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Chapter 28: Magnetic Fields of Moving Charges  

 

Concept Checks 

28.1. c  28.2. a  28.3. a  28.4. b  28.5. e  28.6. d  28.7. d  28.8. d 

 

Multiple-Choice Questions 

28.1. b  28.2. c  28.3. c  28.4. a  28.5. d  28.6. a  28.7. c  28.8. c  28.9. a  28.10. d  28.11. a  28.12. a  28.13. d   

28.14. b 

 

Conceptual Questions 

28.15. The wires are twisted in order to cancel out the magnetic fields generated by these wires. 

28.16. Since the currents running through the wire generate magnetic fields, these fields may overpower the 

magnetic field of the Earth and make the compass give a false direction. 

28.17. No, an ideal solenoid cannot exist, since we cannot have an infinitely long solenoid. To a certain extent, 

yes, it renders the derivation void. However, the derivation is an approximation and is an important 

theoretical example. 

28.18. In Example 28.1, the right hand rule implies that the magnetic dipole of the loop points out of the page. 

Application of the right hand rule to the straight wire tells us that the magnetic field produced by wire 

points out of the page. Assume the angle between the dipole moment and the field remains fixed. Since the 

dipole strength is also constant, the only quantity left to vary is field strength. If the potential energy is to 

be reduced, the loop must move towards a region of smaller magnetic field strength. That is, the loop must 

move away from the straight current-carrying wire. 

28.19. By Coulomb’s Law, the electric force between the particles has magnitude ( )e

2 2

0/ 4 .F q dπε=
 
For the 

magnetic force, the version of the Biot-Savart Law given in the text can be adapted to describe the 

magnetic field produced by a moving particle via the replacement 

( ) ( ) s  /   /   Idl dq dt dl dq dl dt qv⇒ ⇒ ⇒
 
with q  charge and sv , the velocity of the source particle. The 

magnetic field produced by one particle at the location of the other can be written as ( )3

0 / 4B qvd dµ π=  

with ,v  common velocity and ,d  the separate of the particles. The magnitude of the magnetic force one 

particle is given by ( )( ) ( )3 2 2 2

e 0 0/ 4 ( ) / / 4 .F qvB qv qvd d q v dµ π µ π= = ⋅ =  Since the vectors ,v d  and 

v d⋅  are mutually perpendicular (the site of the angle between any two of them is unity) the ratio of forces 

is 2

m e 0 0/F F vµ ε=  which also 2 2

m e/ / ,F F v c=  where c  is the speed of light. 

28.20. The field is given by Ampere’s law ( )( ) 0 enc2 / 2 .B a b iπ µ+ =  Current density is then given by:  

( )( )2 2/J i b aπ= −  

The area of interest is: 

( )
( )

2

0

/ 2

(2 ) / 2

a b A

B a b AJ

π

π µ

 + = 
 + = 
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( )

( ) ( )

2

20

2 2

2

2

0

2 2

( ) 2

2
.

a b i
B a

a b b a

a b
a

i

a b b a

µ
π

π π

µ
π

 + 
= − ⋅  + −   

+  − 
 = ⋅

+ −

 

28.21. The magnetic field at point P would be zero. The contribution from part A would be zero since P lies along 

the axis of A. The currents through B and C points in opposite directions and yield magnetic fields that 

cancel out at P .  

28.22. Ampere’s law states that, 0 ,
C

Bdl iµ=∫  but since B  is constant the integral must be zero. If so, i  is zero 

everywhere and consequently 0J =  everywhere. 

28.23. (a) Since molecular hydrogen is diamagnetic, the molecules must have no intrinsic dipole moment. Since 

the nuclear spins cannot cancel the electron spins, the electron spins must be opposite to cancel each other. 

(b) With only a single electron, the hydrogen atoms must have an intrinsic magnetic moment. Atomic 

hydrogen gas, if it could be maintained, would have to exhibit paramagnetic or ferromagnetic behavior. 

But ferromagnetism would require inter atomic interactions strong enough to align the atoms in domains, 

which is not consistent with the gaseous state. Hence one would expect atomic hydrogen to be 

paramagnetic.  

28.24. The saturation of magnetizations for paramagnetic and ferromagnetic materials is of comparable 

magnitude. In both types of materials the intrinsic magnetic moments of the atoms arise from a few 

unpaired electron spins. Magnetization effects in ferromagnetic materials are more pronounced at low 

applied fields because the atoms come pre-aligned in their domains, but once both types of atoms have 

been forced into essentially uniform alignment, the magnetization they produce is comparable. For either 

type of material maximum magnetizations of order 2 66 310  A m / m 10  A/m=
 
magnetic dipole moment 

per unit volume are typical. 

28.25. The wire carries a current which produces a magnetic field. This magnetic field will deflect the electron by 

the Lorentz force in the left direction. 

28.26. Each side of the loop will create the same magnetic field at the center of the loop. The total field is 4 times 

the field of one side. The field at the center is given by the Biot-Savart Law: 

0 0

3 2
sin .

4 4

i ids r
dB ds

r r

µ µ
θ

π π
×

= =
 

 

 
Since sin / ,d rθ = the differential element of magnetic field is  

0 0

3 2 2 3/2
.

4 4 ( )

i idd ds
dB ds

r d s

µ µ
π π

= =
+

 

Integration gives 

0 0 0 0 0

2 2 3/2 2 2 3/2 2 2 20
0

2
.

4 4 2 2( ) ( ) 2 2 2

d
d d

d

sid id id i ids ds d
B

dd s d s d dd d s

µ µ µ µ µ
π π π π π−

 
= = = = = + + + 

∫ ∫  
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The total field is then 0 0 0
tot

2 2 2 2
4 .

( / 2)

i i i
B B

d L L

µ µ µ
π π π

= = = =   

28.27.  

 

The current that flows through a ring of radius r  which lies in the region a r b< <  is given by 

2 2 2

0 0 0 02 | ( ).
r

r

aa
i J dA J d J J r aπρ ρ πρ π= = = = −∫ ∫  To find the magnetic field employ Ampere’s Law

 0 enclosed .B ds iµ⋅ =∫
 
  For a cylinder this becomes ( ) 0 enc2B r iπ µ=  or 0 enc / (2 ).B i rµ π=  If r a<  then  

0r aB < = , thus  if a r b< <  then 2 2

enc 0 ( )i J r aπ= − and 
2 2 2 2

0 0 0 0( ) ( )
.

2 2
a r b

J r a J r a
B

r r

µ π µ
π< <

− −
= =  If r b>  

then 2 2

enc 0 ( )i J b aπ= −  and 
2 2

0 0 ( )
.

2
r b

J b a
B

r

µ
>

−
=  Note that if r b=  then 

2 2

0 0 ( )
.

2
a r b r b

J b a
B B

b

µ
< < >

−
= =  

28.28. The loop creates a magnetic field of l 0 / (2 )B i Rµ=  at its center and is directed upwards. Out of the page. 

Both wires contribute a magnetic field of w 0 / (2 )B i Rµ π=  pointing out of the page. The total fields is then 

0
tot l w

2
2 (1 ),

2

i
B B B

R

µ
π

= + = +  and points out of the page. 

 

28.29. THINK:  Ampere’s Law can be used to determine the magnitude of the magnetic field in the two regions.  

SKETCH:  A sketch is included at the end of the SIMPLIFY step, once the two equations have been found. 

RESEARCH:  The current with the conductor is given by ( ) .i J r dA= ∫  The magnetic field is found using 

Ampere’s Law 0 enclosedB ds iµ=∫
  or 0 enc

2

i
B

r

µ
π

= . 

SIMPLIFY:

 ( ) ( )( )
( )

/ /

0 0 00 0

/ 0/

0

2 / /

0

( ) 2 ( ) 2 2 ( ) |

( ) ( 0) 2

(1 ) 2

r r
r R r R r

r R R

r R r R

i J r dA J r r dr J r e dr J R R r e

R R r e R R e J

R e Rre J

π π π

π

π

′ ′− −

− −

− −

 ′ ′ ′ ′ ′ ′= = = = − + 

= − + − − +

= − −

∫ ∫ ∫  

If r R<  then 2 / 2 /0 0 0
0( ) 2 [ ( ) ].

2
r R r R

r R

J
B R R R r e J R R R r e

r r

µ µ
π

π
− −

<
 = − + = − +   

If r R>  then 
2

2 / 2 2 1 2 10 0 0 0 0
0( ) 2 2 [1 2 ]

2
R R

r R

J J R
B R R R R e J R R e e

r r r

µ µ µ
π

π
− − −

>
   = − + = − = −    . 
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CALCULATE: There are no values to substitute. 

ROUND:  There are no values to round. 

DOUBLE-CHECK: Note that the two computed formulas agree when .r R=   

 

Exercises 

28.30. The force of wire 1 on wire 2 is ( ) ( )1 2 2 2 0 1 0 1 2/ 2 / 2 .F i LB i L i d i i L dµ π µ π→  = = =  Since 1 22 ,i i=  

( )2

1 2 0 1 / .F i L dµ π→ =  Solving for the current 1i  gives 
( )( )

( )( )

6

1 2
1 7

0

0.0030 m 7.0 10  N
0.23 A.

4 10  T m/A 1.0 m

dF
i

L

ππ
µ π

−

→
−

⋅
= = =

⋅
 

The current on the other wire is 2 0.46 A.i =  

28.31. The magnetic field created by the wire is given by the Biot-Savart Law ( )0 / 2B i rµ π= . The force on the 

electron is given by the Lorentz force ( )0 / 2 .F qvB qv i rµ π= =  The acceleration of the electron is  

19 5 7

12 20

31

(1.602 10  C)(4.0 10  m/s)(4 10 T m/A)(15 A)
4.2 10 m/s

2 2 (9.109 10  kg)(0.050 m)

qv iF
a

m mr

πµ
π π

− −

−

⋅ ⋅ ⋅
= = = = ⋅

⋅
 

The direction of the acceleration is radially away from the wire. 

28.32. The magnitude of the magnetic field created by a moving charge along it is line of motion is zero. By the 

Biot-Savart Law,  

0 0

2 2

ˆˆ
0,

4 4

qdv rids r
B

r r

µ µ
π π

××
= = =


 

since the angle between the angle between the velocity and the position vector r  is zero.  The situation is 

the same for an electron and a proton. 

28.33. The field along the axis of a current loop of radius R  as measured at a distance x  from the center of the 

loop is  

( )
2

0

3/2
2 2

.
2

i R
B

x R

µ
=

+

 

The current of the loop must be

 

( ) ( ) ( )
( )( )

( )
3/2

2 2
3/2 6 6

2 2

5 9

2 2
7 6

0

2 2.00 10  m 6.38 10  m2
6.00 10  T 7.14 10  A.

4 10  T m/A 2.00 10  m

x R B
i

Rµ π
−

−

 ⋅ + ⋅+   = = ⋅ = ⋅
⋅ ⋅
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28.34. What does it mean to have an “average value of the magnetic field measured in the sides”? The answer is 

that the average value is: / .B B ds ds= ∫ ∫
    And ds∫  is just the total length of the closed path around the 

loop, in this case 4 .ds l=∫  For the integral above we can simple use Ampere’s Law and find (see equation 

28.10):  

0 encB ds iµ=∫
   

We found above that / / 4 .B B ds ds B ds l= =∫ ∫ ∫
       Inserting Ampere’s Law and solving for the enclosed 

current then yields: 

0 enc enc 0/ 4 4 /B i l i lBµ µ= ⇒ =  

Numerically we find 4 7
enc 4(0.0300 m)(3.00 10 T) / (4 10 ) 28.64789 A,i π− −= ⋅ ⋅ = which we round to 

enc 28.6 A.i =  

We can also see if our solution makes sense. We have calculated the magnetic field from a long straight 

wire as a function of the distance to the wire in equation 28.4 and found 0 / 2B i rµ π ⊥= .  With our value of 

the current computed above, we can calculate the value of the magnetic field at the corners of the loop 

(furthest from the wire) and middle of the sides (closest to the wire) and see that these two values of the 

magnetic field are below and above the average value of B that was given in the problem.  For the middle of 

the sides we find ( /2r l⊥ = ): 43.82 10 TB −= ⋅ , and for the corners we find ( / 2r l⊥ = ): 42.70 10 TB −= ⋅ . This 

gives us confidence that we have the right solution. 

28.35. THINK: A force due to the magnetic field generated by a current carrying wire acts on a moving particle.   

In order for the net force on the particle to be zero, a second force of equal magnitude and opposite 

direction must act on the particle.  Such a force can be generated by another current carrying wire placed 

near the first wire. Assume the second wire is to be parallel to the first and has the same magnitude of 

current. The wire along the x-axis has a current of 2 A oriented along the x-axis. The particle has a charge 

of 3 μCq = −  and travels parallel to the y-axis through point ( , , ) (0,2,0).x y z =  

SKETCH:   

 

RESEARCH: The magnetic field produced by the current is given by the ( )0 / 2 .B i rµ π=  The force on the 

particle is given by the Lorentz force, 0 .F qv B=  

SIMPLIFY: If the wires carry the same current then the new wire must be equidistant from the point that 

the particle passes through the xy-plane. Only then will the magnetic force on the particle due to each wire 

be equal.

 

By the right hand rule, the currents will be in the same direction.  This means that 1 2 .r r=   

CALCULATE: The requirement 1 2r r=  means that the second wire should be placed parallel to the first 

wire (parallel to the x-axis) so that it passes through the point ( , , ) (0,4,0).x y z =  
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ROUND: Not necessary.  

DOUBLE-CHECK: It is reasonable that two wires carrying the same current need to be equidistant from a 

point in order for the magnitude of the force to be the same.   

28.36. THINK: The current through the wire creates a magnetic field by the Biot-Savart Law. The straight part of 

the wire only creates a magnetic field at points perpendicular to it. Therefore this part of the wire can be 

ignored. The magnetic field at the center of the semicircle is created by the charge moving through the 

semicircle. 

SKETCH:   

 

RESEARCH: The Biot-Savart Law can be employed in the form  0

2

sin

4

i
dB ds

r

µ θ
π

= . Going around the 

semicircle, the angle φ  can be related to the current element by .ds rdφ=   

SIMPLIFY: Performing the integration gives 

0 0 00
20

0

sin sinsin sin
.

4 4 44

i i ii
B Rd

r rr r

π
πµ µ θπ µ θθ µ θφ φ

π ππ
 = = = =  ∫  

The angleθ between the current and the radial vector r̂  is 90°  for the loop, thus ( )0 / .4B i rµ=  

CALCULATE: 
( ) ( )

( )

7

5
4 10  T m/A  12.0 A

3.76991 10  T
4 0.100 m

B
π −

−
⋅

= = ⋅   

ROUND: The values are given to three significant figures, thus the magnetic field produced by the wire is 
53.77 10  TB −= ⋅  

and points into the page.  

DOUBLE-CHECK: The magnetic field is very small, as would be expected from a real-world point of 

view.  

28.37. THINK: Each of the wires creates a magnetic field at the origin. The sum of these fields and the Earth’s 

magnetic field will produce a force on the compass, causing it to align with the total field. The wires carry a 

current of 1 2 25.0 A.i i= =  The Earth’s magnetic field is 5

E
ˆ2.6 10  T.B y−= ⋅


  

SKETCH:  

 
 

RESEARCH: The magnetic field produced by a wire is ( )0 / 2 .B i dµ π=  

SIMPLIFY: The magnetic field of wire 1 is ( )1 0 1 1
ˆ( ) / 2 .B i y dµ π= −


 Wire 2 produces a magnetic field 

of ( )2 0 2 2
ˆ / 2 .B i x dµ π=


 The sum of the magnetic fields is 0 1 0 2

net 1 2 E E

1 2

ˆ ˆ .
2 2

i i
B B B B y x B

d d

µ µ
π π

= + + = − + +
   

 

CALCULATE: 
( )( )

( )
( )( )

( )

7 7

5
net

5 6

4 10  T m/A 25.0 A 4 10  T m/A 25.0 A
ˆ ˆ ˆ2.6 10  T

2 0.15 m 2 0.090 m

ˆ ˆ5.5555 10  T 7.3333 10  T

B y x y

x y

π π

π π

− −

−

− −

⋅ ⋅
= − + + ⋅

= ⋅ − ⋅


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The direction of the field is 
6

1

5

7.3333 10  T
tan 7.5196 .

5.5555 10  T
θ

−
−

−

 − ⋅
= = − ° 

⋅ 
  

ROUND: The angle is accurate to two significant figures. The compass points 7.5°  below the x-axis.  

DOUBLE-CHECK: This is a reasonable answer. The compass points towards the east if ŷ is north. 
 

28.38. THINK: The coil will levitate if the force from the magnetic field cancels the force of gravity. The coils 

have radii of 20.0 cm.R =  The current of the bottom coil is i and travels in the clockwise direction. By the 

right hand rule the top coil has a current of the same magnitude, moving in a counter clockwise direction. 

The mass of the coils is 0.0500 kg.m =  The distance between the coils is 2.00 mm.d =  

SKETCH:   

 
RESEARCH: The force of gravity is g .F mg=  The magnetic force on the top coil due to the bottom coil is 

( ) ( )B 0 1 2 0 1 2/ 2 2 / 2 .F i i L d i i R dµ π µ π π= =    

SIMPLIFY: Equating the two forces give 
2

0 1 2 02
.

2

i i R i R
mg

d d

µ π µ
π

= =   The amount of current is 2

0

mgd
i

Rµ
=  or 

0

.
mgd

i
Rµ

=  

CALCULATE: 
( )( )( )

( )( )

2

7

0.0500 kg 9.81 m/s 0.00200 m
62.476 A

4 10  T m/A 0.200 m
i

π −
= =

⋅
  

ROUND: Reporting to 3 significant figures, the current in the coils is 62.5 A  and travel in opposite 

directions.  

DOUBLE-CHECK:   Dimensional analysis provides a check: 

( )

2 2

2 2

kg m/s m kg m m A A s mkg m m A
      A

m/A m N/ A m m m s kg m m m s
i

T

                                                   = = = =                                               
. 

28.39. THINK:  The current carrying wires along the x- and y-axes will each generate a magnetic field.  The 

superposition of these fields generates a net field.  The magnitude and direction of this net field at a point 

on the z-axis is to be determined.  

SKETCH: 

 
RESEARCH:  Both currents produce a magnetic field with magnitude ( )0 / 2 .B i rµ π=  The magnetic field 

produced by the wire along the x-axis gives ( ) ( )1 0
ˆ / 2 .B i y bµ π= −


 The wire along the y-axis creates a 

magnetic field of ( )2 0
ˆ / 2 .B ix bµ π=


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SIMPLIFY:  The total magnetic field is then 0 0
net 1 2 ˆ ˆ.

2 2

i i
B B B x y

b b

µ µ
π π

= + = −
  

  The magnitude of the field 

is ( )220 0 02
1 1 .

2 2 2

i i i
B

b b b

µ µ µ
π π π

= + − = =  The direction of the field is 1 0 0tan
2 2

i i

b b

µ µθ
π π

− − 
=  

 
 in the x-y 

plane at a height of b.  
 

CALCULATE:  ( )1tan 1 45− − = − ° in the x-y plane at point b. 

 
 ROUND:  Not applicable. 

DOUBLE CHECK:  Both the right hand rule and the symmetry of the problem indicates that the net field 

should be in the fourth quadrant. 

28.40. THINK: The loop creates a magnetic field at its center by the Biot-Savart Law. The loop has side length 

0.100 ml =  and carries a current of 0.300 A.i =    

SKETCH:   

 

 

 

 

RESEARCH: The Biot-Savart Law states 0

2

sin
.

4

i ds
dB

r

µ θ
π

= ⋅  The angle θ  is found by using the equations: 

sin / ,d rθ =  2 2 ,r s d= +  and / 2.d l=    

SIMPLIFY: The field due to one side of the loop is 

( )
0 0

2 3/2
2 2

.
4 4

i idd ds
dB ds

r s d

µ µ
π π

= ⋅ =
+

 Since there are 

four sides, the total loop is four times this value. The total magnetic field is then 

( ) ( )
0 0

3/2 3/202 2 2 2

0 0 0 0

2 2 2 2 2
0

2
4 4

4 4

2 2 2 80

22

d d

d

d

id idds ds
B dB

s d s d

sid i i id

d ldd s d d d

µ µ
π π

µ µ µ µ
π π ππ

−
= = ⋅ =

+ +

  
= = − = =    +   

∫ ∫ ∫

 

CALCULATE: 
( )( )

( )

7

6
8 4 10  T m/A 0.300 A

3.394 10  T
0.100 m

B
π

π

−

−
⋅

= = ⋅   

ROUND: To three significant figures, the magnetic field at the center of the loop is 63.39 10  T.B −= ⋅   

DOUBLE-CHECK: The current is small, so the magnetic field it generates is expected to be small.  This is 

a reasonable value. 

28.41. THINK: In order for wire 1 to levitate, the forces on it must cancel. Both wire 2 and 3 will create magnetic 

fields that will interact with wire 1. Both wires create forces with horizontal and vertical components. The 

horizontal components will add destructively. The vertical components however will add constructively. 
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Therefore, only the vertical components need be calculated. Wires 2 and 3 each carry a current of 

600. A.i =   All three wires have a linear mass density of 100. g/m.λ =  The wires are arranged as shown in 

the figure.  

SKETCH:   

 
 

RESEARCH: The force of gravity on the wire is g .F mg=  The force between two wires carrying current is 

( )21 0 1 2 / 2 .F i i L dµ π=       

SIMPLIFY: The vertical component of the magnetic force for one wire is 0 3 1 0 3 1
31 .

2 ( / 2)

i i L i i L
F

h h

µ µ
π π

= =  The 

total force due to the wires is then 0 3 1
B 31

2
2 .

i i L
F F

h

µ
π

= =  Equating this to the force of gravity gives: 

0 3 12
.

i i L
mg Lg

h

µ
λ

π
= =   Solving for the current 1i  gives: 1

0 3

.
2

h g
i

i

π λ
µ

=  

CALCULATE: 
( )

3 2

1 7

(0.100 m)(100. 10  kg/m)(9.81 m/s )
204.375 A

2 4 10  T m/A (600. A)
i

π
π

−

−

⋅
= =

⋅
  

ROUND: The current of wire 1 required to levitate is 1 204 A.i =  

DOUBLE-CHECK: The current in wire 1 is on the same order of magnitude as the other currents. This is 

a reasonable answer. 

28.42. THINK: The net field is a superposition of the fields created by the top wire, the bottom wire and the loop. 

The wires are 2.00 cm  apart and carry a current of 3.00 A.i =  The radius of the loop is 1.00 cm.r =   

SKETCH:   

 

RESEARCH: The magnetic field produced by an infinite wire is ( )0 / 2 .B i rµ π=  A semi-infinite wire is 

half this value, ( )0 / 4 .B i rµ π=  A full loop produces a magnetic field of ( )0 / 2 .B i rµ=  The half loop 

produces half of this, ( )0 / 4 .B i rµ=     

SIMPLIFY: By the right hand rule, the magnetic field points into the page. The magnetic field is the sum 

of all the fields.  

0 0 0 0
net top bottom loop

2
1

4 4 4 4

i i i i
B B B B

r r r r

µ µ µ µ
π π π

 
= + + = + + = + 

   

CALCULATE: 
( )( )

( )

7

4
net

4 10  T m/A 3.00 A 2
1 1.54 10  T.

4 0.0100 m
B

π

π

−
−

⋅  = + = ⋅ 
 

It is directed in the negative z 

direction. 

ROUND: To 3 significant figures, the magnetic field at the origin is 4 ˆ1.54 10  T .z−− ⋅  
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DOUBLE-CHECK: The field due to a single infinite wire similar to the wires in the problem would be  

( )( ) ( )( )7 54 10  T m/A 3.00 A / 2 0.0100 m 6.00 10  T,B π π− −= ⋅ = ⋅  which is similar to the result.  Therefore, 

the result is reasonable. 

28.43. THINK: The wire creates a magnetic field that produces a Lorentz force on the moving charged particle. 

The question asked for the force if the particle travels in various directions. The velocity is 3000 m/s in 

various directions. 

SKETCH: 

 
 

RESEARCH: The magnetic field produced by an infinite wire is ( )0 / 2 .B i dµ π=  By the right hand rule 

the field points in the positive z-direction. The force produced by the magnetic field is .F qv B= ×
 

     

SIMPLIFY: The force is given by ( )0 0ˆ ˆ ˆ
2 2

q i q i
F qv B v z v n z

d d

µ µ
π π

= × = × = ⋅ ×
   

 where n̂  is the direction of the 

particle.
  

CALCULATE: 
( )( )( )

( ) ( ) ( )
7

2
9.00 C 4 10  T m/A 7.00 A

ˆ ˆ ˆ ˆ3000. m/s 1.89 10  N
2 2.00 m

F n z n z
π

π

−

−
⋅

= ⋅ × = ⋅ ×


 
 

Note that ˆ ˆ ˆ,x z y× = −  
ˆ ˆ ˆ,y z x× =  

and ˆ ˆ 0.z z− × =  

ROUND: The force should be reported to 3 significant figures. 

(a) The force is 2 ˆ1.89 10  N F y−= − ⋅


if the particle travels in the positive x-direction.  

(b) The force is 2 ˆ1.89 10  N F x−= ⋅


 if the particle travels in the positive y-direction.  

(c) The force is 0F =  if the particle travels in the negative z-direction. 

DOUBLE-CHECK: The right hand rule confirms the directions of the forces for each direction of motion 

of the particle. 

28.44. THINK: The wire produces a magnetic field that creates a force on the loop. The wire has current of 

w 10.0 Ai =  and is 0.500 md =  away from the bottom wire of the loop. The loop carries a current of 

l 2.00 Ai =  and has sides of length a =1.00 m. 

SKETCH:   

 
 

RESEARCH: The force on two wires carrying a current is 
  F = µ0i1i2L / 2πd( ).  The torque is given by 

τ = ×
 
.r F    

SIMPLIFY: The forces on part ② and ④ cancel each other. The force on ① is 
  F1 = µ0iwila / 2πd( )

 
and 

points towards the long wire. The force on ③ is 
  F3 = µ0iwila / 2π(d + a)[ ]

 
and points away from the long 
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wire. The total force is then 0 w l
1 3net

1 1

2

i i a
F F F

d d a

µ
π

 = + = − + 

 
 and points towards the long wire. Because 

the force and the length between the axis of rotation are parallel there is no torque on the loop.  

CALCULATE: 

( ) ( ) 
7

6
net

4 10  Tm/A (10.0 A)(2.00 A) 1.00 m 1 1
5.33333 10  N

2 0.500 m 1.50 m
F y

π

π

−

−
⋅  = − = − ⋅ 

 

 
ROUND: The force is reported to three significant figures. (a) The net force between the loop and the wire 

is 6 ˆ5.33 10  N.F y−= − ⋅  (b) There is no net torque on the loop.  

DOUBLE-CHECK: The force between the long wire and the lower arm of the loop is attractive, because 

the currents are in the same direction.  The currents of the long wire and the upper arm of the loop are in 

opposite directions, therefore the force is repulsive.  Since the lower arm is closer to the long wire, the 

attractive force dominates, and the net force is in the negative y direction, as calculated. 

28.45. The magnetic field at the center of the box is the sum of the fields produced by the coils. A coil produces a 

magnetic field of 

( )
2

0

3/2
2 2

.
2

NiR
B n

x R

µ
=

+
  

 
 

The magnetic field produced by the coil on the x z−  plane is  

( )  
7 2

5
xz 3/22 2

4 10  T m/A (30.0)(5.00 A)(0.500 m)
( ) 6.66 10  T

2 (0.500 m) (0.500 m)
B y y

π −

−
⋅

= + = ⋅
 + 

 

The magnetic field produced by the other coil has the same magnitude but points in the negative x-

direction. Therefore  5
tot 6.66 10  T[ - ].B x y−= ⋅ +  The magnitude of the field is 52 6.66 10  T,−⋅ ⋅  or 

59.42 10  T−⋅ .  The direction of the field is at an angle of 45°  from the negative x-direction towards the 

positive y-axis. 

28.46.  

 

The current within a loop of radius Rρ ≤   is given by 

33
20 0 0

0
0 0 0

0

2 2 2
( ) 2 ( ) 2 .

3 3

r
r r rJ J J rr r

i J r dA J r r dr J r dr r dr
R R R R

π π π
π π

′ ′
′ ′ ′ ′ ′ ′ ′= = = = = =∫ ∫ ∫ ∫  

The magnetic field is given by Ampere’s Law  

( ) 0 enc
0 enc2 .

2

i
B ds B r i B

r

µ
π µ

π
⋅ = = ⇒ =∫
 
  
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The magnetic field in the region r R<  is 
3 2

0 0 0 02
.

2 3 3

J r J r
B

r R R

µ π µ
π

 
= =  

 
 The magnetic field in the region 

r R>  is 
3 2

0 0 0 02
.

2 3 3

J R J R
B

r R r

µ π µ
π

 
= =  

   

 

28.47. Using Ampere’s Law, the magnetic field at various points can be determined. 0 enclosed .B ds iµ=∫
   For the 

cylinder, assuming the current is distributed evenly, 0 enc2B r iπ µ=  or ( )0 enc / 2 .B i rµ π=  The field at 

a 0r r= =  is zero since is does not enclose any current a 0.B =  The field at br r R= <  is 

( )72
60 enc 0 b 0 b

b tot 2 2 2
b b

4 10  T m/A (1.35 A)(0.0400 m)
1.08 10  T.

2 2 2 2 (0.100 m)

i r ir
B i

r r R R

πµ µ π µ
π π π π π

−

−
⋅ 

= = = = = ⋅  
 

 Note that i  is 

equal to the fraction of total area of the conductor’s cross section and the total current. The field at

 cr R=  is 
( )( )

( )

7

60 enc 0 tot
c

c

4 10  T m/A 1.35 A
2.70 10  T.

2 2 2 0.100 m

i i
B

r R

πµ µ
π π π

−

−
⋅

= = = = ⋅  The field at dr R> is 

( )( )
( )

7

60 enc
d

d

4 10  T m/A 1.35 A
1.69 10  T.

2 2 0.160 m

i
B

r

πµ
π π

−

−
⋅

= = = ⋅  By inspection it can be seen that the magnetic field 

at
br , 

cr  and 
dr the magnetic field will point to the right. 

28.48. THINK: The magnetic field is the sum of the field produced by the wire core CB  and the sheath S .B  The 

wire has a radius of 1.00 mm.a =  The sheath has an inner radius of 1.50 mmb =  and outer radius of 

2.00 mm.c =  The current of the outer sheath opposes the current in the core. 

SKETCH:  

 

RESEARCH: The current density of the core is 2

C / ( )J i aπ=  and the current density of the sheath is 

2 2

S /[ ( )].J i c bπ= − −  The enclosed current is calculated by enclosed .i JdA= ∫  
The magnetic field is derived 

using Ampere’s Law: 0 enclosed .B ds iµ⋅ =∫     

SIMPLIFY: When the radius is within the core , r a≤ , the magnetic field is  

2

0 enc 0 0 2 0 0

2 2
0

02 2

2

2

2

r

r a

i
B ds B r i JdA rd dr

a

i r r
i

a a

π
π µ µ µ θ

π
µ π µ
π

≤⋅ = = = =

= =

∫ ∫ ∫ ∫
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or 
2

0 0

2 2
.

2 2
r a

i irr
B

r a a

µ µ
π π≤ = =  If the radius is between the core and the sheath, ,a r b< <  

02a r bB ds B r iπ µ< ≤= =∫
   or 0 / (2 ).a r bB i rµ π< ≤ =  Within the sheath, ,b r c< <  the magnetic field is 

2 2 2
2

0 enc 0 02 2 2 2 2 20

2
2 | 1

2( ) ( )

r
r

b r c C bb

i i r r b
B ds B r i i rd dr i i

c b c b c b

π ππ µ µ θ µ µ
ππ< <

    − −
= = = + = − = −    − − −     

∫ ∫ ∫
     

2 2
0

2 2
1

2
b r c

i r b
B

r c b

µ
π< <

 −
= − − 

 

If the radius is outside of the cable, ,r c≥  then the magnetic field is 0 enc 02 ( ) 0r cB ds B r i i iπ µ µ≥⋅ = = = − =∫  

or 0.r cB ≥ =  In summary the magnetic fields of various regions are 

2 2
0 0 0

2 2 2
,  ,  1 , 0.

2 22
r a a r b b r c r c

ir i i r b
B B B B

r ra c b

µ µ µ
π ππ≤ < ≤ < < ≥

 −
= = = − = − 

 

CALCULATE: In order to graph the behavior of the magnetic field as a function of the radius, set the 

magnetic field in units of 0 .
2

u i

aπ  

 
ROUND:  There is no need to round. 

DOUBLE-CHECK: Note that the magnetic field outside of the coaxial cable is zero. These cables are used 

when equipment that is sensitive to magnetic fields needs current.  

28.49. THINK: To find the magnetic field above the center of the surface of a current carrying sheet, use 

Ampere’s Law. The path taken should be far from the edges and should be rectangular as shown in the 

diagram. The current density of the sheet is 1.5 A/cm.J =  

SKETCH:  

 

RESEARCH: The direction of the magnetic field is found using the right hand rule to be +x above the 

surface of the conductor.  Ampere’s Law states 0 enclosed2 .B ds B r iπ µ= =∫
   

SIMPLIFY: Note that sections 1 and 3 are perpendicular the field. 0B ds⋅ = for these two sections. If the 

path of 4 and 2 has a length of L, then by Ampere’s Law, 1 2 0 enclosed 0 .B ds B L B L i JLµ µ⋅ = + = =∫  
By 

symmetry 1 2 .B B=  Thus, 1 02B Jµ=  or 1 0 / 2.B Jµ=
 

CALCULATE: 
( )7

5

1

4 10  T m/A (1.5 A/cm)(100 cm/m)
9.42478 10  T

2
B

π −

−
⋅

= = ⋅  

ROUND: The magnetic field is accurate to two significant figures. The magnetic field near the surface of 

the conductor is 5

1 9.4 10  T.B −= ⋅  
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DOUBLE-CHECK: The form for the magnetic field is similar to that of a solenoid. It is divided by a factor 

of 2, which makes sense when considering the setup of a solenoid.  The form of the equation is similar to 

that of question 28.12. This makes sense because the magnetic field inside a solenoid is generated by a 

current carrying wire on both sides of the Amperian loop, whereas the field generated by the flat 

conducting surface originates on one side of the Amperian loop only.  In effect, the flat conductor can be 

seen as similar to half a solenoid, flattened out.  See figure 28.21 in the text for a visual. 

28.50. The magnetic field in a solenoid is given by the equation: 

( ) ( )7 3

0

1000
4 10  T m/A 2.00 A 6.28 10  T.

0.400 m
B niµ π − − 
= = ⋅ = ⋅ 

   

28.51. The magnetic field in a solenoid is given by 0 .B inµ=  Let the magnetic field of solenoid B be 0 .BB inµ=  

The magnetic field of solenoid A is ( ) ( ) ( ) ( )0 04 / 3 4 / 3 4 / 3 .A BB i N L in Bµ µ= = =  The ratio of solenoid A 

magnetic field to that of solenoid B is 4:3. 

28.52. The magnetic field at a point 1.00 cmr =  from the axis of the solenoid will be the sum of the field due to 

the solenoid and the field produced by the wire. The solenoid has a magnetic field of S 0 SB i nµ=  along the 

axis of the solenoid.  

 

The wire produces a field which is perpendicular to the radial vector of ( )w 0 w / 2 .B i rµ π=  The magnitude 

of the field is then  

2 2 2 2

tot S w 0 S w( ) ( / 2 )B B B i n i rµ π= + = +  

( ) ( )( )( ) ( )
( )

2

2
7 -1 4

tot

10.0 A
4 10 T m/A 0.250 A 1000 m 3.72 10 T.

2 0.0100 m
B π

π
− −

 
 = ⋅ + = ⋅
 
 

 

28.53. (a) The magnetic field produced by the wire is 

( ) ( )( ) ( )( )7 5

0 / 2 4 10  T m/A 2.5 A / 2 0.039 m 1.3 10  T.B i rµ π π π− −= = ⋅ = ⋅
 (b) The magnetic field of the solenoid is 

( )( )7 2

0

32
4 10  T m/A 2.5 A 0.010 T 1.0 10  T.

0.01 m
B inµ π − − 
= = ⋅ = = ⋅ 

   
This field is much larger for the solenoid than the wire. 

28.54. The magnetic field of a loop is 
2

0

2 2 3/2
.

2 ( )

i R
B

x R

µ
=

+
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Therefore a coil of N loops produces a field of
2

0

2 2 3/2
.

2 ( )

iN R
B

x R

µ
=

+
 Let / 2x R=  gives

 

3/22 2
0 0 0

2 2 3/2 3 3/2

4
.

2 5 2( ) 2 (5 / 4)

iN iN iNR R
B

Rx R R

µ µ µ 
= = =  +  

 The field at the center of the coils is then 

( )73/2 3/2

0 6

tot

4 10  T m/A (0.123 A)(15)4 4
2 2.21 10  T.

5 5 (0.750 m)

i N
B B

R

πµ −

−
⋅   

= = = = ⋅   
   

 

28.55. THINK: If the perpendicular momentum of a particle is not large enough, its radius of motion will not be 

large enough to enter the detector. The minimum momentum perpendicular to the axis of the solenoid is 

determined by a condition such that the centripetal force is equal to the force due to the magnetic field. 

SKETCH: 

 
 

RESEARCH: Since the particle originates from the axis of the detector, the minimum radius of the 

circular motion of the particle must be equal to the radius of the detector as shown above. The magnetic 

force on the particle is .F qvB=  Centripetal acceleration is 2 / .Ca v r=  The magnetic field due to the 

solenoid is 0 .B inµ=  

SIMPLIFY: Using Newton’s Second Law, the momentum is 2 / .qvB mv r mv p qrB= ⇒ = =
 
Therefore, 

the minimum momentum is 0 .p qrinµ=
 CALCULATE: Substituting the numerical values yields. 

( )( )( )( )( )7 19 2 1 194 10  T m/A 1.602 10 C 0.80 m 22 A 550 10  m 1.949 10  kg m/sp π − − − −= ⋅ ⋅ ⋅ = ⋅  

ROUND: Rounding the result to two significant figures gives 191.9 10  kg m/s.p −= ⋅  

DOUBLE-CHECK: This is a reasonable value. 

28.56. The magnetic potential energy of a magnetic dipole in an external magnetic field is given by .U Bµ= −
  

Therefore, the magnitude of the difference in energy for an electron “spin up” and “spin down” is 

up down 2 .U U U Bµ∆ = − =  This means the magnitude of the magnetic field is / 2 .B U µ= ∆  

( )
25

24 2

9.460 10  J
Putting in the numerical values gives 0.05094 T.

2 9.285 10  A m
B

−

−

⋅
= =

⋅
  

28.57. The energy of a dipole in a magnetic field is .U Bµ= −
  The dipole has its lowest energy 

min ,U B Bµ µ= − = −
  and its highest energy max .U Bµ=  The energy required to rotate the dipole from its 

lowest energy to its highest energy is 2 .U Bµ∆ =  This means that the thermal energy needed is U∆  which 

corresponds to a temperature / 2 / .B BT U k B kµ= ∆ =  
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Substituting the numerical values of the dipole moment of hydrogen atom and 0.15 TB =  yields  

( )( )
( )

24

23

2 9.27 10  J/T 0.15 T
0.20 K.

1.38 10  J/K
T

−

−

⋅
= =

⋅
 

28.58.  

 

The magnetic permeability of aluminum is ( )Al 01 .µ χ µ= +  Applying Ampere’s Law around an Amperian 

loop of radius r  gives  

enc(2 ) .B ds B ds B r iπ µ= = =∫ ∫
    

The current enclosed by the Amperian loop is 
2

enc 2
.

r
i i

R

π
π

=  Therefore, the magnetic field inside a wire is 

given by 
2

.
2

ir
B

R

µ
π

=  This means the maximum magnetic field is located at the surface of the wire where 

the magnitude is .
2

i
B

R

µ
π

=  Thus, the maximum current is 

( )
( )( )

( )( )( )
3

max
max 5 7

Al 0

2 1.0 10  m 0.0105 T2
52 A.

1 1 2.2 10 4 10  T m/A

RB
i

ππ
χ µ π

−

− −

⋅
= = =

+ + ⋅ ⋅
 

28.59. The magnitude of the magnetic field inside a solenoid is given by m 0 ( / ).B in i N Lµ κ µ= =  Thus the relative 

magnetic permeability mκ is given by the equation: 

( ) ( )
( ) ( ) ( )

2

m 7
0

2.96 T 3.50 10  m
54.96 55.0.

4 10  T m/A 3.00 A 500.

BL

iN
κ

µ π

−

−

⋅ ⋅
= = = ≈

⋅ ⋅ ⋅
 

28.60.  

 

The magnetic permeability of tungsten is ( )W 01 .µ χ µ= +  Applying Ampere’s Law around an Amperian 

loop of radius r  gives  

enc(2 ) .B ds B ds B r iπ µ= = =∫ ∫
    

The current enclosed by the Amperian loop is 
2

enc 2
.

r
i i

R

π
π

=  Therefore, the magnetic field is 

( ) ( )( )( )( )
( )

5 7 3

W 0 3

2 2
3

1 6.8 10 4 10  T m/A 3.5 A 0.60 10  m1
2.9 10  T.

2 2 1.2 10  m

i
B r

R

πχ µ
π π

− − −

−

−

+ ⋅ ⋅ ⋅ +
= = = ⋅   ⋅ 
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28.61. THINK: To determine the magnetic moment, the effective current of the system is needed. This implies 

the speed of the ball is required. 

SKETCH: 

 

RESEARCH: The ball travels in a circular orbit and it travels a distance of 2 Rπ  in time T , where T  is the 

time for one revolution. The effective current is given by / .i q T=  Since 2 / ,T R vπ=  this becomes 

( )/ 2 .i qv Rπ=  The effective magnetic moment is ( )2 / 2 / 2.iA qv R R qvRµ π π= = =  From the centripetal 

force, it is found that the speed is 2 /   / .mv R F v FR m= ⇒ =   

SIMPLIFY: Combining the above results yields 
1

.
2

FR
q R

m
µ =

 
CALCULATE: Putting in the numerical values gives 

( ) ( )( ) ( )6 5 2
25.0 N 1.00 m1

2.00 10  1.00 m 1.118 10  A m .
2 0.200 kg

Cµ − −= ⋅ = ⋅  

ROUND: Keeping 3 significant figures gives 5 21.12 10  A m .µ −= ⋅  

DOUBLE-CHECK: This magnetic moment is appropriately small for a small charge moving at a low 

velocity. 

28.62. THINK: The magnetic field due to a proton is modeled as a dipole field. Using the value of the magnetic 

field, the potential energy of an electron spin in the magnetic field is .U Bµ= − ⋅
 

  

SKETCH: 

 

RESEARCH:  The electron field due to an electric dipole is given by ( )3

0/ 2 .E P Rπε=
 

 The 

corresponding magnetic field is obtained by replacing ( )01/ 4πε  with ( )0 / 4µ π  and P


 with .µ


 

Thus, ( )3

0 / 2 .B Rµ µ π=
 

 

SIMPLIFY: The energy difference between two electron-spin configurations is  

anti parallel

0

3

0

0

3

0

( ) ( )

2 2
2

ee

P
e e

e P

U U U

B B

B
a

a

µ µ

µ µ
µ µ

π
µ µ µ
π

∆ = −

= − − − −

= =

=

    


  
 
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CALCULATE: Inserting all the numerical values yields 

( )( )( )
( )

7 24 26

25 6

3
11

4 10  T m/A 9.27 10  J/T 1.41 10  J/T
3.528 10  J 2.204 10  eV.

5.292 10  m
U

π

π

− − −

− −

−

⋅ ⋅ ⋅
∆ = = ⋅ = ⋅

⋅
 

ROUND: Rounding the result to three significant digits produces 62.20 10  eV.U −∆ = ⋅   

DOUBLE-CHECK: This is reasonable.  A small difference in potential is expected for these small particles. 

28.63. THINK: The classical angular momentum of rotating object is related to its moment of inertia. To get the 

magnetic dipole of a uniformly changed sphere, the spherical volume is divided into small elements. Each 

element produces a current and a magnetic dipole moment. The dipole moment of all elements is then 

added to get the net dipole moment. 

SKETCH:  

 
RESEARCH:  

(a) The classical angular momentum of the sphere is given by ( ) 22 / 5 .L I mRω ω= =   

(b) The current produced by a small volume element dV  is / (2 ).i dVρ ω π=  Thus the magnetic dipole 

moment of this element is 2( sin ) .
2

dV
d r

ρωµ π θ
π

=  Integrating all the elements gives 

( )( )
2

2
2 2

0 0 0
sin sin .

2

R r
r dr d d

π π ρωµ θ θ θ φ= ∫ ∫ ∫  

(c) The gyromagnetic ratio is simply the ratio of the results from parts (a) and (b): / .e Lγ µ=  

SIMPLIFY: 

(b) 4 3

0 0

3 4

0 0

15 3 5 5
cos

2

cos 0
1

2 sin
2

sin

4
(1 cos ) cos

5 3 5 3 5

R

R

r drd

d r dr

R x R R
d x

π

π

π

ρωµ π θ θ

ρπω θ θ

ρπω θ θ ρπω ρπω
−

= ⋅

= ⋅

    = − − = − + =        

∫ ∫

∫ ∫

∫

 

Since 34
,

3
R qρ π =  the magnetic moment becomes 2 / 5.q Rµ ω=   

(c) Taking the ratio of the magnetic dipole moment and the angular momentum yields: 
2

2

5 .
2 2

5

e

q R
q

L m
mR

ω
µγ

ω
= = =   Substituting q e= −  gives: ( )/ 2 .e e mγ = −   

CALCULATE: Not required 

ROUND: Not required 

DOUBLE-CHECK:  The magnetic dipole and the angular momentum should both be quadratic in R, so it 

is logical that the ratio of these two quantities is independent of R. 
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28.64.  

 

The magnitude of magnetic field due to one of the coils is 
2

0 1
1 2 2 3/2

.
2 ( )

iN R
B

x R

µ
=

+
 Since 1 2 ,B B=  the net 

magnetic field is 
2

0
1 2 2 2 3/2

.
( )

iNR
B B B

x R

µ
= + =

+
 Putting in 0.500 m, 2.00 m, 7.00 Ax R i= = =  and 

50N = yields 
( )( )( )( )

( ) ( )

27

4

3/2
2 2

4 10  T m/A 7.00 A 50 2.00 m
2.01 10  T.

0.500 m 2.00 m

B
π −

−
⋅

= = ⋅
 +  

 

28.65.  

 

Since the horizontal distance between points A and B is large compared to d, the magnetic field at point B 

can be approximated by two parallel wires carrying opposite currents. By the right hand rule, the magnetic 

field at point B is directed into the page from both currents.  Since point B is a distance of d/2 away from 

each wire, the magnitude of magnetic field at point B is twice that at point A. So, the strength of the 

magnetic field at point B is ( )2 2.00 mT 4.00 mT.B = =   

28.66.  

 
Applying the right hand rule gives the direction of the magnetic field due to the wire at the compass needle 

in the westward direction. The magnitude of wireB  is  

( )7

0
4 10  T m/A 500.0 A

8.33 μT.
2 2 12.0 m

I
B

d

πµ
π π

−⋅ ⋅
= = =

⋅
 

The deflection of the compass needle is wire

Earth

8.33 μT
arctan arctan 11.8 .

40.0 μT

B

B
δθ

   
= = = °   

  
 The deflection is 

westward. 
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28.67. The magnetic dipole moment is defined as 2 .iA i Rµ π= =  This means the current that produces this 

magnetic dipole moment is ( )2/ .i Rµ π=  Substituting the numerical values gives the current of  

22 2
9 9

6 2

8.0 10  A m
4.07 10  A 4.1 10  A.

(2.5 10  m)
i

π
⋅

= = ⋅ ≈ ⋅
⋅

 

28.68. The potential energy of a current loop in a magnetic field is given by .U Bµ= −
  The magnitude of the 

magnetic dipole moment is 2 .iA i Rµ π= =  The direction of the magnetic dipole moment can be 

determined using the right hand rule. In this case, the magnetic dipole is in the positive z-direction. 

Therefore, it follows that ( )22 3 20.10 A 0.12 m 4.5 10  A m .i R z zµ π π −= = ⋅ ⋅ = ⋅
    The energy is given by 

( ) ( )3 2 34.5 10  A m 1.5  T 6.8 10  J.U B z zµ − −= − = ⋅ − = ⋅
      If the loop can move freely, the loop will rotate such 

that its magnetic dipole moment aligns with the direction of the magnetic field. This means the magnetic 

dipole moment is 3 24.5 10 ( ) A m .zµ −= ⋅ −
   Thus the minimum energy is 

3 2 34.5 10  A m ( ) ( 1.5  T) 6.8 10  J.U z z− −= − ⋅ − − = − ⋅    

28.69. The magnitude of magnetic field inside a solenoid is given by ( )0 0 / .B in i N Lµ µ= =  Simplifying this, the 

number of turns of the wire is ( )0/ .N BL iµ=  Putting in the numerical values, 0.20 A, 0.90 mi L= = and 

35.0 10  TB −= ⋅ yields
( )( )

( )( )

3

7

5.0 10  T 0.90 m
17904 18000 turns.

4 10  T m/A 0.20 A
N

π

−

−

⋅
= = ≈

⋅
 

28.70.  

 

Applying Ampere’s Law around a loop as shown in the figure gives 0 enc .B ds B ds iµ= =∫ ∫
   Thus, the 

magnetic field is ( )0 enc / 2 .B i rµ π=  The enclosed current is given by enc
enc

total

A i
i i

A
= −  when encA  is cross 

sectional area of the shield that is enclosed by the loop and totalA  is the cross sectional area shield. This 

means the areas are 2 2

enc ( )A r aπ= −  and 2 2

total ( ).A b aπ= − Thus the magnetic field inside the shield is 

2 2 2 2
0 0

2 2 2 2
1 .

2 2

i ir a b r
B

r rb a b a

µ µ
π π

   − −
= − =   

− −   
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28.71. THINK: The torque due to the current in a loop of wire in a magnetic field must balance the torque due to 

weight.   

SKETCH: 

 
RESEARCH: The torque on a current loop in a uniform magnetic field is given by 

B ( ) .B iN A B iNA z Bτ µ= × = × = − ×
     

 Using Newton’s Second Law, the torque due to the weight is found to 

be  ( ) 
W

1 1
( ).

2 2
r T ax mg z amg x zτ  = × = × − = − × 

 

     

SIMPLIFY: Since the system is in equilibrium, the net torque must be zero: B w 0.τ τ τ= + =∑   

Thus,   

 
B w

1 1
( ) ( ).

2 2
iNAz B amg x z amg z x

τ τ= −

− × = × = − ×
  

 

This means that the magnetic field vector is in positive .x  Substituting B Bx=


 gives 
1

.
2

iNAB amg=  After 

simplifying and using A ab= ,   1 1
.

2 2 ( ) 2

amg amg mg
B x x x

iNA iN ab iNb
= = =



 

CALCULATE: Substituting the numerical values produces 
( )( ) 

20.0500 kg 9.81 m/s
0.02453 T.

2(1.00 A) 50 (0.200 m)
B x= =

⋅ ⋅


 

ROUND: Three significant figures yields, 24.5 mT.B =


 

DOUBLE-CHECK: The magnetic force must be in the positive z-direction to balance gravity.  By the right 

hand rule, it can be seen that the magnetic field must point in the positive x-direction for this to occur.  

This is consistent with the result calculated above. The result is reasonable. 

28.72. THINK: In this problem, the net magnetic field due to two parallel wires is determined by adding the 

contributions from the wire.     

SKETCH: 
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RESEARCH: The magnitude of the magnetic field of a long wire is given by ( )0 / 2 .B i Rµ π=  The net 

magnetic field is net 1 2 .B B B= +
  

 Because of the symmetry of this problem, the y-component of the 

magnetic fields cancel out and only the x-component remains. Thus, the net magnetic field becomes 

0

ˆ ˆ ˆsin sin 2 sin

ˆsin

B B x B x B x

i
B x

R

θ θ θ
µ

θ
π

= − − = −
−

=



  

SIMPLIFY: Since 
2 2( / 2)

sin ,
R d

R
θ

−
=  the magnitude of the magnetic field simplifies to 

2
20

2 4

i d
B R

R

µ
π

= −
 

CALCULATE: Inserting the numerical values of the parameters gives 

( )( )

( )
( ) ( )27 2

22 5

22

4 10  T m/A 10.0 A 20.0 10  m
12.0 10  m 1.843 10  T.

412.0 10  m
B

π

π

− −
− −

−

⋅ ⋅
= ⋅ − = ⋅

⋅
 

ROUND: Keeping three significant figures, 18.4 μT.B =  

DOUBLE-CHECK: The magnetic field due to one wire at the same position is 16.7μT.  It is therefore 

reasonable that the answer for two wires is slightly larger than this, considering that the y-components 

cancel out. 

28.73. THINK: In this problem the force on a particle due to a magnetic field must balance the force due to 

gravity.    

SKETCH: 

 

RESEARCH: The force acting on the particle due to the magnetic field is B sin .F qvB θ=  Since the angle 

between v


 and B


 is 90.0 ,°  the force due to the magnetic field becomes B .F qvB=  This force must 

balance the gravitational force which is given by g .F mg=  Therefore  B gF F=  or .qvB mg=  

SIMPLIFY: The magnetic field due to the current in the wire is ( )0 / 2 .B i dµ π=  The change of the particle 

is then found to be ( ) ( )0/ 2 / .q mg vB mg d v iπ µ= =  
 CALCULATE: Inserting the numerical values gives a charge of  

( )( )
( )( )

6 2

4

7

1.00 10  kg 9.81 m/s 2 (0.100 m)
4.905 10  C.

1000. m/s 4 10  T m/A (10.0 A)
q

π

π

−

−

−

⋅
= = ⋅

⋅
 

ROUND:  Rounding the result to 3 significant figures gives 44.91 10  C.q −= ⋅  

DOUBLE-CHECK:  Dimensional analysis confirms the calculation provided the answer in the correct 

units: 
( )

2 2kg m/s m kg m/s A m
      A s   C .

m/s T m/A A m/sm/s N/ A m
q

                        = = = = =                                  
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28.74. THINK: The torque on a loop of wire in a magnetic field is given by ,Bτ µ= ×
 

 
where µ


 is the magnetic 

dipole moment of the wire.   

SKETCH: 

 

RESEARCH:  

(a) Using the right hand rule, the direction of current is counterclockwise as seen by an observer looking 

in the negative µ


 direction as shown in the above figure.  

(b) Using the magnetic dipole moment ˆ,iNAnµ =


 
the torque on the wire is ˆ ,iNAn Bτ = ×


 
where n̂  

is a 

unit vector normal to the loop. Since ˆ sinn B B θ× =


 and 2A Rπ= , the magnitude of the torque is 

2 sin .iN R Bτ π θ=  

SIMPLIFY: From the equation, the number of turns needed to produce τ  is 
2

.
sin

N
iR B

τ
π θ

=  
 

CALCULATE:  

(b) Substituting the numerical values of the parameters yields   

( )
( )( ) ( ) ( )

1 2
2

3.40 N m
49.98 50. turns.

5.00 A 5.00 10  m 2.00 T sin 60.0
N

π −
= = =

⋅ °
 

(c) Replacing the values of the above R  with 22.5 10  mR −= ⋅  gives the number of turns 

( )
( )( ) ( ) ( )

2 2
2

3.40 Nm
100. turns.

5.00 A 2.50 10  m 2.00 T sin 60.0
N

π −
= =

⋅ °
 

ROUND: Not needed. 

DOUBLE-CHECK: Since N  is inversely proportional to 2R , the ratio of the results in (b) and (c) is 

( )2
2

11 2

2 2
2 1 1

/ 2 1 50
.

4 200

RN R

N R R
= = = =  

28.75. THINK:  Assuming the inner loop is sufficiently small such that the magnetic field due to the larger loop 

is same across the surface of the smaller loop, the torque on the small loop can be determined by its 

magnetic moment.   

SKETCH: 
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RESEARCH:  The torque experienced by the small loop is given by .Bτ µ= ×
 

 The magnetic field in the 

center of the loop is given by 0 1 ˆ.
2

i
B y

R

µ
=


 The magnetic dipole moment of the small loop is 

2

2 2 2
ˆ.i A i r xµ π= =


 

SIMPLIFY:  Combining all the above expressions yields the torque. 

( )
2 2

2 0 1 0 1 2 0 1 2
2

ˆ ˆ ˆ ˆ
2 2 2

i i i r i i r
i r x y x y

R R R

µ πµ πµ
τ τ π

 
= = × = × = 

 


 

CALCULATE: Putting in all the numerical values gives  

( )
( )

7 2

7
4 10  T m/A (14.0 A)(14.0 A)(0.00900 m)

1.254 10  N m.
2 0.250 m

π π
τ

−

−
⋅

= = ⋅  

ROUND:  Rounding to 3 significant figures gives, 71.25 10  N m.τ −= ⋅  

DOUBLE-CHECK:  The units are correct: 

2 2T m/A A A m N A m
    N m .

m A m
τ

                        = = =             
 

28.76. THINK: Two parallel wires carrying currents in the same direction have an attractive force. Two parallel 

wires carrying currents in opposite directions have a repulsive force.   

SKETCH:  

 
 

RESEARCH: By considering the direction of emf potentials, the currents in the wires have the same 

direction. Therefore the force between the wires is attractive. The force between the two wires is given by 

 0 1 2 .
2

i i L
F

a

µ
π

=  

SIMPLIFY: The currents through the wires are given by emf,1

1

1

V
i

R
=  and emf,2

2

2

.
V

i
R

=  Thus, the force 

becomes 0 emf,1 emf,2

1 2

.
2

V V L
F

aR R

µ
π

=   Solving for 2R  gives: 0 emf,1 emf,2

2

1

.
2

V V L
R

aR F

µ
π

=  

 CALCULATE: Substituting the numerical values gives  

( )( )( )( )
( )( )( )

7

2 5

4 10  T m/A 9.00 V 9.00 V 0.250 m
5.063 .

2 0.00400 m 5.00 4.00 10  N
R

π

π

−

−

⋅
= = Ω

Ω ⋅
 

ROUND: Rounding the result to 3 significant figures gives 2 5.06 .R = Ω  

DOUBLE-CHECK: To 1 significant figure, the value of 2R is the same as 1.R   This is reasonable. 
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28.77. THINK: To solve this problem, the forces due to an electric field and a magnetic field are computed 

separately. The forces are added as vectors to get a net force. 

SKETCH:   

(a)      (b) 

     
 

RESEARCH:  Using the right hand rule and since the charge of proton is positive, the directions of forces 

are shown above. The magnitude of the electric force on the proton is ,EF qE=  and the magnitude of the 

magnetic force is .BF qvB=  

SIMPLIFY:  

(a) The acceleration of the proton is net ( ).
F qvB qE q

a vB E
m m m

−
= = = −  

(b) The acceleration of the proton if the velocity is reversed is  

net ( ).B E

F qvB qE q
a F F vB E

m m m

− −
= = − − = = − +  

CALCULATE: Substituting the numerical values yields the acceleration  

(a) ( )( )( )
19

10 2

27

1.60 10  e
200. m/s 1.20 T 1000. V/m 7.28 10  m/s

1.67 10  kg
a

−

−

⋅
= − = − ⋅

⋅
 

(b) ( )( )( )
19

11 2

27

1.60 10  e
200. m/s 1.20 T +1000. V/m 1.19 10  m/s

1.67 10  kg
a

−

−

⋅
= − = − ⋅

⋅
 

ROUND:   

(a) 10 27.28 10  m/sa = − ⋅  

(b) 11 21.19 10  m/sa = − ⋅  

DOUBLE-CHECK: It is expected that the result in (b) is larger than in (a). This is consistent with the 

calculated values. 

28.78. THINK: The net acceleration of a toy airplane is due to the gravitational acceleration and the magnetic 

field of a wire. However for this problem, the gravitational force is ignored.   

SKETCH: 

 

RESEARCH: Using a right hand rule, the magnetic force on the plane is directed toward the wire. The net 

acceleration of the plane due to the magnetic field is / / .Ba F m qvB m= =   

SIMPLIFY: Substituting the magnetic field of the wire ( )0 / 2B i dµ π=  yields 0 .
2

qv i
a

md

µ
π

=    

CALCULATE: Putting in the numerical values gives the acceleration:
 ( ) ( )

( )( )

3 7

5 2
36 10  C (2.8 m/s) 4 10  T m/A (25 A)

1.674 10  m/s .
2 0.175 kg 0.172 m

a
π

π

− −

−
⋅ ⋅ ⋅ ⋅

= = ⋅  

ROUND: Rounding the result to two significant figures gives 5 21.7 10  m/s .a −= ⋅  
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DOUBLE-CHECK: It is expected that the result will be much less than the value of the gravitational 

acceleration. 

28.79. THINK: To do this problem, the inertia of a long thin rod is required. The torque on a wire is also needed. 

The measure of the angle θ  is 25.0 ,°  and the current is 2.00 A.i = Let 4 20.200 10  mA −= ⋅ and 
29.00 10  T.B −= ⋅  

SKETCH: 

 
 

RESEARCH: The magnetic dipole moment of the wire is given by ˆ.NiAnµ =


  

(a) The torque on the wire is .Bτ µ= ×
 

 
The magnitude of this torque is sin sin .B NiABτ µ θ θ= =  

(b) The angular velocity of the rod when it strikes the bell is determined by using conservation of energy, 

that is, i fE E=  or i i f f .U K U K+ = +  

 SIMPLIFY:  

(a) sin sin .B NiABτ µ θ θ= =   

(b) Since i 0,K =  the final kinetic energy is  

( ) ( )
f i f

21
cos cos 0 cos 1 cos

2

K U U

I B B B B Bω µ θ µ µ θ µ µ θ

= −

= − + ° = − + = −
 

Thus the angular velocity is 
( ) 2

2 (1 cos ) 2 (1 cos )
,

1/12

B NiAB

I mL

µ θ θω − −
= =  using 21

,
12

I mL=  the inertia of a 

thin rod. 

CALCULATE: Putting in the numerical values gives the following values. 

 (a) ( )( )( )( ) ( )4 2 2 470 2.00 A 0.200 10  m 9.00 10  T sin 25.0 1.06 10  N mτ − − −= ⋅ ⋅ ° = ⋅  

(b) 
( )( )( )( )( )

( )( )( )

1/2
4 2 2

2

2 70 2.00 A 0.200 10  m 9.00 10  T 1 cos25.0
1.72 rad/s

1/12 0.0300 kg 0.0800 m
ω

− − ⋅ ⋅ − °
 = =
 
 

 

ROUND:  Rounding to 3 significant figures yields 41.06 10  N m,τ −= ⋅  1.72 rad/s.ω =  
DOUBLE-CHECK:  The torque should have units of Newton-meters, while the angular velocity should 

have units of radians per second. 

28.80. THINK: Using a right hand rule, the sum of the magnetic fields of two parallel wires carrying opposite 

currents cannot be zero between the two wires.   

SKETCH: 
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RESEARCH: The magnitude of the magnetic field of a long wire is ( )0 / 2 .B i Rµ π=
 
Since 1 2i i<  and 1i  is 

in an opposite direction to 2 ,i  using the right hand rule, it is found that the location of the zero magnetic 

field must be to the left of the left-hand wire, as shown in the figure. Assuming the location is a distance x 

to the left of the left-hand wire, then the net magnetic field is 0 2 0 1
net 2 1 0.

2 ( ) 2

i i
B B B

x d x

µ µ
π π

= − = − =
+

  

SIMPLIFY: Solving for x yields  

2 1 1
2 1 1

2 1

.
i i i d

xi i x i d x
x d x i i

= ⇒ = + ⇒ =
+ −

 

Since 2 12 ,i i=  

1

1 1

.
2

i d
x d

i i
= =

−  
CALCULATE: Not required. 

ROUND:  Not required. 

DOUBLE-CHECK: This result is expected since the ratio of 
2 1/ 2.i i =  This means the ratio of distances is 

2

1

2
2

d d

d d
= =  also. 

28.81. THINK: In order for a coil to float in mid-air, the downward force of gravity must be balanced an upward 

force due to the current loop in the magnetic field. 

 SKETCH: 

 

RESEARCH: By using right-hand rule 1, the direction of the forces can be determined.  For the y-

component yB  of the magnetic field the force due to the current is in the radial direction of the coil.  

Therefore, this component cannot be responsible for levitating the coil.  For the x-component 
xB  of the 

magnetic field, with a counterclockwise current as viewed from the bar magnet, the resulting force is in the 

y-direction, towards the bar magnet (see figure on right).  This is the correct direction for balancing the 

weight of the coil.  The magnitude of the y-component of the force on an element dl  is 

sin sin .xydF Ni dl B NiB dlθ θ= × =
 

 Thus the total magnetic force on the current loop is 

2

0
sin .

R

yF NiB dl
π

θ= ∫  Newton’s Second Law requires that .yF mg=  

SIMPLIFY: The integral simplifies to: 2 sin .yF RNiBπ θ=  Therefore,  

2 sin .
2 sin

mg
RNiB mg i

RNB
π θ

π θ
= ⇒ =
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CALCULATE: Substituting in the numerical values yields  

( )
( )

3 2

2

10.0 10  kg (9.81 m/s )
4.416 A.

2 5.00 10  m 10.0(0.0100 T)sin(45.0 )
i

π

−

−

⋅
= =

⋅ °
 

ROUND:  To 3 significant figures, the current is 4.42 A,i =  counterclockwise as viewed from the bar 

magnet. 
 

DOUBLE-CHECK: It takes large currents to generate strong magnetic forces.  A current of 4 A is realistic 

to levitate a 10 g mass. 

28.82. THINK: In this problem, Ampere’s Law is applied on three different circular loops. 

SKETCH: 

 

RESEARCH:  Loops 1 ,L  2L  and 3L  are Amperian loops. 

(a) For distances ,r a<  applying Ampere’s Law on the loop 1 ,L  gives 0 enc(2 ) .B ds B r iπ µ⋅ = =∫
 
   Since 

enc 0,i =  the field is also zero, 0.B =   

(b) For distances r  between a  and ,b  applying Ampere’s law on the loop 2L  yields 

0 enc(2 ) .B ds B r iπ µ⋅ = =∫
 
  

The enclosed current is given by enc enc /i A i A= or
( )
( )

2 2 2 2

enc 2 22 2
.

r a r a
i i i

b ab a

π

π

− −
= =

−−
   

(c) For distances ,r b>  applying Ampere’s Law on 3L  gives 0 enc 0
,

2 2

i i
B

r r

µ µ
π π

= =  since enc .i i=  

SIMPLIFY: Thus, the magnetic field is 
( )
( )

2 2

0

2 2
.

2

r ai
B

r b a

µ
π

−
=

−  

CALCULATE: Putting in the numerical values gives  

(a) 0B =   

(b) 
( )

( )
( ) ( )
( ) ( )

2 27

7

2 22

4 10  T m/A (0.100 A) 6.50 cm 5.00 cm
2.212 10  T

2 6.50 10  m 7.00 cm 5.00 cm
B

π

π

−

−

−

 ⋅ ⋅ −
 = = ⋅

⋅  −   

 (c)
( )

( )
7

7

2

4 10  T m/A (0.100 A)
2.222 10  T

2 9.00 10  m
B

π

π

−

−

−

⋅ ⋅
= = ⋅

⋅
  

ROUND:  Keeping 3 significant figures yields the following results for (b) and (c). Note that the value 

found in (a) is precise. (a) 0B =  (b) 72.21 10  TB −= ⋅  (c) 72.22 10  TB −= ⋅  

 DOUBLE-CHECK: The units of the calculated values are T, which is appropriate for magnetic fields. 
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28.83. THINK: To solve this problem, the current enclosed by an Amperian loop must be determined. 

 SKETCH: 

 

RESEARCH: Applying Ampere’s Law on a loop as shown above gives 0 enc(2 ) .B ds B r iπ µ⋅ = =∫
 
  enci  is the 

current enclosed by the Amperian loop, that is 
2

enc 0 0
( ) ( ) .

r

i J r dA J r r dr d
π

θ′ ′ ′= =∫ ∫ ∫ ∫     

SIMPLIFY: Since ( )J r  is a function of r  only, the above integral becomes enc 0
2 ( ) .

r

i J r r drπ ′ ′ ′= ∫  

Substituting 0( ) (1 / )J r J r R= −  yields  

2 2 3 2 3

enc 0 0 00
0

2 2 2 .
2 3 2 3

r
r r r r r r

i J r dr J J
R R R

π π π
     ′ ′ ′
′ ′= − = − = −     

     
∫  

Thus, the magnetic field is 
2 3 2

0 0
0 0

2
.

2 2 3 2 3

J r r r r
B J

r R R

µ π
µ

π
   

= − = −   
   

    

CALCULATE: Not required.  

ROUND:  Not required.
 

DOUBLE-CHECK: The form of the answer is reasonable. 

28.84. THINK: The maximum torque on a circular wire in a magnetic field is when its magnetic moment is 

perpendicular to the magnetic field vector.  

SKETCH: 

 
 

RESEARCH: The torque on the circular wire is given by .Bτ µ= ×
  

 The magnitude of the torque is 

sinBτ µ θ=  where θ  is the angle between µ


and B


.    

SIMPLIFY:  

(a) The maximum torque is when 90 ,θ = °  that is, .Bτ µ=  Using 2 ,iA i Rµ π= =  the torque becomes 

2 .i R Bτ π=   
(b) The magnetic potential energy is given by cos .U Bµ θ= −  The maximum and the minimum potential 

energies are when 180θ = °  and 0 ,θ = °  that is, maxU Bµ= + and min .U Bµ= −  

CALCULATE: (a) Inserting the numerical values gives the torque:  

( ) ( )22 3 4(3.0 A) 5.0 10  m 5.0 10  T 1.18 10  N m.τ π − − −= ⋅ ⋅ = ⋅
 

(b) Since the values of Bµ  is the same as in (a), the range of the potential energy is 
4 4

max min 2 2 1.2 10  J 2.4 10  J.U U U Bµ − −∆ = − = = ⋅ ⋅ = ⋅  

ROUND:  Keeping only two significant figures yields 
441.2 10  N m and 2.4 10  J.Uτ
−−= ⋅ ∆ = ⋅  

DOUBLE-CHECK: The change in potential is a change in energy, so it is appropriate that the final answer 

have joules as units. 
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Multi-Version Exercises 

 Exercises 28.85–28.87   The magnetic field at the center of an arc of radius R  subtended by an angle Φ  is 

0 0

20
.

4 4

iiRd
B dB

R R

µ µφ
π π

Φ

Φ

Φ
= = =∫ ∫  

 In this loop we have three sections: 

 

1:  ,  / 2

2 :  2 ,  / 2

3 :  3 ,  .

R r

R r

R r

π
π
π

= Φ =
= Φ =
= Φ =

 

 The segments running directly toward/away from point P have no effect. So the magnetic field at P is 

 

( ) ( )
( )
( )

0 0
0 0 0 0 0 0 0 0

1 2 3

6 3 4 132 2
.

4 4 2 4 3 8 16 12 48 48 48 48

i i
i i i i i i i i

B B B B
r r r r r r r r r r

π πµ µ µ π µ µ µ µ µ µ µ
π π π

   
   
   = + + = + + = + + = + + =  

28.85. 
( )( )

( )

7

70
13 4 10  T m/A 3.857 A13

9.303 10  T
48 48 1.411 m

i
B

r

πµ
−

−
⋅

= = = ⋅  

28.86. 013

48

i
B

r

µ
=  

 

( )( )
( )

7

0

7

13 4 10  T m/A 3.961 A13
1.869 m

48 48 7.213 10  T

i
r

B

πµ
−

−

⋅
= = =

⋅
 

28.87. 013

48

i
B

r

µ
=  

 

( )( )
( )

7

7
0

48 2.329 m 5.937 10 T48
4.063 A

13 13 4 10  T m/A

rB
i

µ π

−

−

⋅
= = =

⋅

 

 Exercises 28.88–28.90   The magnetic field inside a toroidal magnet is given by 0 .
2

Ni
B

r

µ
π

=  

28.88. 0

2

Ni
B

r

µ
π

=  

 

( )( )
( )( )

3

7
0

2 1.985 m 66.78 10  T2
19,814

4 10  T m/A 33.45 A

rB
N

i

ππ
µ π

−

−

⋅
= = =

⋅
  

 To four significant figures, the toroid has 19,810 turns. 

28.89. 0

2

Ni
B

r

µ
π

=  

 

( )( )
( )( )

3

7
0

2 1.216 m 78.30 10  T2
21.27 A

4 10  T m/A 22,381

rB
i

N

ππ
µ π

−

−

⋅
= = =

⋅

 

28.90. 
( )( )( )

( )

7

0
4 10  T m/A 24,945 49.13 A

0.1695 T 169.5 mT
2 2 1.446 m

Ni
B

r

πµ
π π

−⋅
= = = =  
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