

الملف اختبار في الكهربأئية الوحدتين الخامسة والسادسة مع الحل

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← رياضيات ← الفصل الثاني

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة رياضيات في الفصل الثاني	
كل مايخص الاختبار التكويني لمادة الرياضيات للصف الثاني عشر يوم الأحد 9/2/2020	1
تدريبات متنوعة مع الشرح على الوحدة الرابعة(النهايات والاتصال)	2
تدريبات متنوعة على تطبيقات الاشتقاق	3
قوانين هندسية	4
الاختبار القياسي في الرياضيات	5

اختبار في الكهربأئية الوحدتين 5و6 مع سلسلة أينشتاين الخليج

- 1. A light bulb is rated at 30 W when operated at 120 V. How much charge enters (and leaves) the light bulb in 1.0 min?
 - **a.** 17 C
 - **b.** 15 C
 - **c.** 14 C
 - **d.** 13 C
 - **e.** 60 C
- 2. What maximum power can be generated from an 18-V *emf* using any combination of a 6.0Ω resistor and a 9.0Ω resistor?
 - **a.** 54 W
 - **b.** 71 W
 - **c.** 90 W
 - **d.** 80 W
 - **e.** 22 W
- 3. If 5.0×10^{21} electrons pass through a 20 Ω resistor in 10 min, what is the potential difference across the resistor?
 - **a.** 21 V
 - **b.** 32 V
 - **c.** 27 V
 - **d.** 37 V
 - **e.** 54 V
- 4. A wire (length = 2.0 m, diameter = 1.0 mm) has a resistance of 0.45 Ω . What is the resistivity (in Ω .m) of the material used to make the wire?
 - **a.** 5.6×10^{-7}
 - **b.** 1.2×10^{-7}
 - **c.** 1.8×10^{-7}
 - **d.** 2.3×10^{-7}
 - **e.** 7.1×10^{-7}

سلسلة أينشتاين الخليج Mr.Rami

- Most telephone cables are made of copper wire of either 24 or 26 gauge. If the resistance 5. of 24-gauge wire is 137 Ω /mile and the resistance of 26-gauge wire is 220 Ω /mile, what is the ratio of the diameter of 24-gauge wire to that of 26-gauge wire?
 - 1.6 a.
 - **b.** 1.3
 - **c.** 0.62
 - **d.** 0.79
 - 0.88 e.
- A conductor of radius r, length l and resistivity ρ has resistance R. What is the new **6.** resistance if it is stretched to 4 times its original length?

 - R c.
 - **d.** 4*R*
 - **e.** 16*R*
- A small bulb is rated at 7.5 W when operated at 125 V. Its resistance (in ohms) is 7.
 - 0.45. a.
 - 7.5. b.
 - 17. c.
 - 940. d.
 - **e.** 2100.
- ones) at room temperature

 d. 45.Rami

 d. 45.Rami

 d. 45.Rami A small bulb is rated at 7.5 W when V. The tungsten filament has a 8. erated at When the filament is hot and ature (20 °C). What is the resistance

The electron density in copper is 8.49×10^{28} electrons/m³ rge is e = 1.69. \times 10⁻¹⁹ C. When a 1.00 A current is present 0 cm² crossr.Rami ينشناين الخليج section, the electron drift velocity the current density, is

- **10.** What is the magnitude of the potential difference across the 20 Ω resistor?
 - 3.2 V
 - b. 7.8 V
 - 11 V c.
 - **d.** 5.0 V
 - 8.6 V e.

- At what rate is thermal energy generated in the 5 Ω resistor when $\varepsilon = 24$ V? 11.
 - 13 W a.
 - **b.** 3.2 W
 - 23 W c.
 - **d.** 39 W
 - e. 51 W

- When a 20-V *emf* is placed across two resistors in series, a current of 2.0 A is present in **12.** each of the resistors. When the same emf is placed across the same two resistors in parallel, the current through the *emf* is 10 A. What is the magnitude of the greater of the two resistances?
 - a. 7.2Ω
 - **b.** 7.6Ω
 - c. 6.9Ω
 - **d.** 8.0Ω
 - 2.8Ω e.

- 13. A resistor of unknown resistance and a 15 Ω resistor are connected across a 20-V *emf* in such a way that a 2.0 A current is observed in the emf. What is the value of the unknown resistance?
 - a. 75Ω
 - **b.** 12Ω
 - c. 7.5Ω
 - d. 30Ω
 - e. 5.0Ω

- Mr.Rami سلسلة أينشتاين الخليج
- **14.** Determine ε when I = 0.50 A and $R = 12 \Omega$.
 - **a.** 12 V
 - **b.** 24 V
 - **c.** 30 V
 - **d.** 15 V
 - **e.** 6.0 V

- **15.** Determine the current in the 10-V *emf*.
 - **a.** 2.3 A
 - **b.** 2.7 A
 - **c.** 1.3 A
 - **d.** 0.30 A
 - **e.** 2.5 A

- **16.** Determine the magnitude and sense (direction) of the current in the 500 Ω resistor when I = 30 mA.
 - a. 56 mA left to right
 - **b.** 56 mA right to left
 - c. 48 mA left to right
 - d. 48 mA right to left
 - e. 26 mA left to right

- 17. What is the potential difference $V_B V_A$ when the I=1.5 A in the circuit segment below?
 - **a.** +22 V
 - **b.** −22 V
 - $\overline{\mathbf{c.}}$ -38 V
 - **d.** +38 V
 - **e.** +2.0 V

سلسلة أينشتاين الخليج Mr.Rami

18. If $\varepsilon_1 = 4.0 \text{ V}$, $\varepsilon_2 = 12.0 \text{ V}$, $R_1 = 4 \Omega$, $R_2 = 12 \Omega$, $C = 3 \mu\text{F}$, $Q = 18 \mu\text{C}$, and I = 2.5 A, what

is the potential difference $V_a - V_b$?

- **b.** 30 V
- **c.** 5.0 V
- **d.** -5.0 V
- **e.** -1.0 V

19. If I = 0.40 A in the circuit segment shown below, what is the potential difference $V_a - V_b$?

b. 28 V

c. 25 V

d. 34 V

e. 10 V

20. In an *RC* circuit, how many time constants must elapse if an initially uncharged capacitor is to reach 80% of its final potential difference?

سلسلة أينشتاين الخليج Mr.Rami

- **a.** 2.2
- **b.** 1.9
- **c.** 1.6
- **d.** 3.0
- **e.** 5.0

- سلسلة أينشتاين الخليج Mr.Rami
- 21. How many time constants must elapse if an initially charged capacitor is to discharge 55% of its stored energy through a resistor?
 - **a.** 0.60
 - **b.** 0.46
 - **c.** 0.52
 - **d.** 0.40
 - **e.** 1.1
- 22. At t=0 the switch S is closed with the capacitor uncharged. If C=30 μ F, $\epsilon=30$ V, and R=5.0 k Ω , at what rate is energy being stored in the capacitor when I=2.0 mA?

- **b.** 40 mW
- **c.** 44 mW
- **d.** 36 mW
- **e.** 80 mW

سلسلة أينشتاين الخليج Mr.Rami

23. At t = 0 the switch S is closed with the capacitor uncharged. If $C = 40 \mu$ F, $\epsilon = 50 \text{ V}$, and $R = 5.0 \text{ k} \Omega$, how much energy is stored by the capacitor when I = 2.0 mA?

R

- **a.** 20 mJ
- **b.** 28 mJ
- **c.** 32 mJ
- **d.** 36 mJ
- **e.** 40 mJ
- **24.** What is the equivalent resistance between points a and b when $R = 30 \Omega$?

- a. 27Ω
- **b.** 21Ω
- c. 24Ω
- d. 18Ω
- **e.** 7.5Ω
- **25.** What is the equivalent resistance between points a and b when $R = 12 \Omega$?

- **b.** 16Ω
- c. 24Ω
- **d.** 28Ω
- e. 6.0Ω

26. What is the equivalent resistance between points A and B in the figure when $R = 20 \Omega$?

- **b.** 63 Ω
- c. 70Ω
- **d.** 84Ω
- e. 140Ω

- 27. In a loop in a closed circuit, the sum of the currents entering a junction equals the sum of the currents leaving a junction because
 - **a.** the potential of the nearest battery is the potential at the junction.
 - **b.** there are no transformations of energy from one type to another in a circuit loop.
 - c. capacitors tend to maintain current through them at a constant value.
 - **d.** current is used up after it leaves a junction.
 - **e.** charge is neither created nor destroyed at a junction.

- 28. The circuit below contains three 100W light bulbs. The *emf* $\varepsilon = 110$ V. Which light bulb(s) is(are) brightest?
 - a. A
 - **b.** B
 - **c.** C
 - **d.** B and C
 - **e.** All three are equally bright.
- **29.** The circuit below contains three light bulbs and a capacitor. The *emf* $\varepsilon = 110$ V. The capacitor is fully charged. Which light bulb(s) is (are) dimmest?
 - **a.** A
 - **b.** B
 - c. C
 - **d.** A and B
 - **e.** All three are equally bright (or dim).

- **30.** The circuit below contains three light bulbs and a capacitor. The emf is 110 V and the capacitor is fully charged. Which light bulb(s) is (are) brightest?
 - **a.** A
 - **b.** B
 - **c.** C
 - **d.** A and B
 - e. A and C

31. The capacitors are completely discharged in the circuit shown below.

The two resistors have the same resistance R and the two capacitors have the same capacitance C. After the switch is closed, the current

- **a.** is greatest in C_1 .
- **b.** is greatest in C_2 .
- c. is greatest in R_1 .
- **d.** is greatest in R_2 .
- e. is the same in C_1 , C_2 , R_1 and R_2 .

