شكراً لتحميلك هذا الملف من موقع المناهج الإماراتية

أوراق عمل الوحدة الثانية النهايات والاتصال

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← رياضيات ← الفصل الأول ← الملف

تاريخ نشر الملف على موقع المناهج: 25-09-291 11:45:21 ااسم المدرس: محمود مراد

التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

روابط مواد الصف الثاني عشر المتقدم على تلغرام

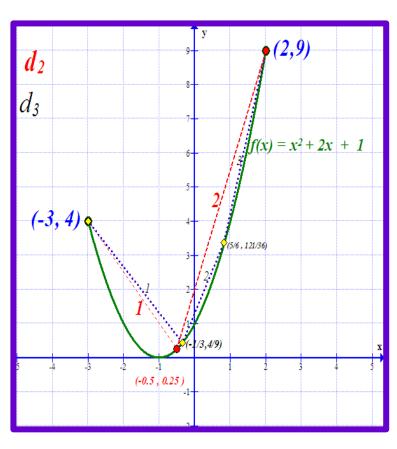
التربية الاسلامية اللغة العربية العربية العربية الانجليزية الرياضيات

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة رياضيات في الفصل الأول		
أسئلة الامتحان النهائي	1	
حل ثاني أسئلة الامتحان النهائي	2	
حل أسئلة الامتحان النهائي	3	
أسئلة الامتحان النهائي	4	
حل أسئلة الامتحان النهائي	5	

T: Mahmoud Murad Math12

الفصل الدراسي الأول

النحايات والإتصال


2023-2022

إعداد: الاستاذ محمود مراد 0528113301

$$f(x) = x^2 + 2x + 1 : -3 \le x \le 2$$

- فأجب اولا: ارسم منحنى الدالة
- f(x) ثانيا : قدر طول المنحنى f(x) عند ثالثا : قدرميل المنحنى f(x) عند
- X=1

2) اوجد كل من النهايات التالية

$$\lim_{x\to 0}\frac{\sqrt{2\,x+3}\,-\sqrt{3}}{\sin\!2x}$$

$$\lim_{x\to 3} \frac{x^3 - 27}{(x-2)^2 - 1}$$

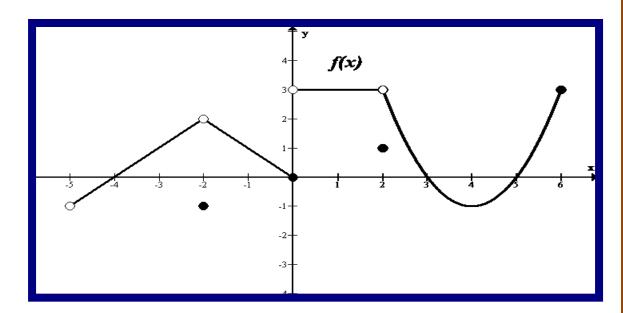
$$\lim_{x\to 0^+} \frac{x^3 \csc x + \tan 2x}{3x + \sin |2x|}$$

$$\lim_{x\to 1} \frac{|2-4x|-2}{3-\sqrt{x+8}}$$

3) أكمل العبارات التالية مع التفسير

1)
$$\lim_{x\to 3^-} \sqrt{x^2 - 9}$$

2)
$$\lim_{x\to 3^+} \sqrt{x^2 - 9}$$


3)
$$\lim_{x\to 4} \sqrt{x^2 - 3x - 4}$$

4) 4)
$$\lim_{x\to 0} x \sin \frac{1}{x}$$

5)
$$\lim_{x\to 0} \frac{1}{x} \left(1 - \frac{1}{x+1}\right) =$$

6)
$$\lim_{x\to 0^-} \frac{x}{|x|}$$

(ان امكن) f(x) واجب (ان امكن) بيان الدالة f(x)

1)
$$\lim_{x \to -2} f(x)$$

2)
$$\lim_{x \to 1} (f(x) - 4x - 5)$$

3)
$$\lim_{x \to 0} f(x)$$

4)
$$\lim_{x \to 0^+} f(x)$$

5) Lim
$$(f(x) + 4f(-2))$$

6)
$$\lim_{x \to 6} f(x)$$

7)
$$\lim_{x \to -4} f(x)$$

8) غير موجودة
$$\lim_{x \to a} f(x)$$

9)
$$\lim_{x\to 4^{-}} \left(f(x) \frac{|x+4|}{4+x} \right)$$

سي تكون عندها نهاية الدالة f(x) لجهه اليمين فقط موجودة هي وقيمتها x

11) قيمة x التي تكون عندها نهاية الدالة f(x) لجهه اليسار فقط موجودة هي ــ وقيمتها ـــ

T1

* قوانين مساعدة في حل المثلث القائم الزاوية:

$$\sin A = \frac{\text{lhaälih}}{\text{lleid}} = \frac{BC}{AC}$$

$$\cos A = \frac{\text{lhaple}_C}{\text{lleid}} = \frac{AB}{AC}$$

$$\tan A = \frac{\text{lhall}}{\text{lhaple}} = \frac{BC}{AB}$$

$$(AC)^2 = (AB)^2 + (BC)^2$$

قوانين ضعف الزاوية

$$\sin(2x) = 2\sin x \cos x$$

$$cos(2x) = cos^2 \, x - sin^2 \, x$$

$$=2\cos^2x-1$$

$$= 1 - 2\sin^2 x$$

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

قوانين المجموع و الفرق

$$sin(a \pm b) = sina.cosb \pm sinb.cosa$$

$$cos(a \pm b) = cosa.cosb \mp sina . sinb$$

$$tan(a \pm b) = \frac{tana \pm tanb}{1 \mp tana \cdot tanb}$$

الدوال المثلثية متساوية القيمة

$$\sin(\frac{\pi}{2} - x) = \cos x$$

$$cos(\frac{\pi}{2} - x) = sin x$$

$$\tan(\frac{\pi}{2} - x) = \cot x$$

$$\sec\left(\frac{\pi}{2} - x\right) = \csc x$$

$$\frac{\pi}{2} = 90^{\circ}$$

* قوانين التربيع (فيثاغورث):

$$\sin^2 x + \cos^2 x = 1$$

$$\sin^2 x = 1 - \cos^2 x \quad , \quad \cos^2 x = 1 - \sin^2 x$$

$$\tan^2 x + 1 = \sec^2 x$$

$$\tan^2 x = \sec^2 x - 1$$
 , $\sec^2 x - \tan^2 x = 1$

$$\cot^2 x + 1 = \csc^2 x$$

$$\cot^2 x = \csc^2 x - 1 \qquad \csc^2 x - \tan^2 x = 1$$

* قوانين المقلوب

$$\frac{1}{\sin x} = \csc x , \frac{1}{\csc x} = \sin x , \sin x \csc x = 1$$

$$\frac{1}{\cos x} = \sec x , \frac{1}{\sec x} = \cos x , \cos x \sec x = 1$$

$$\frac{1}{\tan x} = \cot x$$
, $\frac{1}{\cot x} = \tan x$, $\tan x \cot x = 1$

قوانين (الزوجية و الفردية)

$$\sin(-x) = -\sin x$$
 , $\csc(-x) = -\csc(x)$

$$cos(-x) = cos x$$
 , $sec(-x) = sec(x)$

$$tan(-x) = -tan x , cot(-x) = -cot(x)$$

قوانين نصف الزاوية

$$\sin\frac{x}{2} = \pm\sqrt{\frac{1 - \cos x}{2}}$$

$$\cos\frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan\frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

أم اندن إذ الله الأس

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

$$tan^2x = \frac{1 - cos2x}{1 + cos2x}$$

تحويل المجموع الى ناتج الضرب لمجموع

Sina . sinb =
$$\frac{1}{2}$$
[cos(a - b) - cos(a + b)]

Sina + sinb =
$$2\sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\cos a \cdot \cosh = \frac{1}{2} [\cos(a-b) + \cos(a+b)]$$

Sina - sinb =
$$2\cos\left(\frac{a+b}{2}\right)$$
 . $\sin\left(\frac{a-b}{2}\right)$

Sina . cosb =
$$\frac{1}{2}$$
[sin(a + b) + sin(a - b)]

$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\cos a \cdot \sin b = \frac{1}{2} \left[\sin(a+b) - \sin(a-b) \right]$$

$$\cos a - \cosh = -2\sin\left(\frac{a+b}{2}\right) \cdot \sin\left(\frac{a-b}{2}\right)$$

5) باستخدام القيم العددية الدقيقة استنتج قيمة النهايات التالية (قدر النهايات التالية)

1)
$$\lim_{x\to 1} \frac{\sqrt{5-x} - 2}{\sqrt{10-x} - 3}$$

х	f(x)
1.1	
1.01	
1.001	

X	f(x)
0.9	
0.99	
0.999	

2)
$$\lim_{x \to -1} \frac{|x-3| - 4}{x^2 - 2x - 3}$$

Х	f(x)

Х	f(x)

3)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

X	f(x)

X	f(x)

6) لتكن

$$f(x) = egin{cases} rac{sinkx}{x} & : & x \leq 0 \ rac{x^2 - 4}{2x - 4} & : & 0 < x < 2 \end{cases}$$
 وكانت $x \leq 0$

وكانت

$$K$$
 , ا فأوجد قيمة الثوابت $\lim_{x \to 0} f(x) = \lim_{x \to 2} f(x)$

8 / وجد النهايات التالية

$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

$$\lim_{x \to 0} \frac{2x - |x|}{|3x| - 2x}$$

$$f$$
 o g g بعد g بعد g نهاية تركيب دالتين و $\lim_{x o a} g(x) = l$ نتكن نهاية $g(x) = l$ فإن

$$\lim_{x \to a} f(g(x)) = f \lim g(x) = f(l)$$

$$f(x)=\sqrt{2x+1}$$
 , $g(x)=3+sin(x)$ اِذَا كَانَ $f(g(x))$, $g(x)=3+sin(x)$

اتصال تركيب دالتين f o g

لتكن g دالة متصلة عند x=a وكانت f دالة متصلة عند g

$$\lim_{x \to a} (f \circ g)(x) = (f \circ g)(a)$$
ويكون

$$f(x)=rac{4}{x+1}$$
 , $g(x)=(3+sinx)^{12}$ لتكن fog فهل fog دالة متصلة عند $x=1$

7) لتكن

$$\lim_{x \to 2} f(x)$$
 فأوجد قيمة

$$\lim_{x \to 2} f(x)$$
 فَا وَجِد قَيمة $\lim_{x \to 2} [(2x-1).f(x)-5] = \lim_{x \to 0} \frac{2x^2 + \sin 3x}{x \cos x}$

8) اوجد النهايات التالية

$$\lim_{x\to 0} \left(3x\sin\left(\frac{1}{x^2}\right)\right)$$

$$\lim_{x\to 0^+} \left(3 + \sqrt{x}\cos(\frac{1}{x})\right)$$

8) أوجد النهايات التالية

$$\lim_{x\to 1} \frac{\sqrt[3]{2x+6} - 2}{\sqrt{10-x} - 3}$$

$$\lim_{x\to 0} \frac{e^{2x} + 3e^x - 4}{e^{2x} - 1}$$

$$\lim_{x\to 0}\left[\frac{xe^{2x+1}}{x^2-x}+4\cos^{-1}x\right]$$

$$\lim_{x \to \frac{1}{2}} [4x + 3 \sin^{-1} x]$$

$$\lim_{x\to 1}\,\frac{lne^x\ -\ x^2}{x^2-\ 1}$$

$$\lim_{x\to 1}\frac{1-e^x}{1-e^{-x}}$$

$$x=2$$
 التكن $x^2-x-2 \leq (x-2)f(x) \leq sin(3x-6)$ معرفة حول $\lim_{x \to 2} f(x)$ فأوجد

$$f(t) = t^2 + 2t - 1$$
 ft هو الجسيم في اي للحظة هو الحاثي فاذا كان موضع الجسيم في اي للحظة هو حيث الزمن بالثواني فأوجد

د أ) سرعة الجسيم المتجه عند t = 3 sec

$$\mathbf{v} = \lim_{\mathbf{h} \to \mathbf{0}} \frac{f(t+h) - f(h)}{h}$$

ب) اوجد السرعة المتجه للجسيم في الفترة الزمنية [5,8]

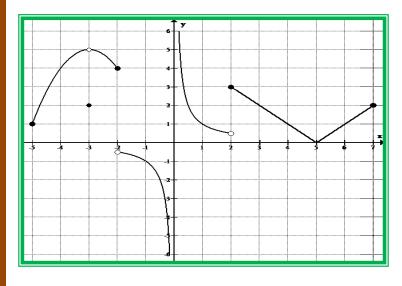
لتكن الدالة f(x) متصلة على مجالها فأوجد قيمة الثوابت a , b متصلة على مجالها

$$f(x) = \begin{cases} \frac{a}{\pi} \cos^{-1} x + 1 & : x < 0 \\ x^2 + 2 & : 0 \le x \le 1 \\ e^{x-1} + b & : x > 1 \end{cases}$$

12-أكمل الجدول الثالي

الدائة	النقطة التي تكون عندها الدالة غير متصة مع ذكر السبب	الفترات التي تكون عليها الدالة متصلة	هل يمكن توسيع الدالة ؟ فسر ؟	الدالة الجديدة المتصلة على نطاق أكبر ان امكن
$f(x) = \frac{x^2 - 2x - 3}{2x - 6}$				
$f(x) = \frac{4x}{x^2 + 4}$				
f(x) = tanx				
$f(x) = \begin{cases} 2x + 1 : x > 1 \\ x^2 + 2 : x < 1 \end{cases}$				

الدالة	النقطة التي تكون عندها الدالة غير متصة مع ذكر السبب	الفترات التي تكون عليها الدالة متصلة	هل يمكن توسيع الدالة ؟ فسر	الدالة الجديدة المتصلة على نطاق أكبر ان امكن
$f(x) = \begin{cases} 2x + 1 : x \ge 2 \\ x^2 : x < 2 \end{cases}$				
$f(x) = \sqrt{1 - x^2}$				
$f(x) = \sin^{-1}(x+2)$				
$f(x) = \sin\left(\frac{1}{x-\pi}\right)$				
$f(x) = \sqrt[3]{x+1}$				
$f(x) = \frac{4}{\ln x^2}$				


استخدم نظرية القيمة المتوسطة للتحقق من ان الدالة $f(x) = x^2 - 7$ لها صفر في الفترة [2,3] ثم استخدم طريقة التنصيف لإجاد الفترة التي طولها $\frac{1}{32}$ والتي تحتوي على الصفر

а	ь	f(a)	f(b)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$

وم اجب
$$ax + b : x < -2$$
 $ax + b : x < -2$ $ax + b : x < -2$ $ax + b : -2 \le x < 1$ $ax^2 - b : -2 \le x < 1$ $ax + b - 4 : x \ge 1$ $ax + b - 4 : x \ge 1$

$$\lim_{x \to 2} (g(x) + 2) = -4$$
 لتكن الدالة $f(x)$ كثيرة حدود يمر بيانها بالنقطة $\lim_{x \to 2} (g(x) + 2) = -4$ فأوجد $\lim_{x \to 2} \left(g(x) + \frac{6}{f(x)} \right)$ مع التفسير

(ي) استخدم الرسم البياني التالي للدالة f(x) للإجابة عن الأسئلة الآتية :

الي:	اولا اكمل الجدول الت
السبيب	قيم X التي تكون عندها f منفصلة

ثانيا أكمل العبارات التالية

ثالثًا: اوجد النهايات التالية (ان امكن)

 $\lim_{x\to 2^+} f(x) ------$

 $\lim_{x\to -2^-} f(x) -----$

 $\lim_{x\to -3} (f(x) + f(2)) - - - - -$

 $\lim_{x\to 0^+} f(x) ------$

 $\lim_{x\to 5}\sqrt{f(x)}-----$

 $\lim_{x\to 0} f(x) -----$

 $\lim_{x\to 2^+} \left(f(x) + \frac{x-2}{|x-2|} \right) - - - -$

 $\lim_{x\to 0}(3f(x)+\frac{\sin 2x}{x})-----$

جموعة قيم b التي تكون عندها	*م
غير موجودة Lim $f(x)$	
x →b	
هي	

*حتى تكون الدالة f متصلة عند X = - 3 يجب أن تكون (3 -) تساوي _____

*مجال الدالة f(x) هو -----

*الفترات التي تكون عندها الدالة f(x) متصة -------

*هل يمكن توسيع الدالة (x) f بحيث تكون الدالة الجديدة المتصلة على نطاق أكبر ------

اوجد النقاط التي تكون عندها الدالة f(x) غير متصلة مع ذكر السبب f(x) وهل يمكن توسيع الدالة f(x) بحيث تكون الدالة الجديدة متصلة على نطاق اوسع (اكتب الدالة الجديدة ان امكن)

1)
$$f(x) = \begin{cases} \frac{x^2 - 2x - 3}{x - 3} : x > 3 \\ 8 : x = 3 \\ x^2 - 5 : x < 3 \end{cases}$$

2)
$$f(x) = \frac{|2x-5|-1}{3x-9}$$

اوجد نهاية كل مما يلي

1)
$$\lim_{x\to 0} \cot(x^2)$$

$$2) \lim_{x\to\infty}\frac{2x}{\sqrt{x^2+4}}$$

3)
$$\lim_{x\to\infty} \frac{x^2-4}{3x^2+x+1}$$

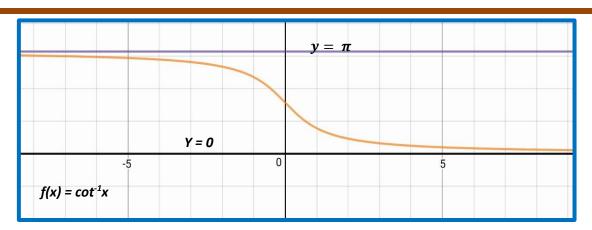
4)
$$\lim_{x\to\infty}\frac{2x}{x^2+3x+2}$$

5)
$$\lim_{x\to\frac{\pi}{2}} e^{-tan^2x}$$

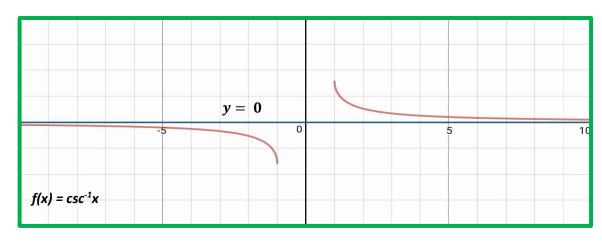
6)
$$\lim_{x\to 0} (1-3x)^{\frac{2}{x}}$$

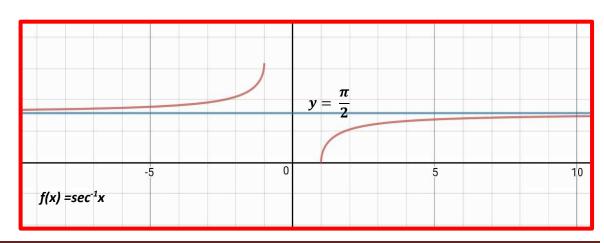
حدد جميع الخطوط التقاربية الراسية و الافقية

$$1) f(x) = 3tan^{-1}2x$$


2)
$$f(x) = 2e^{\frac{1}{x}}$$

3)
$$f(x) = 3 \ln(x-2)$$


$$4) f(x) = \frac{3}{\cos x - 1}$$


5)
$$f(x) = \frac{\sqrt{x^2 + 2}}{3x-6}$$

6)
$$f(x) = \sqrt{x^6 + 5x^2} - x^3$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to \pm \infty} [a_n x^n + a_{n-1} x^{n-1} + \dots + a_0] = \lim_{x \to \pm \infty} a_n x^n$$

$$\lim_{x \to \pm \infty} \frac{[a_n x^n + a_{n-1} x^{n-1} + \cdots \dots + a_0]}{[b_m x^m + b_{m-1} x^{m-1} + \cdots \dots + b_0]} \ = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

T: Mahmoud Murad
0506565584
0528113301
xmmx22@hotmail.com

مع تمنياتي للجميع بالتوفيق والتفوق