شكراً لتحميلك هذا الملف من هوقع المناهج الإمار اتية

مراجعة شاملة نهاية الفصل
موقع المناهج صَ المناهج الإماراتية ص الهف الثاني عشر المتقدم ص فيزياء ص الفصـل الثاني ص اللملف

التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

روابط مواد الصف الثاني عشر المتقدم على تلغرام
الرياضيات
اللغة الانحليزية
اللغة العربية
التـربية الاسالمية

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة فيزياء في الفسل الثاني

مراحعة شاملة نهاية الفصل	1
مراحعة نهائية قبل امتحان نهاية الفصل الثاني	2
مراحعة عامة وفق الهيكل الوزلري	3
الحل التفهيلي للمراحعة النهائية	4
أسئلة المراحعة النهائية اختبار من متعدد مع الحل	5

Wherever necessary, use the following formulas أينما لز م استخدم الـدلاهاتات التالية		
$J=\frac{i}{A}$	$i=\frac{d q}{d t}$	1 = $\frac{d q}{d t}=-\operatorname{mev}_{s} A$
$1 s=\frac{1}{1 s 2}$	$\rho=\frac{E}{J}$	$\sigma=\frac{1}{\rho}$
$R=\rho \frac{l}{A}$	$V_{\text {ent }}=i R$	$V_{\text {emt }}=i R_{1}+i R_{2}=i R_{\text {eq }}$
$d U=i d t \Delta V$		$R=\frac{\Delta V}{i}$
$R=\frac{\Delta V}{i}$	$P=\frac{d U}{d t}=\frac{i d t \Delta V}{d t}=i \Delta V$	$E=\frac{\Delta V}{L}$
$d U=i d t \Delta V$		$g(t)=q_{\text {min }}(1-\cdots+\cdots)$
$\sum_{i=1}^{n} i_{i}=0$	$1=\frac{d q}{d r}=\left(\frac{V_{\text {amp }}}{R}\right){ }^{\text {revirc }}$	$g^{\prime}(t)=\eta_{\text {max }} c^{-t / R C}$
$R_{u}-\frac{R_{1}}{R_{ \pm}} R_{v}$		9 $\vec{F}_{B}=q \vec{v} \times \vec{B}$
$r=\frac{\operatorname{mv}}{19 / B}$	$\vec{F}_{B}=\vec{i} \times \vec{B}$	$\tau=N T_{1}=N L A B \sin \theta$
$d \dot{E}=\frac{1}{4 \pi=\frac{d q}{r^{3}}} \overrightarrow{r^{3}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}} i$	$d \vec{B}=\frac{\mu_{0} i d \vec{s} \times \vec{r}}{4 \pi} \frac{r^{3}}{r^{3}}=\frac{\mu_{0} t d \vec{s} \times \dot{r}}{4 \pi} \frac{r^{2}}{r^{2}}$	$\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$
$k=8.99 \times 10^{\circ} \frac{\mathrm{N} \mathrm{m}^{2}}{\mathrm{c}^{2}}$		

$$
\begin{gathered}
\text { RNOF TERM } 2 \text { REVISION } \\
12 \text { ADYANCE } \\
\text { PHYSICS } \\
050-8210248
\end{gathered}
$$

TEACHER: ALAA ALDEEN ALFAQEEH

(Part 1)

1- Show that by definition the electric current is related to net charge through the equation between current and charge related to time Define electric current and specify its unit as the Ampere ($1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$).

As mentioned in the textbook 117

$$
\begin{aligned}
& \text { تيّن أنه بالتعريعف يرتبط التيار الكهربائي بالشحنة الصافية من خلال المعادلة بين التيار والشُحنة المتعلقة بالوقت }
\end{aligned}
$$

The electric current, i, is the net charge passing a given point in a given time, divided by that time.

$$
i=\frac{d q}{d t} \quad q=\int i d t
$$

The unit of current is C / s and is called Ampere(A).

$$
\begin{aligned}
& \text { The net amount of charge } \\
& \text { passing a given point in time } \\
& t \text { is the integral of the } \\
& \text { current with respect to time: } \\
& \qquad q=\int d q=\int_{0}^{t} i d t^{\prime}
\end{aligned}
$$ $i=\left|\frac{\Delta q}{\Delta t}\right|$

Q1: How many electrons flow through a point in a wire in 3.00 s if there is a constant current of $\boldsymbol{i}=4.00 \mathrm{~A}$?
$a-7.5 \times 10^{-19}$ electron $b-7.5 \times 10^{19}$ electron $c-2.5 \times 10^{19}$ electron $d-2.5 \times 10^{-19}$ electron
Q2: The quantity of charge through a conductor is modeled as:
$Q=\left(4.00 \mathrm{C} \mathrm{s}^{-4}\right) \mathrm{t}^{4}-\left(1.00 \mathrm{Cs}^{-1}\right) \mathrm{t}+(6.00 \mathrm{mC}) \quad$. What is the current at time $\mathrm{t}=3.00 \mathrm{~s}$
a-231 A
b- 431 A
c- 623 A
d-765A

Q3 : A current flows in a conducting wire whose strength changes with time according to the equation $\left[1(t)=3.0+2.0 t^{3}\right]$, where the time is measured in seconds, and the current is measured in amperes. How much charge does this current pass in 2 s ?
A) 2 C
B) 14.9 C
C) 14 C
D) 2.7 C

Q4: The electric current ís defined as:
A) The net charge passing the cross-sectional area of a conductor in a certain time interval.
B) The net charge passing the cross-sectional area of a conductor in a certain time interval times this time interval.
C) The net charge passing the cross-sectional area of a conductor in a certain time interval devided by this time interval.
D) The current density through the conductor devided by the time interval taken to pass.

Q5: The electric current can be calculated from the equation \qquad .and its unit \qquad
$\square i=q \Delta t$
C.S
$\square i=\frac{q}{\Delta t}$
$\square i=\frac{\Delta t}{q} \quad, \quad \frac{s}{C}$
$\boxminus i=\frac{q}{\Delta t} \quad, \quad \frac{C}{s}$

2- Define the current density J as the current per unit area flowing through a conductor.

يحدد كثافة التيار علي أنها التيار لكل وحدة مساحة تتدفق عبر الموصل As mentioned in the textbook (P :119)
The current per unit area flowing through the conductor. $\overrightarrow{(J)}$

$$
\begin{gathered}
i=\int \vec{J} \cdot d \vec{A} \\
\quad J=\frac{i}{A}
\end{gathered}
$$

Q6: An copper wire with a diameter of 1.02 mm , carries a constant current of 1.67 A. Find the current density.

$$
J=\frac{i}{A}=\frac{1.67}{\pi\left(\frac{1.02 \times 10^{-3}}{2}\right)^{2}}=2.04 \times 10^{6} \frac{A}{m^{2}}
$$

Q7: The current density through a conductor is defined as:
A) The total current passing the cross-sectional area per unit time.
B) The cross-sectional area of a conductor times the current per unit cross- Sectional area.
C) The charge per unit area passing through a conductor`s cross- Sectional area.
D) The The current passing per unit perpendicular cross-Sectional area of a conductor.

Q8: The current density of a conductor is given by:
A) $J=\rho E$
B) $J=i / A$
C) $J=A / i$
D) $J=\rho L / A$

3- Recall and apply Ohm's Law ($i=\Delta V / R$).

تذكر وتطبيق قانون أوم في حل المسائل
Ohm`s Law: The electric current flowing through a conductor is directly proportional to the potential difference across it."

$$
i=\frac{\Delta V}{R}
$$

The resistance (R) : "The resistance is a material's opposition to the flow of electric current." "The resistance is the ratio of the potential difference across a resistor to the resulting current." measured in ohms Ω. (V/A)
 temperature?
A) It increases as its length increases and its cross-sectional area decreases.
B) It increases with both its length and its cross-sectional area.
C) It increases as its cross-sectional area increases and its length decreases.
D) It increases by decreasing both its length and its cross-sectional area.

Q10: Calculate the effective resistance of a pocket calculator that has a $1.35-\mathrm{V}$ battery and through which 0.200 mA flows.
a- 6750Ω
b- 2350Ω
c- 1245Ω
d- 1554Ω

4- Recall that a magnetic field is represented using field lines
.Identify the properties of a magnet (A magnet always has a north pole and a south pole - A single north or south pole cannot be isolated (they always come in pairs)

- Opposite magnetic poles attract and like poles repel
- Breaking a bar magnet in half results in two new magnets, each with a north and a south pole) - Recall that the SI unit of magnetic field strength is Tesla (T).

Magnetic field lines:

"Imaginary lines used to visualize the magnetic field and measure its intensity.
Magnetic fields around permanent magnets: $\quad \underset{B}{\vec{B}}$

Magnetic field: (A quantitative vector in the region where the magnetic force of a magnet appears.)

Magnetic field layout:

1. Using iron filings.

2. Using a small compass

Characteristics of magnetic field lines:

- Forms closed paths moving from the North Pole N to the South Pole S outside the magnet and then, continue inside the magnet from southern S to northern N .
- The direction of the field at a point tangential to the field line passing from that point.
- The field strength B at a point is proportional to the magnetic field lines density.
- Magnetic field lines do not cross each other.
- The uniform fields have straight, parallel, undirected, and equally spaced lines.

General characteristics of magnets:

-If the magnet freely hanged in a horizontal plane, it rotates in North-South geographic direction.
-Every magnets has two poles
1- North pole, the North seeking pole.
2- South pole, the south seeking pole.

- Like magnetic poles repel and opposite magnetic poles attract.
- If a magnet breaks into two or more parts, then each part becomes a new magnet with its own north and south pole.

- The effect of magnet on other magnet :

1- If two like poles meet, they repel. 2-If two different poles meet, they attract.

Tesla T: (unit of the magnetic field) $\quad \boldsymbol{T}=\frac{\boldsymbol{N} \cdot \boldsymbol{S}}{\boldsymbol{c} \cdot \boldsymbol{m}}=\frac{\boldsymbol{N}}{\boldsymbol{A} \cdot \boldsymbol{m}}=\frac{\boldsymbol{k g}}{\boldsymbol{c} \cdot \boldsymbol{s}}$ "It is the uniform magnetic field in which, if a charge of 1 c moves at a speed of $1 \mathrm{~m} / \mathrm{s}$ perpendicular to the magnetic field, it will be affected by a force of $1 \mathrm{~N} . "$
A smaller unit called Gauss " G " is used for the magnetic fields where: $1 G=10^{-4} \mathrm{~T}$

5- Explain the conventions used to determine the sign of potential differences around a single loop circuit containing several resistors and sources of emf given the assumed direction of current and the direction of analysis.Analyze single loop circuits containing two sources of emf and circuit elements.

اششح الاصطلاحات المستخدمة لتحديد علامة الاختلافات المتملة حول دائرة حلقة واحدة تحتوي على العديد من المقازمات ومصادر ابالنظر إلى الاتجاه المفترض للتيار واتجاه التحليل.
تحليل الدوائر ذای الحلةة المفردة التي تحتوي على مصدرين لعناصر

* If the direction of $V_{\text {emf }}$ in the same direction chosen for the analysis, $V_{\text {emf }}$ will be positive. If the direction of $V_{\text {emf }}$ opposite to the direction chosen for the analysis,$V_{\text {emf }}$ will be negative.
* If the direction of " i " in the same direction chosen for the analysis, " R i " willbe negative. If the direction of " i " opposite to the direction chosen for the analysis, " Ri " will be positive.

Q11: In the loop shown:
$\square V_{1}-V_{2}-i_{1} R_{1}-i_{2} R_{2}=0$
$\square V_{1}-V_{2}-i_{1} R_{1}+\left(i_{1}+i_{2}\right) R_{2}=0$
$\left.\square V_{1}+V_{2}+i_{1} R_{1}\right)^{-}\left(i_{1}+i_{2}\right) R_{2}=0$
$\square V_{1}-V_{2}-i_{1} R_{1}-\left(i_{1}+i_{2}\right) R_{2}=0$
6 - Define the electromotive force (emf) as the potential difference (voltage) supplied by a battery or a device (emf device). تُريف القوة الاافعة الكهر بائية علي أنها فرق الجهه الأي توفره البطارية أو جهاز

7- Identify that at least one component in a circuit must be a source of emf so that to drive current through the circuit حديثي يقود التيار عبر الدائرة.emf حد أن مكونًا واحدًا على الأقل في الدائرة يجب أن يكون مصدرًا لـ

Electromotive Force and Ohm's law:
For a circuit like the one shown in Figure, the emf device provides the potential difference that creates the current flowing through the resistor. Therefore, in this case, Ohm's Law can be written in terms of the external emf as:

$$
V_{e m f}=i R
$$

*Where $\mathbf{V}_{\text {emf }}$ is the external potential difference between the two terminals of the emf source when the current flows.
*We will treat here resistors as ohmic devices; that is, devices that obey Ohm's Law.

$$
V_{e m f}=i R
$$

Battery
*The change in potential is referred to as the potential drop across the resistor.
*Sources of emf add potential difference to a circuit, and potential drops through resistors reduce potential in the circuit.
${ }^{*} \mathrm{~V}_{t}$ is the potential difference between the two terminals of the emf source when the current is zero (Note: $\mathrm{V}_{t}>\mathrm{V}_{\text {emf }}$)
*Ohm`s law for the simple circuit shown, where the battery has an internal resistance R_{i} is: $\quad V_{t}=i R_{e q}=i\left(R+R_{i}\right)$

Note:
When the ammeter reads zero, the voltmeter reads the potential V_{t}. When the ammeter reads a non-zero current, the voltmeter reads the electromotive force $V_{\text {emf. }}$.

Example : In the following figure, we notice that the charge leaves the battery at point A, and it carries a certain amount of electric potential energy. The charge loses this energy during its movement from B to C, and then gains this energy when it moves through the battery from D to A.

Q12: In the figure shown besides, if the voltmeter reads 13.5 V when the ammeter reads no current, and the same voltmeter reads 12.5 V when the ammeter reads 0.5 A .
Find the external resistance in the circuit and the internal resistance of the battery. Solution:

$$
R=\frac{V_{e m f}}{i} \Rightarrow R=\frac{12.5}{0.5}=25 \Omega \quad V_{t}=i\left(R+R_{i}\right) \Rightarrow \quad R_{i}=\frac{13.5-12.5}{0.5}=2 \Omega
$$

Q13: Which of the following has the same unit as the electromotive force (emf)?
a) current
b) electric potential
c) electric field
d) electric power

Q14: A resistor with $R=10.0 \Omega$ is connected across a source of emf with potential difference $V_{e m f}=1.50 \mathrm{~V}$.
What is the current flowing though the circuit?
a- 0.25A
b- 0.15A
c-1.5A
d-2.5A

Part (2)

8- Define the mAh as a unit of charge where $1 \mathrm{mAh}=3.6 \mathrm{C}$.

Rechargeable batteries also display a rating in mAh (milliampere-hour), which provides information on the total charge the battery can deliver when fully charged. The mAh is another unit of charge:
$1 \mathrm{mAh}=\left(10^{-3} \mathrm{~A}\right)(3600 \mathrm{~s})=3.6 \mathrm{As}=3.6 \mathrm{C}$.
Q15: Suppose an AAA battery is able to supply 625 mAh before its potential drops below 1.5 V . How long will it be able to supply power to a 5-W bulb before the potential drops below 1.5 V .
a-375 s
b- 675 s
c- 1200 s
d-120 s

9- Apply the equation ($R=\rho L / A$) in solving problems to calculate an unknown quantity given the other
 The resistivity: $\rho:$ A measure of how strongly a material opposes the flow of electric current." It equals the ratio of the applied electric field to the current density:

$$
\rho=\frac{E}{J}=\frac{\Delta V / L}{i / A}=\frac{R A}{L}
$$

 $\rho=\frac{R A}{L}$

(measured in Ωm)

The conductance: G: "The conductance is the reciprocal of the resistance."

$$
G=\frac{1}{R} \quad \Rightarrow \quad G=\frac{i}{\Delta V} \quad \text { (measured in } \Omega^{-1} \text {), (S) siemens , (A/V) }
$$

The conductivity σ_{2} "The conductivity is the reciprocal of the resistivity."

$$
\sigma=\frac{1}{\rho} \quad \Rightarrow \quad \sigma=\frac{L}{R A} \quad \text { (measured in } \Omega^{-1} m^{-1} \text {) }
$$

Q16: What is the resistance of the 80.0 m standard copper wire with section area $A=5.2612 \times 10^{-6} \mathbf{m 2}$

		$\rho=1.72 \times 10^{-8} \Omega m$	
a- 0.26Ω	b- 0.62Ω	c- 0.88Ω	$d-0.77 \Omega$

Q17: The diameter of copper wire is 8.252 mm . Find the resistance of a $1.00-\mathrm{km}$ length of such wire used for power transmission.

$$
\rho=1.72 \times 10^{-8} \Omega \mathrm{~m}
$$

a- 0.12Ω
b- 0.22Ω
c- 0.32Ω
d- 0.52Ω

Q18: A voltage difference of (12.0 V) was applied between the two ends of a wire whose length is (1000 m) and its cross-sectional area is $4.5 \mathrm{~mm}^{2}$, a current of $(3.20 \times 10-3 \mathrm{~A})$ flow through it , find the resistivity of the wire.
a- $1.72 \times 10-8 \Omega \mathrm{~m}$
b- $1.68 \times 10-5 \Omega \mathrm{~m}$
c- $7.12 \times 10-8 \Omega \mathrm{~m}$
d- $6.18 \times 10-8 \Omega \mathrm{~m}$

Q19: What is the resistance of a copper wire that has length $L=70.0 \mathrm{~m}$ and diameter $\mathrm{d}=\mathbf{2 . 6 0} \mathbf{~ m m}$?
a) 0.119
b) 0.139
c) 0.163
d) 0.190
e) 0.22

Q20- What is the resistance of the 100.0-m standard copper wire has a diameter of 2.053 mm that is typically used in wiring household electrical outlets
a- 0.52Ω
b- 0.11Ω
$c-0.66 \Omega$
$d-0.41 \Omega$

Q21: What is the resistance of a copper wire of length $\mathrm{I}=10.9 \mathrm{~m}$ and diameter $\mathrm{d}=1.3 \mathrm{~mm}$? The resistivity of copper is $1.72 \times 10^{-8} \Omega \mathrm{~m}$.
a- 0.141Ω
b- 0.111Ω
$c-0.661 \Omega$
d- 0.411Ω

10- Identify that same current flows through a set of resistors connected in series due to the fact that electric charge is conserved. Calculate the equivalent resistance for resistors connected in series as the sum of their individual resistances.

حدد أن نفس التيار يتدفق عبر مجموعة من المقاومات المتصلة في سلسلة بسبب حقيقة أن الشحنة الكهربائية محفوظة. احسب المقاومة المكافئة للمقاومات المتصلة في سلسلة كمجموع مقاوماتها الفردية.

Resistors in Series:

- Connection as shown in figure.
-All resistors in series group have the same current;

$$
i_{1}=i_{2}=i_{3}=\ldots \ldots=i_{t o t}
$$

-The electric potential of each resistor is directly proportional to its resistance; $\Delta V \propto R$
-The total potential equals the sum of the individual potentials;

$$
\Delta V_{\text {tot }(\text { seriesgroup })}=\Delta V_{1}+\Delta V_{2}+\Delta V_{3}+\cdots \ldots \ldots .
$$

$$
i_{3}=i_{2}=i_{1}=i_{\text {tot }}
$$

-The equivalent resistance equals the sum of the individual resistances;

$$
R_{e q}=R_{1}+R_{2}+R_{3}+\cdots \ldots
$$

Q22: In the figure shown three resistors are connected to a potential difference 12 V .
1- What is the equivalent resistance of the three resistors?
2-Calculate the current for each resistor.

END OF TERM 2 REVISION
a- $50 \Omega, 0.2 A$
b- $30 \Omega, 0.2 \mathrm{~A}$
c- $30 \Omega, 0.4 \mathrm{~A}$

TEACHER: ALAA ALDEEN ALFAQEEH
d-50 , 0.4A

Q23: A learner connected two lamps A and B as in the figure with a battery, and noticed that the brightness of lamp A is greater than the brightness of lamp B. Answer the following 1 -What does the difference in brightness of the two lamps indicate.

2 -If the learner connects point B to point A with a connecting wire without resistance, what will happen to the brightness of each of the two lamps?

lamp B: the brightness

Q24: Three identical resistors, $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}, are wired together as shown in the figure. An electric current is flowing through the three resistors. The current through R_{2}
a) is the same as the current through R_{1} and R_{3}.
b) is a third of the current through R_{1} and R_{3}.
c) is twice the sum of the current through R_{1} and R_{3}.

d) is three times the current through R_{1} and R_{3}.
e) cannot be determined.

Q25: Which of the following is an incorrect statement?
a) The currents through electronig devices connected in series are equal.
b) The potential drops across electronic devices connected in parallel are equal.
c) More current flows across the smaller resistance when two resistors are in parallel connection.
d) More current flows across the smaller resistance when
two resistors are in serial connection
Q26: Depending to figure R_{2} equal to :
a- 3Ω b- 5Ω c- 1Ω d- 2Ω
Q27: : Depending to figure V_{3} equal to :
a-1.5V
b- 2.5 V
c- 3.5 V
d-4.5V

$V_{\text {emf }}=8 \mathrm{~V}$

Q28: What are the relative values of the two resistances in Figure.
a) $R 1<R 2$
b) $R 1=R 2$
c) $R 1>R 2$
d) Not enough information is given in the figure to compare the resistances.

Resistors in Parallel:

- Connection as shown in figure.
-All resistors in parallel group have the same electric potential (voltage);

$$
V_{1}=V_{2}=V_{3}=\ldots \ldots .=V_{t o t}
$$

-The electric current in each resistor is inversely proportional to its resistance; $\quad i \propto \frac{1}{R}$
-The total current equals the sum of the individual currents;

$$
i_{\text {tot }(\text { parallel group })}=i_{1}+i_{2}+i_{3}+\ldots \ldots .
$$

-The reciprocal of the equivalent resistance equals the sum of reciprocals of the individual resistances;

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots
$$

11- Show that the power delivered to an electric device is equal to the current passing through the device multiplied by the potential difference across its terminals ($\mathrm{P}=\mathrm{i} \Delta \mathrm{V}$). Solve problems involving electric power.

القدرة الواصلة للجهاز الكهر بائي تساوي حاصل ضرب التيار المار بالجهاز في فرق الجهـ عبر الظهر أن اطرافه. حل المسائل الهنعلقة بالقرة الكهربائية.

Energy and Power in electric Circuits:

A battery must do work to drive charges dq, from the negative terminal to the positive terminal (within the emf device) equal to the increase in electric potential energy of that charge, $\mathrm{d} U$.

$$
d U=d q \Delta V=i d t \Delta V
$$

Using the definition of power:

$$
P=\frac{d U}{d t}=\frac{i d t \Delta V}{d t}=i \Delta V \text { (The power is the rate of dissipated or produced energy) }
$$

$$
\int^{\rho}=i \Delta V=i^{2} R=\frac{\Delta V^{2}}{R}
$$

This work is stored as electric potential energy:
$\mathrm{P}=\mathrm{U} / \mathrm{t} \quad$. the unit of power is $\mathrm{W}(\mathrm{J} / \mathrm{S})$
Q29: A DC winch motor is rated at 20 A with a voltage of 115 V . What is the power consumed by the motor?
a-2300W
b-1300W
c- 3300W
d-200W

Q30: A flashlight has a light bulb filament resistance of 8Ω and a battery voltage of 6 V . Calculate
The power that the lamp puts out when it is turned on . -1
a-4.5W
b- 8 W
c- 1.5 W
d-10W

12- Apply Kirchhoff's loop rule to single loop circuits.

A single-loop circuit containing two resistors and two sources of emf in series.

Q31: A 12.0V battery (Vt) with an internal resistance of $\mathrm{R} 1=$
 0.2Ω is charged with a battery charger (Ve) able of delivering a current of $i=6.0 \mathrm{~A}$, what is the minimum emf that the battery charger must provide in order to charge the battery ?
a- 3.22 V
b-13.2V
c-3.12V
d-2.13v

13- State Kirchhoff's junction rule: "The sum of the currents entering a junction must equal the sum of the currents leaving the junction"

Kirchhoff's Rules:
Multiloop circuits with emf devices and resistors that cannot be reduced to simple circuits containing parallel or series connections will be analyzed using Kirchhoff's Rules.

Kirchhoff's Junction Rule:

"The sum of the currents entering a junction must equal
the sum of the currents leaving the junction."(Kirchoff's first rule is a form of the law of conservation of charge)
A junction is a place in
a circuit where three
or more wires are
connected to each
other.

Q32:
The figure represents part of an electrical circuit.
. Using the data shown in the figure, calculate the electric current (i)
a-2 A
b-4A
c- 6 A
d- 8 A
 \longrightarrow

14- Solve problems on Wheatstone Bridge. يحل مسائل متعلقة بقنطرة ويتستون
The Wheatstone bridge:
The Wheatstone bridge is a particular circuit used to measure unknown resistances.

$$
\frac{\boldsymbol{R}_{u}}{\boldsymbol{R}_{v}}=\frac{\boldsymbol{R}_{1}}{\boldsymbol{R}_{3}}
$$

Note : When the current through the ammeter is zero, the equivalent resistance given by :) $R_{\mathrm{eq}}=\frac{\left(R_{1}+R_{\mathrm{u}}\right)\left(R_{3}+R_{\mathrm{v}}\right)}{R_{1}+R_{\mathrm{U}}+R_{3}+R_{\mathrm{v}}}$. Q33:

In the circuit shown in the figure $R_{1}=24 \Omega, R_{3}=360 \Omega$,
the ammeter reads zero when the variable resistance (R_{v}) is (60 Ω)
Calculate the value of the unknown resistor (R_{u}).
a- 4Ω
b- 6Ω
c- 2Ω
d-10 Ω
15- Recall that an ammeter is a device used to measure current and voltmeter is a device used to measure potential difference

The ammeter: " A device used to measure the electric current in a specific branch in a circuit."

- To measure the current, an ammeter must be wired in a circuit in series in the branch.
-The range of an ammeter can be extended adding a small resistance in parallel with its coil.
The voltmeter: " A device used to measure the potential
 difference between any two points in a circuit."
- To measure the potential difference between two points in a circuit, the voltmeter must be wired in parallel to these two points.
-The range of a voltmeter can be extended adding a large resistance in series with its coil.
Q34: Which of the circuits shown in the figure will not function properity ?
a-1
b- 2
c- $3 \quad d-2$ and 3

Q35 : Two resistors, $R 1=3.00$ and $R 2=5.00$, are connected in series with a battery with $\operatorname{Vemf}=8.00 \mathrm{~V}$ and an ammeter with $R A=1.00$, as shown in the figure. What is the current measured by the ammeter
b- 0.88 A
c- 1.5 A
d-1A

Extending the range of an ammeter:

Example:
An ammeter with a coil of resistance 2.5Ω measures 400 mA current. What is the is the value of the resistance and how should it be connected with its coil to be able of measuring 20A current?
Solution:
The resistor should connected in parallel with the coil resistance.

$$
\begin{aligned}
& V_{\text {coil }}=V_{\text {parallel resistor }} \\
& i_{\text {coil }} \times R_{\text {coil }}=i_{\text {parallel }} \times R_{\text {parallel }} \\
& 400 \times 10^{-3} \times 2.5=20 \times R_{\text {parallel }}
\end{aligned}
$$

$$
R_{\text {parallel }}=0.05 \Omega
$$

Extending the range of a voltmeter:

Example:

A voltmeter with a coil of resistance 800Ω measures potential drop up to 15 V . What is the is the value of the resistance and how should it be connected with its coil to be able of measuring a maximum potential drop 240 V ?

Solution:

The resistor should connected in series with the coil resistance.

$$
\begin{aligned}
& i_{\text {coil }}=i_{\text {series resistor }} \\
& \frac{V_{\text {coil }}}{R_{\text {coil }}}=\frac{V_{\text {series resistor }}}{R_{\text {siries resistor }}} \\
& \frac{15}{800}=\frac{240-15}{R_{\text {siries resistor }}} \\
& R_{\text {series resistor }}=22667 \Omega
\end{aligned}
$$

Q36: A circuit consists of two identical resistance of $1 \mathrm{~K} \Omega$ in series with an ideal 12 V battery . A student trying to measure the current through one of the resister, inadvertently connect the ammeter in parallel with that resister. How much current will flow through the ammeter, assuming that it has internal resistance of 1Ω ?
a-0.081A
b- 0.012A
c- 8.11A
d 1.02 A
$R_{\text {eq }}=(1 / 1000+1 / 1)^{-1}+1000=1001 \Omega$
$\mathrm{I}=\mathrm{V}_{\mathrm{emf}} / \mathrm{R}_{\text {eq }}=12 / 1001=0.012 \mathrm{~A}$

16 Apply the relationship giving the charge as a function of time (and time constant) for a capacitor in a charging $R C$ circuit $q(t)$.

Charging a capacitor
When the switch is connected to position 1, electric current flows from the positive terminal of the battery and the capacitor begins to charge.
$q_{t}=q_{\max }\left(1-e^{-t / \tau}\right)$

At $t=0, q=0$ and at $t=\infty \quad q=q_{\text {max }}=C V_{\text {emf }}$

Time constant $(\tau): \quad \tau=R C$

Q37: Consider a circuit consisting of a $12.0-\mathrm{V}$ battery, a 50.0Ω resistor, and a $100.0 \mu \mathrm{~F}$ capacitor wired in series. The capacitor is initially completely discharged.

How long after the circuit is closed will it take to charge the capacitor to 90% of its maximum charge?

$$
\begin{array}{r}
q(t)=q_{\max }\left(1-e^{-t / R C}\right), \quad\left(1-e^{-t / R C}\right)=\frac{q(t)}{q_{\max }}=0.90 \\
0.10=e^{-t / R C}
\end{array}
$$

$\ln 0.10=-\frac{t}{R C}$,

$$
t=-R C \ln 0.10=-(50.0 \Omega)\left(100 \times 10^{-6} \mathrm{~F}\right)(-2.30)=0.0115 \mathrm{~s}=11.5 \mathrm{~ms} .
$$

Q38: Which of the following will reduce the time constant in an RC circuit?
a) increasing the dielectric constant of the capacitor.
b) adding an additional 20 m of wire between the capacitor and the resistor.
c) increasing the voltage of the battery.
d) adding an additional resistor in parallel with the first resistor.

Q39: How long would it take, in multiples of the time constant, τ, for the capacitor in an RC circuit to be 98% charged?
a) 9τ
b) 0.9τ
c) 90τ
d) 4τ

Q40:
6.11 An uncharged capacitor $(C=14.9 \mu \mathrm{~F})$, a resistor $(R=24.3 \mathrm{k} \Omega)$, and a battery ($V=25.7 \mathrm{~V}$) are connected in series, as shown in the figure. What is the charge on the capacitor at $t=0.3621 \mathrm{~s}$ after the switch is closed?
a) $5.48 \times 10^{-5} \mathrm{C}$
b) $7.94 \times 10^{-5} \mathrm{C}$
c) $1.15 \times 10^{-5} \mathrm{C}$
d) $1.66 \times 10^{-4} \mathrm{C}$
e) $2.42 \times 10^{-4} \mathrm{C}$

$$
q_{t}=q_{\max }\left(1-e^{-t / \tau}\right)
$$

Part (3)

17- Solve problems on multiloop circuits.. Recall that an ammeter is a device used to measure current and voltmeter is a device used to measure potential difference.

Q41: In the circuit in the figure, there are three identical resistors ($R=4 \Omega$). The switch, S, is initially open. When the switch is closed, find the current flowing in R_{1}, R_{2}.
$V_{\text {emf }}=12 \mathrm{~V} . J_{1}=\frac{V_{\text {emf }}}{R_{1}}=\frac{12}{4}=3 \mathrm{~A}$.
$R_{e q}=\left(\frac{4 \times 8}{4+8}\right)=2.6 \mathrm{~N}$.
$I_{\text {tot }}=\frac{12}{2.6}=4.5 \mathrm{~A}$.
$I_{2}=I_{3}=(4.5-3=1.5 \mathrm{~A})$.
Note: when switch closed, R_{2}, R_{3} in parallel

So R_{1} has same voltage as when the switch was open. So same current flows through R_{1}.
Q42: According to the circuit bellow:
A- Find the potential difference across \mathbf{R}_{2}.
$R_{\text {eq }}=\left(\frac{6 \times 3}{6+3}\right)+4=60$
$I_{\text {tut }}=\frac{\Delta V}{R_{\text {eq }}}=\frac{12}{6}=2 \mathrm{~A}$.
$\Delta V_{1}=I_{\text {tut }} \times R_{1}=2 x^{4}=8 \mathrm{~V}$
$\Delta v_{2}=\Delta v_{3}=4 \mathrm{v} \quad[12-8=4 \mathrm{~V}]$.

B - Find the current in R_{3}.

$I_{3}=\frac{\Delta V_{3}}{R_{3}}=\frac{4}{3}=1.3 \mathrm{~A}$.
Q43: Q42: Explain what happens to the reading of (A) and (V) and brightness
Of the bulbs (M1, M2, M3) after closing the switch s.
After closed the switch the Reqwill decrease
and the total current increase, so the reading of
Ammeter will increase
bulb M_{1} will increase

bulb M_{2} : the current flow decrease So the brightness decreasethe reading of voltmeter will decrease, M_{3} (briahthecs increase)

18- Calculate currents, voltages, and resistances for circuit arrangements containing resistors

 in series and in parallel. Calculate the equivalent resistance for resistors in parallel arrangements ($1 /$ Req $=1 / R 1+1 / R 2+.$.).Q44: Three resistors $\mathrm{R} 1=1.00 \Omega, \mathrm{R} 2=2.00 \Omega$, and $\mathrm{R} 3=2.00 \Omega$, are connected in parallel. The parallel connection is attached to a 3.00 V voltage source.
(a) What is the equivalent resistance?
(b) Find the current supplied by the source to the parallel circuit.
(c) Calculate the currents in each resistor and show that these add together to equal the current output of the source.
Solution:
(a)

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R}+\frac{1}{R_{3}} \Rightarrow \frac{1}{R_{e q}}=\frac{1}{1}+\frac{1}{2}+\frac{1}{2} \Rightarrow R_{e q}=0.5 \Omega
$$

END OF TERM 2 REVISION
(b) $i_{t o t}=\frac{V_{t o t}}{R_{e q}} \Rightarrow i_{t o t}=\frac{3}{0.5} \Rightarrow i_{t o t}=6 \mathrm{~A}$
(c) $\quad i_{1}=\frac{V_{1}}{R_{1}} \Rightarrow i_{1}=\frac{3}{1} \quad \Rightarrow \quad i_{1}=3 A$
$i_{2}=\frac{V_{2}}{R_{2}} \quad \Rightarrow \quad i_{2}=\frac{3}{2} \quad \Rightarrow \quad i_{1}=1.5 \mathrm{~A}$
$i_{3}=\frac{V_{3}}{R_{3}} \Rightarrow i_{3}=\frac{3}{2} \Rightarrow i_{3}=1.5 \mathrm{~A}$
$i_{1}+i_{2}+i_{3}=3+1.5+1.5=6 A=i_{t o t}$

Note:

1- If one of the lamps burns out or is removed from its place, the brightness of the rest of the lamps will not be affected.

2- When adding a new lamp in parallel, the brightness of any lamp is not affected, and the value of the current passing through each lamp is not affected. However, the total current passing through the circuit increases because the equivalent resistance decreases.

Q45 : Five resistors $\mathrm{R} 1=1.00 \Omega, \mathrm{R} 2=2.00 \Omega, \mathrm{R} 3=3.00 \Omega, \mathrm{R} 4=6.00 \Omega$, and $\mathrm{R} 5=4.00 \Omega$, are connected
as shown in figure. 18.00 V battery is attached to group.
(a) What is the equivalent resistance?
(b) Find the current supplied by the source to the circuit.
(c) Calculate the voltage drop across each resistor.

Solution:
(a) $R_{34}=\left(\frac{1}{R_{3}}+\frac{1}{R_{4}}\right)^{-1} \Rightarrow R_{34}=\left(\frac{1}{3}+\frac{1}{6}\right)^{-1} \Rightarrow R_{34}=2 \Omega$

$$
R_{e q}=R_{1}+R_{2}+R_{34}+R_{5} \Rightarrow R_{e q}=1+2+2+4 \quad \Rightarrow \quad R_{34}=9 \Omega
$$

(b) $i_{t o t}=\frac{V_{t o t}}{R_{e q}} \Rightarrow i_{t o t}=\frac{18}{9} \Rightarrow i_{t o t}=2 \mathrm{~A}$
(c) $i_{1}=i_{2}=i_{34}=i_{5}=i_{t o t}=2 \mathrm{~A}$
$V_{1}=i_{1} R_{1} \quad \Rightarrow V_{1}=2 \times 1=2 \mathrm{~V} \quad V_{2}=i_{2} R_{2} \quad \Rightarrow V_{2}=2 \times 2=4 \mathrm{~V}$
$V_{3}=V_{4}=V_{34}=i_{34} R_{34} \quad \Rightarrow V_{3}=V_{4}=2 \times 2=4 V \quad$ and $\quad V_{5}=i_{5} R_{5} \quad \Rightarrow V_{5}=2 \times 4=8 \mathrm{~V}$
19- Solve problems on multiloop circuits.
Apply Kirchhoff's loop rule to single loop circuits.
20- Express Kirchhoff's loop rule mathematically and apply in problem solving
Solve problems on multiloop circuits. Q46: Depending on the data in the circle shown in the figure, calculate
.a- The current passing through $R=16 \Omega$.
.b- Electromotive force $\mathrm{V}_{\text {emf }}$.
c- The unknown resistance R.
(a) $I_{\text {in }}=I_{\text {out }}$

$$
I_{3}=I_{1}+I_{2} \Rightarrow I_{3}=0.3+0.2=0.5 \mathrm{~A} .
$$

(b) $\operatorname{loop}(1)$

$$
\begin{gathered}
\left.V_{\text {emf, }}-(0.3 \times 8)-(0.5 \times 16)+3+10.3 \times 12\right)=0 \\
V_{\text {emf, }}=11 V \\
\operatorname{loop} Q \\
0.2 R-10+(0.2 \times 4)+3+(0.5 \times 16)=0 \\
R=21
\end{gathered}
$$

(c) $\operatorname{loop}(6$

Q47: Depending on the data in the circuit shown in the figure, determine the magnitude of the currents i_{1}, i_{2}, and i_{3} flowing through R_{1}, R_{2}, and R_{3} respectively in the direction indicated in the .figure using Kirchhoff's current law and Kirchhoff's voltage law .

$$
\begin{align*}
& i_{1}+i_{2}-i_{3}=0 \tag{1}\\
& \text { loop © } \\
& -10+5 i_{1}+15-10 i_{2}=0 \\
& 5 i_{1}-10 i_{2}=-5 \rightarrow(2) \\
& \text { loo P(2) } \\
& -15+15 i_{3}+10 i_{2}=0 \\
& 10 i_{2}+15 i_{3}=15 \longrightarrow \text { (3) } \\
& i_{1}=0.09 \mathrm{~A} \quad i_{2}=0.54 \mathrm{~A} 6 i_{3}=0.63 \mathrm{~A} \text {. }
\end{align*}
$$

Q48: In the figure bellow .

- Find the currents in R_{2} and R_{3}
- potentials difference of the battery V_{2}.

$3-$
100
$9-6$
$-I_{2}-I_{3}=0$

$9-6-4 i_{3}=0 \Rightarrow i_{3}=0.75 \mathrm{~A}$.
$3-I_{2}-0.75=0 \Rightarrow$

\log (2)
$-V_{2}+(0.75 \times 4)=-(2.25 \times 3) \leq 0$

$$
v_{2}=-3.75 v
$$

* Magnetic force on charged particle:

If a charged particle moves in a direction that does not parallel the magnetic field, it is affected by a magnetic force
Given by:

$$
\vec{F}_{B}=q \vec{v} \times \vec{B}
$$

where $\left(B_{\perp}=B \operatorname{Sin} \theta\right) \quad F=q v B_{\perp} \quad \mathrm{F}=\mathrm{q} \vee \mathrm{B} \operatorname{Sin} \theta$

* Determining the direction of magnetic force on a charged particle:

The first right-hand rule: "We put the fingers of the right hand; the thumb, the index, and the middle finger, perpendicular to each other, so that the thumb points in direction of the particle velocity and the index finger points in direction of the field, so the middle will be in the direction of the force if the charge is positive. (reverse direction if the charge is negative.)

END OF TERM 2 REVISION

050-8210248

- Radius of the circular path of a charged particle:

The magnetic force acts on the particle in a direction perpendicular to its velocity, always and continuously, which forces the particle to move in a circular path and the magnetic force is then the centripetal force:

$$
F_{c}=F_{B} \quad \Rightarrow \quad \frac{m v^{2}}{r}=q v_{\perp} B \quad \Rightarrow \quad r=\frac{m v_{\perp}}{q B}
$$

The radius can also be expressed in terms of the momentum of transverse motion of the particle: $P_{t}=$ $m v_{\perp}$

$$
r=\frac{P_{t}}{q B}
$$

- The magnetic force on a current carrying conductor:

If a wire of length l carrying current I is placed in a magnetic field $B \perp$ in a direction that are not parallel to the field It is affected by the magnetic force Fwire .Given by the equation:

$$
\vec{F}_{B}=i \vec{L} \times \vec{B} \Rightarrow F=B_{\perp} i L \quad \text { or } F=B i L \operatorname{Sin} \theta
$$

- Determine the direction of magnetic force on a current carrying conductor:

The first right-hand rule: " We put the fingers of the right hand; the thumb, the index, and the middle finger, perpendicular to each other, such that, the thumb points in direction of the conventional current and the index finger points in direction of the field, so the middle will be in the direction of the magnetic force on the wire.

- Torque on a current carring loop: $\overrightarrow{\boldsymbol{\tau}}$

When current carrying loop is placed in a magnetic field, its two sides are affected by two equal magnetic forces that are opposite in direction, these forces create a torque that tends to rotate the loop around its axis which is perpendicular to the field. The torque of magnetic force is given by the formula:

$$
\vec{\tau}=N i A \times \vec{B} \quad \text { with magnitude equals } \quad \tau=N i A B \operatorname{Sin} \theta
$$

- The second right-hand rule: "If you curl the fingers of your righthand in the direction of the conventional current in the loop, your thumb points in the direction of magnetic dipole moment vector $\vec{\mu}$ represented by the unit normal vector \vec{n}."

Extra Questions:

Q49: . A proton is accelerated from rest by a potential difference of 400. V. The proton enters a uniform magnetic field and follows a circular path of radius 20.0 cm . Determine the magnitude of the magnetic field.

Q50: An electron with a speed of $4.0 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a uniform magnetic field of magnitude 0.040 T at an angle of 35° to the magnetic field lines. The electron will follow a helical path.
a) Determine the radius of the helical path.
b) How far forward will the electron have moved after completing one circle?
(a) $r=\frac{m V_{1}}{191 B}=\frac{9.4 \times 10 \times 4 \times 10^{5} \sin 35}{1.6 x)^{-29} \times 0.04}=3.26 \times 10^{-5} \mathrm{~m}$.
(b) $t=\frac{2 \pi r}{v i}$
$\frac{2 \pi \times 3.26 \times 10^{-5}}{\left(4 \times 10^{5} \sin 35\right)}=$

S.

$d=v_{11} t=4 \times 10^{5} \cos 35 \times 8.76 \times 10^{-10}=2.87 \times 10^{-4} \mathrm{~m}$.

Q51: In the figure shown, Find the reading of the ammeter in the following cases :
A) When the switch si closed.
B) When the switch si and s2 closed .
(A) $I=\frac{V_{e m f}}{R_{e q}}=\frac{12}{(y+1)}=2,4 \mathrm{~A}$.
B) $R_{\text {eq }}=\left(\frac{4 \times 6}{4+6}\right)+1=3.4 \mathrm{~N}$.

$$
I=\frac{12}{3.4}=3.5 \mathrm{~A} .
$$

Q52: The magnitude of the magnetic force on a particle with charge $-2 e$ moving with speed v $=1.0 \times 10^{5} \mathrm{~m} / \mathrm{s}$ is $3.0 \times 10^{-18} \mathrm{~N}$. What is the magnitude of the magnetic field component perpendicular to the direction of motion of the particle?

Q53: The graph shows the charge versus time for an RC circuit. Using the graph shown: What is the charge on the capacitor after 2τ.
a-
b- 0.40 mc
c- 1.00 mC
d- 1.40 mC

$$
{ }_{c V_{0}=} q_{0} \underbrace{\boldsymbol{q}_{\mathbf{t}}}_{\mathfrak{t}} \boldsymbol{q}_{\boldsymbol{t}}=\boldsymbol{q}_{\mathbf{0}} \boldsymbol{e}^{-\boldsymbol{t} / \boldsymbol{\tau}}
$$

