is decreasing on this
interval, so the announcers must be wrong.

Plugging in the appropriate H and P values

53. Let 61 be the angle from the horizontal to the
upper line segment defining 6 and let 65 be the

angle from the horizontal to the lower line seg-

ment defining #. Then the length of the side find that 6(z) is maximized by z ~ 17.7324
- . and 0'(55) ~ —0.00412 so again the announc-
while the length of the

ers would be wrong.

Following the same procedure for college, we

opposite 5 is

P. Then Finally, for pros we see that 6(x) is maximized
at © = 0 and ¢'(55) =~ —0.0055 so the announc-
0(z) = 01 — 05 ers would be wrong once again. In this situa-
tion there is no x value for which the announc-

— tan~ ! <H + P> ers would be correct, but in the high school

2z and college situations, if the field goal is taken

tan—1 (H - P ) from some z less than the z which maximized

side opposite 07 is

20 6(x), the announcers would be correct.
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55.

56.

57.

58.

59.

60.

Q'(t) = —3e 3sin2t + e 3t cos 2t - 2
= e 3%(2cos 2t — 3sin 2t) amps

f(z) =0.3z(4—2x), f'(z) = 1.2—0.62 = 0 when
x = 2, and changes from positive to negative
there, so this represents a maximum.

plw) = m'(z) = 2
As you move along the rod to the right, its
density increases.

With no studying, the person scores f(0) =

144670.415
(1+ de—0-4)2°
If the student were to study one hour, the score
will increase by approximately
1(0) = . 5.76 points.

25
C'(x) = 0.04x + 20
C’(20) = 0.04(20) + 20 = 20.8
C(20) — C(19) =
0.02(20)2 + 20(20) + 1800
— [0.02(19)? + 20(19) + 1800]

1+4
fl(x) =

= 20.78
— 0.02z2 + 20 1800
Cla) = x° + 200 +
1800
=0.02x + 20+ —
— 1800
C'(z) =0.02 — =

6/(:3) = 0 when z = 300, and the deriva-
tive changes from negative to positive here, so
x = 300 gives the minimum average cost.

239



