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Chapter 5

Applications of
the Definite
Integral

5.1 Area Between Curves

1. Arca = /13 [~ (2~ 1)] do

2
2. Area = / [(z* 4+ 2) — cosz]dx
0

.133 2
= (= 42z —si
(3 X SlIlLI,‘)

= — —sin2
0
3. Area :/ [e” — (x — 1)] dx
-2

0
N .’E2+ 0
=l|le — — T
2

4
4. Area :/ (22 — e ®)dx
1
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5.1. AREA BETWEEN CURVES

2 Vin4
2 X
= 2% — —
2,
1 In4
15
~ 3—In4
2

0
2
10. Area:/ <2+1+x> dx
—1 X
1
2
+/O (x2+1x)dx

2 10

= (2tan" 'z + %)

0
11. Area:/ :cfi dx

_92 x2 +1

2

5%

—|—/O [x2+1—x]dx

2
=2 5736—30 dx

o |22 +1
2

- 5 9 x?

=5[n5—Inl1] —[4—0]
=5lnb5—-4

3

/4
12. Area = / (cosz — sinx)dx
0

5m/4
+ / (sinx — cosx)dx
w/4
27
+ / (cosx — sinx)dx
57 /4

= (sinx + cosx) g/4

+(—cosz — sin x)|i7;£4

+(sinx + cos m)|§:/4

=42

305
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13.

14. Area%/

15.

Area = /

8767
Area = / (sina: — xz) dx
0

Q

(—e‘”—i—aﬁ—

(=1 40— 0) — (—1.08235)

.08235

(1—2?) — e¥dx
x3> 0
3 /1 s

-1 -0.8 -0.6 -0.4 -0.2 0

0.72449
(1 —2z)— 2%dx
1.2207
~ 1.845787

x

—cosz — =
3

135697

3

)

8767

0

CHAPTER 5. APPLICATIONS OF THE DEFINITE INTEGRAL

0.5

0.25

0.89055
16. Area~ / (cosz — a*)dx
—.89055

~ 1.330782

1.3532
17. Area = / (2 +x— x4)da:

—1

1.3532
x? 2P
— (s T
2 5 )|,
= 4.01449
16
12
8
4
R rars aunansc ERRRFRERS)
«
1.5645

18. Area / nz — (2% — 2)]dx
0.13793

~2 1.124448



5.1. AREA BETWEEN CURVES 307

1
\ 21. Area :/ [z — (—a)]dx
: 0
i 0.2 0.4 0.6 O.Z 1 .2 1. 1.6 1
° =2 [ xdr=2"
0 0
- —1-0=1
. «
19. Area = / [(2—vy) —yldy
L o
=/ (2 = 2y]dy
0
1
= 2y -v)l,
= — =1
2 Area of triangle = % (base)(height)
—1@-(1)=1
0. 2
22. Area = / [Sy — (2 + y2)]dy
04 1
o 0.5 1 1.5 2 3 2

»
I
7 N
oW
N
[\v]
|
Do
N
|
|
N———

Area of triangle = 1 (base)(height)

=3-(2)-(1)=1 sy (3
20. Area:/oz[(ﬁ_y)_y]dy 1(6 ! 3) <2 2 3)
6

= /02 (6 — 2y)dy

2
= (6y —v*), ]
=(12-4)-(0-0) 19
=38 ] /
Area of Trapazi =a+b)(h 1 32
:r; - (8) .r(QI:; iuém 2@+ o)) 23. Area = / (3 — %) — 22]dx = =
2 -3
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OO T T T KT T T T [T T T T[T T T T [TT

24. Area:/ (4—y)dy = % 27. / felz {fc( ) +4f.(.1)
-2 +2fc( )+4fc( 3) + f.(.4)} = 291.67
: / fole) % U 0) + 470D

+ 2fe( 2) + 4fe( 3) + f.(4)} = 102.33
S fe@) = 5t fol@) | 291.67 — 102.33
[t fol) T 29167

=.6491....
1—.6491 = .3508,

so the proportion of energy retained is about

35.08%.
[ (@) = fol))da
28. Energy = -
o Jo fe(x)dx

_J fe@yde [ fe(a)de
Iy fe(x)de [ fe(x)d
. _ 1 Jo Jew)dx
I fe(x)da
25 018
2.0 fc(x)dl'
0 045

" [£o(0) 4 4£.(0.045) + 2£.(0.09)

00 025 05 075 1.0 125 15 + 4fc(0135) —+ fC(OIS)]
0.045
= =5 [0+ 4(200) +2(500) + 4(1000)

+ 1800]
47 1— _
26. Area = / (nx _ 21”) dx 31?
1 T 2 +1 .
Yng S| fe(x)dz
N / Fial / L 0 045
1 ' ———[fc(0) + 4f.(0.045) + 2.(0.09)
1 [ 22
T ) P2 —5313(0.135)+fe(0.18)}
1n2 1 4 = 'T(o + 4(125) + 2(350) + 4(700)
_ "z 1 1 9
- [ gt etghle H']l +1800)
= 87
In* Inl7 7 In2

=5~ tan —14 + 5 + 1 2 Putting these together gives the proportion of
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29.

30.

31. A

AREA BETWEEN CURVES

energy lost as
87
Energy ~ 1 — — =~ 0.2368.

114
/ fla) % 3 U0 + 45,75
+2£,(1.5) + 4£,(2.25) + f(3)} = 860

/ e {fr( )+ 4£,(.75)

+ 2fr(1.5) + 4fr(2.25) + £+(3)} = 800

860 — 800
1- (=) =.9302
( 860 )

Energy returned by the tendon is 93.02%.

As in Exercise 28, the proportion of energy re-
turned by the arch is given by

B fOS fs (m)dx
Jy foa

/fs )dx

OJ[\.')

= g[O + 4(300) + 2(1000) 4 4(1800) + 3500]
~ 8366.67

/fr

F [Fr(0) + 410 (2) + 2/ (4) + 4/-(6) + fr(8)]

OJ[\')

= 5[0 + 4(150) + 2(700) 4 4(1300) + 3500]
~ 7133.33

Putting these together gives the proportion of
energy lost as

7133.33
E ~1-— ~ 0.1474.
TeTey 836667 01T
3
/ fl@)de = —— 2 dx
. ;
1 3 27
- =L _0=3
(3 3 ) o 9

Relative to the interval [0,3], the inequality
2?2 < 3 holds only on the subinterval [0,/3).
We find

/Oﬁ(?,—x?)dx: (395—”;3)

= (3V3-v3)-(0-0)
= 2V/3, whereas

/; (2° = 3)dzx = (”;3 - 3x>

VE]

0

3

V3

32.

33.

309

=(9-9) - (V3-
= 2\/3, the same.

3v/3)

Draw the graphs of the given functions,

2z
and y = mfor x> 0.

v= (x+1)

It may be observed from the graph that these
functions cut each other at a single point at

x = 1. From the graph it is observed that
the curve y = —— lies above the curve
YT @t
22 40 < w <1 fora > 1
= ———— for T or T
y (x2 + 1) —_ —_ ) )

Y lies above th 2
= ——— lies above the curve y = ——
RGEE R
Let us find the area bounded by these curves
between x = 0 and x = 1. It is given by

1
/((xil) N (:1:22il)>d$

—1In (a:2 —|—1))‘

1

= (ln (x4 1)2 .

=In2>In
=0<t<l1

Therefore

In (2) :O/t<(xi1) - (wfj— 1)>dx
2= )]

0
or In (g) —In (&Tij)

=32 +3=2t2+t+1)
ie. t=2+3

But as 0 < t < 1, we consider t = 2 — /3

Let y; = ax® +bx + ¢, y» = ma +n, and
u = y; — yo2. If we assume that a < 0, then
y1 > y2 on (A, B) and the area between the
curves is given by the integral
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34.
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/. " s = po)da

B 5 B
= / udr = ux|, —/ xdu.
A A

By assumption, u is zero (y; = y2) at both A
and B, so the first part of the last expression
is zero. We must now show that

/Bazdu/Bz[2a$+(bm)]dz

A A
is the same as
lal(B — A)*/6
= |a|(B® —3B*A + 3BA? — A%)/6.
But again because u = 0 at both A and B, we
know that
aA? 4+ bA+c=mA+n and
aB? +bB +c=mB +n.
By subtraction of the first from second, fac-
toring out (and canceling) B — A, we learn
a(B + A) = m — b, so that our target inte-
gral is also given by
B
A+ B

—2(1/ x(x — i )dx

A 2
= lal{2(B® - A%)/3 — (A+ B)(B* - A%)/2}
and the student who cares enough can finish
the details.

The case in which a > 0(y2 > y1) is not essen-
tially different.

Perhaps the most straightforward way to han-
dle this problem is by brute force. First, the
area is given by

B
Area = :I:/ [(az® + bx? + cx + d)

- (Ax2 + maz + n)|dx
:%(A4_B4)+ (b;k)(BS_AB)

(c—=m)

+ (B* — A%) + (d — n)(B — A).

We can set up equations for the fact that the
graphs meet at A and B. At A and B, we set
the functions equal. At B, we set the deriva-
tives equal.

aA® 4+ bA? +cA+d=kA* +mA+n

aB* +bB* +cB+d=kB>+mB+n

3aB? +2bB +c=2kB+m

We now have a system of equations. We solve
the last equation for m and plug the result
in for m in the previous two equations. This
transforms the three equations to

aA3 + (b—k)A% — 3a AB?
—2(b—k)AB+d—n=0

35.

36.

37.

—2aB3— (b—k)B>+d—n=0

m =3aB?+2(b—k)B +c.

We solve the second equation for n and plug
the result into the first equation which then
gives

aA®+ (b—k)A? — 2(b— k)AB — 3aAB?
+2aB3+ (b—k)B?=0

n=—2aB%— (b—k)B%+d

m =3aB?+2(b—k)B +c.

Finally, solving the first equation for k£ gives
k=aA+2aB+b.

We now substitute m, then n and then finally
k in to the equation for area. After simplifying
this finally gives
+a(A - B)*

12 '

Let the upper parabola be

y =1y = gz 4+ v+ h and let the lower be

y = y2 = pr>+v. They are to meet at x = w/2,
so we must have

qu? /4 + h = pw? /4, hence

h=(p—quw?/4or (¢ — p)w? = —4h.

Using symmetry, the area between the curves

is given by the integral
w/2

2 (y1 — yo2)dx
0

Area =

w/2
= 2/0 [h+ (q — p)a®)da

= 2[hw/2 + (q — p)w?/24]
wlh + (g — p)w?/12]
= wlh — 4h/12] = (2/3)wh.

Solve the equation 2 — 22 = max we get

m+Evm?2+8

So the area between y = 2 — 22 and y = mx is
/(m+\/m2+8)/2
(

(2 — 2% — ma)dx

m—vm?2+8)/2
( BB g\ |2
= (22— — — ) ‘
3 2 (m—+vm?2+8)/2

1
_ g(mQ + 8)3/2

The minimum of (m? + 8)3/2/6 happens when
m = 0 and then

L5 a2 _ 1 o3 8V2
z ] —-.g32 2V~
g T =g 3
Solve for z in z — 2% = L we get

1++v1—-4L
r=——"

2
(1-vI=4L)/2
Ay :/ L — (z — 2?%)|dx
0



5.1.

38.

39.

AREA BETWEEN CURVES

22 23 (1-v1-4L)/2
=|(Lr— —+ —
2 3

0

(14+v1—4L)/2
Ao :/ [(z — 2?) — L]dx
(1—vI—4L)/2
(1+vI—4L)/2

2 3
(20
2 3 (1-vI=1L)/2

By setting A1 = As, we get the final answer

L=
3

Solve for z in  — 22 = kx we get
r=0x=1—k

And the areas are

1
A1—|—A2:/ (af—x2)dx:1
0 6

1—k 1
As = / kxdx + / (z — 2%)dx
0 1

—k

k2 |F x? 28
2 (59
2 2 3 /)11 k
Rk 1 (kP (k)
N 2 6 2 3
1
===k
We want A; = Ao, that is, we want Ay = 1/12,
that is,
1
1-(1-k)3P==
1=y
1—k)® =<
-0 =
1
k=1—-—

2
(a) Consider [ (2z —2?)dx
0

The integrand consists of the two curves

2

y = 2z and y = z*. Both these curves

2

intersect, when 2x = z° i.e. whenx

0 orx = 2. therefore The given integral
represents the area between the curves

y = 2z and y = 22 Which is As.

2
(b) Consider [ (4 —2?)dx
0

The integrand consists of two curves y = 4

2

and y = x°. Both these curves intersect
ie. when x = -2 orz = 2.
But we consider x = 2, as the area lies
in the 1st Quadrant therefore the given
integral represents the area between the
curves y = 4 and y = 2 which is A1 + As.

when 4 = 22

311

(¢) Consider ]L (2— ) dy

Here the limits of integration correspond
to the y-coordinates of the point of inter-
section of the two curves. This is because
here the variable is y and not z. The in-
tegrand consists of two curves x = 2 and
z =y (le.y = 2?withz > 0). Both
these curves intersect, when 2 = /y
i.e. when y = 4. therefore The given in-
tegral represents the area between the
curves = 2 and x = ,/y which is A3
4

(d) Consider / (\/gj— %)dy

Here the loimits of integration correspond
to the y-coordinates of the point of in-
tersection of the two curves. This is be-
cause here the variable is y and not =z.
The integrand consists of two curves z =

VY (i.e.y = z?witha > O) and z =

Both these curves intersect, when %

(AN

Vy ie. wheny? —4y = Oie aty =
Oandy = 4. therefore the given integral

represents the area between the curves

r = /y and r = % which is As(same

as part (a)).

(a) Consider the area Az + As. It may be ob-

served from the part (a) of the Exercise
39 that, Ay is the area bounded by the
curves y = 2z, y = 22 between the or-
dinates x = 0 and x = 2. It may also
be observed from the part (c) of the Ex-
ercise 39 that, As is the area bounded by
the curvesz = 2and y = 2?ie.x = /iy
therefore from the given figure Ay + As is
the area bounded by the curves y = 2z

ie. x = % and z = 2. therefore

4

Ay + As =/(2—%)dy.

0
Note that here we have y as the variable.

(b) Cousider the area Ay + A, refer part (b)

of the Exercise 39 It is in fact the converse
of that part.

(¢) Consider the area Aj, from the given fig-
ure it may be observed that, A; is the area
bounded by curves y = 4 and y = 2x. Be-
tween the ordinatgs z = 0and x = 2.

Therefore A1 = [ (4 —2x)dx
0
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41.

42.

43.
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(d) As refer part (c) or the Exercise 39. Note
that here we have y as the variable.

The area between two curves y = sin® (z) and
y=1, for0<x<t15glvenby
¢

f(t):/(l—smx /cosax

0

1

5/ 1+ cos2z)d

10

=3 ]l + [51n2x]
1 1

= f(t)==t+ —sin2t

2 4

For finding the critical points,
1’ (t) =0, therefore

1 1

3 + Zcos2t~ (2) =0.

= 14cos2t=0

orcos2t = —1

= 2t=mnmfor n=1,3,5,......
ort= % forn=1,3,5,......

Now, f”(t) = —sin 2t substituting the value
of t in f”(t), we get f”(t) = 0. Therefore,
t = 7121 forn = 1,3,5,...... are the points of
inflection.

Given g (x) is a continuous function of z, for

x> 0and |g(x)] < 1. f(t) is the area between

y =¢g(z) and y = 1 for 0 < = < ¢, therefore
¢

f(@t)=[(1—g(x))de. As g(z) has the local
0
maxima at * = a, ¢’ (a) =0 and ¢” (a) < 0.
Now from (1)
-9

fr)=(0-g()

= f"(t) =g (t)

= f"(a) = —g'(a) =0
also f' (a) = (1 - g (a)) = 0.

Thus f (t) has an point of inflection at = a
and a need not be the critical point, it is only
if g (a) = 1. If there is a local minima at x = a,
then ¢’ (a) = 0 and ¢” (a) > 0. This does not
affect the answer.

f(4) =16.1e%7® = 21.3

g(4) = 21.3¢9404=4) = 213

21.3 represents the consumption rate (million
barrels per year) at time ¢ =4 (1/1/74).

10
/ (16.1e-°7t — 21.3e-04(t—4>) dt
4

10
- (230@0” - 532.5e~04<f*4>) ’

4
= 14.4 million barrels saved

44.

45.

46.

47.

48.

10

Area = [76e%-03F — (50 — 6e-99%)] dt

~ 483.616(5)

This area represents amount of wood used
by firewood that was not replaced with new
growth.

For t > 0,
b(t) — 26.04t Z 26.02t — d(t)

10
/ (26.0415 _ 26.02t)dt
0

_ (506.04:5 _ 1006.021&)
= 2.45 million people.
This number represents births minus deaths,
hence population growth over the ten-year in-
terval.

10
0

These curves intersect when

In3—In2
T = % ~ 20.27325541
The area between the curves for 0 < ¢t < T
is the decrease in population from 0 < ¢t < T
(because b(t) < d(t) in this time period).
The area between the curves for T < ¢t < 30
is the increase in population from 7" < ¢t < 30
(because b(t) > d(t) in this time period).
The change in population is given by the inte-
gral:

3
AP = /0 [b(t) — d(t))] dt

3
260.04t

— 4202 gt
0
= 7.3120 million people

Without formulae or tables, only rough or
qualitative estimates are possible.

[ time [ 1 [ 2] 3 [ 4] 5]
[ amount [ 397 [ 403 | 401 [ 412 [ 455 |

V(3) ~ 374,V (4) = 374,V (5) ~ 404

time

The change in amount of water is equal to the
integral of the difference between the functions
(the rate in minus the rate out). Approximat-
ing this integral:

1
/ (Into — Out) dt ~ 0

0
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49.

50.

2
/ (Into — Out) dt ~ —8
03
/ (Into — Out) dt =~
04
/ (Into — Out) dt =~
0

5
/ (Into — Out) dt ~ 4
0

Therefore V(1) = 400, V (2) ~ 392,
V(3) ~ 374, V(4) ~ 374, V(5) ~ 404.

—26

—26

In this set-up, p is price and ¢ is quantity. We

find that D(q) = S(q) only if D(q) = S(q).
q q?
107E72+ﬁ+1200

12000 — 30g = 2400 + 10q + ¢>

¢ + 40 — 9600 = 0

(¢ —80)(¢+120) =0

within the range of the picture only at ¢ = 80.
Thus ¢* = 80 and p* = D(¢*) = S(¢*) = 8.
Consumer surplus, as an area, is that part of

the picture below the D curve, above p = p*,
and to the left of Q = ¢*.

Numerically in this case the consumer surplus
is

/Oq* [D(q) — p*]dg = /080 (2 - %) dq

q
= 90—
17 %0],
The units are dollars (¢ counting items, p in

dollars per item).

= 160 — 80 = &80.

The intersection point is approximately
(¢*,p*) = (76,8). Therefore

q
PS =p*q */ S(q)dgq
0

76 q q2
:(8)(76)*/0 (2+120+1200> dx

86849
= 5 ~ 386.00.

51.

52.

313

The curves, meeting as they do at 2 and 5, rep-
resent the derivatives C' and R’. The area (a)
between the curves over the interval [0, 2] is the
loss resulting from the production of the first
2000 items. The area (b) between the curves
over the interval [2,5] is the profit resulting
from the production of the next 3000 items.
The area (c), as the sum of the two previous
(call it (a) + (b)), is without meaning. How-
ever, the difference (b) — (a) would be the total
profit on the first 5000 items, or, if negative,
would represent the loss. The area (d) between
the curves over the interval [5, 6] represents the
loss attributable to the (unprofitable) produc-
tion of the next thousand items after the first
5000.

Profit increases when revenue is larger than
cost. The point x = 2 represents a local min-
imum in profit. The point x = 5 represents a
local maximum in profit.

5.2 Volume: Slicing,

-

w

Disks and Washers

. V:/_SIA(m)dx:/_i(m+2)dx

(5ol G-t

=12
10 10
V= / 10e%91 % dz = (1000e"'%)
0 0
=1000(e*! — 1)
2 2
V= 7r/ (4—2)%de = ——(4— x)?"
0 0
™ 561
——(8—64) = =~
3t )=
4
V= 2(zx 4 1)%dx
i 1
(227 + 4a + 2)dr = T8
1
(a) f(0)= 750 f(500) =0
f(x) = ;O%x + 750 2
5 75
V= ——x+750) d
/0 < 50:17+ > X
50 (7503 3
=— . (== —-0)=93,750,000 ft
75 ( 3 ) Y
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. . . 2 2
(b) 'In this case, essentially the same integral 11. V= (4 +sin E) de
is set up as in Part (a): o
0 (750 2 = w/% (16 + SSm + sin? ) dz

V= — | (500 —y)“d - B 5

/ (500) y) dy o 2
_ 1 1 2m

82,031,250 cubic feet 0 (1633 _ 16 cosg n o= sinx)
0

6. f(0) =300, f(160) =0

15 = 3372 + 327 in®
f(z) = ——x+ 300

8
1 15 2
V:/ 60 —§x+300 dx
8 E—o = 4,800,000 ft* /
15 3 R i

This volume is one-eighth of the volume in Ex-
ample 2.1.

7. The key observation in this problem is that by
simple proportions, had the steeple continued
to a point it would have had height 36, hence tﬁ
6 extra feet. One can copy the integration
method, integrating only to 30, or one can sub-
tract the volume of the missing “point” from

the full pyramid. Either way the answer is 2m o2
3236 1\2 6 215 12. V:/ 7T<4—Sln2) dx
2 (Z) L2 3. 0
3 (2) 37 2 o LT T
=/ 77(16—851n§+51n 5) dx
8. This volume is easily computed using elemen- 0 )
: = 337% — 327 in®
tary geometry formulas. Using calculus and
the triangular cross sections, the area of cross
sections is 150, so the total volume is
V= / 150dx = 9000. |
0 i
60 60 t:
9.V :/ raldy = 71'/ 60[60 — y]dy 1]
0 0
2760 2 4
Y 5 60 ]
=607 |60y — =| =607 |60° — — H
< fow- ), el
3
= O _ 1080007 £°
10. The radius of the cross-section is given by
r = x, therefore the volume is given by
120 120 1
V= /chdy =7 / 120 (120 — y)dy 13. V = /0 A(x)dx
0 1
97120 N 370y [A(0) +4A(.1) + 2A(.2)
— 1207 - [120y - y] 3(10)
2 1o + 4A(.3) + 2A(4) + 4A(5)
= 1207 [1202 - 120] +2A(.6) +4A(.7) + 2A(.8)
, 2 +4A(.9) + A(1.0)]
120 74
== T — 864,0007 ft3. = 55 ~ 0.2467cm’”
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1.2

14. V :/ A(x)dx
0

2

=

Q

]

[£(0.0) +4£(0.2) +2f(0.4)

4 4£(0.6) + 2(0.8) + 4£(1.0)
£ f12)
03 [0+ 4(0.2) + 2(0.3) + 4(0.2)

+2(0.4) +4(0.2) + 0]
~ 0.253333.

15. V = /2 A(x)dx
2
@ [A(0) +4A(.5) + 2A(1)

+A(15) + A(2)]
=25 ft?

16. V = /08A
CL7(0.0) +47(0.1) +2/(0.2)

4 4£(0.3) + 2(0.4) + 4£(0.5)
4 2£(0.6) + 4£(0.7) + £(0.8)]

- %[2.0 +4(1.8) +2(1.7) + 4(1.6)
+2(1.8) + 4(2.0) + 2(2.1) + 4(2.2)

+2.4]
~ 1.533333

17. (a) V = 7r/0 (2 — 2)%dx

V2
18. (a) V fw/ [(47w2)27(z2)2} dz
/2 xS 7
=T [16x — 8} e

315

20. (a) V:ﬂ/l(\/gj)gdy—ﬂ/(yQ)Qdy

0

62
21. (a) V =4ne* — 7T/ (Iny)3dy
1
= 4re? )
— [y(ny)* —2yIny + 29[|
= 4me? — (2% - 2)
=2m(e? + 1).
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~ 9.266

2z
=7 (e +46$>
2 0
4 1
“rl(5 o)) o
4 9
™ (62 +4e? — 2)

4 A 0
_ -y
1 25. (a) V= /71' (2 ) dy
22. (a) V= 7r/ [22 — (2 — secz)?]dx °
—m/4 T
/4 :*/ 16 — 8y +y*)dy
= <47T/ secxdx) 4 ( )
—m/4 0 374
7T Y
m =~ |16y — 4y + =
:—(wtanm|7/ﬂ4/4> 4 { v 243}016
~ 15.868 Tl —a g = = 28
R

/4
(b) V= 7r/ sec® xdx
—m/4

=7 tanx|71;4/4 =27

. v=n [ (o) @

0
_r 2 1 2 372
=5 Il + 2l W{16x16x+4x}
T 3 2 3
=~ T2 ~ 0637
2 2
2 2 —7{32—32 33]—33”

dx

1 2
b) V = 2_(g_ [T
(b) 7T/O l?) (3 x2+2)
1
T 3
7T/O ( \V 22 +2 x2+2> v
e :W/(16—4x2)dx
=6 —d
" 0 '7324_21. v 0a2

3 ! =7 {1633 — 43]
=—iln|x2+2\ 3 1,
2 0 _ 5o 32] _ 64n
~ 7.4721 =7 “3| T 3
24. e_c”z = 22 when z ~ +0.753 2 , 2 ,
0.753 (d) V= /W(8—2x) d:v—/w(4) dx
@ V=r[ e @ " g
~3 1130.753 2
o :w/(64—321:+4x2—16)dx

0.753 2
(b) V = 7r/ (e +1) ’
0.753 [ 22 41:3} 2
=T
0

_ (1,2 + 1)2]d$ 481 — 32? + ?
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32 1287
= — 4 _ = —
T [96 64 + 3 } 3
4 4 )
_ 2, [ (¥
(e) V—/W(Q) dy /W(Q) dy
0 0
4

43
16 327
= 1_7 [ —
W[6 3} 3
4 2 4
(f)V/w(S;y> dyf/ﬂ(Q) dy
0
[ (64— 16y + 1
:W/<6yy_4>dy
4
0

™ y:oyP !
=T leay—16L + L _16
4[ y g T y]

3
64 2567
=764+ —| = ——
m [ + 3 } 3
2 2 5127
26. (a)V:/ m(4—2%) " do = ——
Y 15

(b) vV :/O 7(v/y)dy = 87

2
(c) V:/ 7 [(6 —2)* — 2%] dx

_ 384m
T 5
(d) V= i m[6* — (24 2%)%] dz
1408w
15
(e) V= m[2+vy)*—(2-vy’ldy
/40 1/2 16 59 !
= 8my “dy = gﬂy
0 0
128
ER
4
() V= 7[(4+vy)?-(@—-vy)?ldy

0

4
2 .
:/ 167 yl/zdy = 3—7ry3/2
0 3

4

0

28.

>

S~—
<
I

Il
3

Il

3

|
oS,
N————

—~
o
~
<
Il
=

Il
3

,\

&

<

I

S

O\HO\H U“ o S—,

3

—

—

I

S

o

QU

<

Il
3

Il

3
N\
<

\

W >
<

w
~
[\v]
+

o<
~

—
o,
—
<
Il

Il
3

S~ 55—,

Wl N
8

w

|
01‘3‘301
N—

I
3
A/~

() vz/ 7r(2)2dy—/7r(1+\/§)2dy
0
1
= 3—2y1/2—y dy
[ -2
4 y e
— 3 _73/2_ _ '~
”(y 3Y 2)0 6
1 2
(f)V:/w(sc2+1) dz
01
—/ 7(1)%dx
01
:7T/ (m4+2x2)dx
0
2 O\ 13«
=7 |—+zx = —
5 37 )|, 15

[y

(a) V:/O ra’de =
0
(b) V:[1W[17(1+y)2]dy
+ [ m[1-(1-y)?dy
9 2 4n
37373
() V=[] n[l+2)’—(1-2)]de

317
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29.

30.

31.

32.

33.

34.

CHAPTER 5. APPLICATIONS OF THE DEFINITE INTEGRAL

h 2
e ()
0 a
h 2
T wh
=7/ ydy = ——
a Jo 2a

The volume of a cylinder of height A and ra-

dius \/% is h- 77(\/%)2 -

The confusing thing here is that the h of Exer-
cise 29 is not the h of this problem. Realizing
this,
v m(h/a)® Lhz

2¢  2a3

We can choose either z or y to be our integra-
tion variable,

V:’/T/ d:r:wx\l_l:%r
~1

This is, of course, a solid ball. Notice that

1—3;2

47
V= 1— d = —
/ 22)°dx 3

The line connecting the two points (0,1) and
(1,—1) has equation

l-y
y=—-2rx+lorz=——.

o[

T
o (4 T 12)
The fact that the ratios is 3 : 2 :

. 4
confirm since we know the volumes are 2w, —

27
d ==
an 3

2T

4 3

1 is easy to

35.

36.

37.

38.

39.

40.

—] =3
Z= RN
= S\
<= ==

VTN
JITITENITIR
WIS

Y
RN

N

N

If we compute the two volumes using disks par-
allel to the base, we have identical cross sec-
tions, so the volumes are the same.

They have the same areas. This can be seen
by using elementary geometrical formulas for
area or by considering integrals. The area of
the parallelograms is given by the integral of
the heights of the line segments from 0 to 5.
The heights of the line segments are equal.

(a) If each of these line segments is the base
of square, then the cross-sectional area is
evidently

A(z) = 4(1 — 2?).

The volume would be
16

:2/01A(x)d3::8(x—3§)0:3.

(b) These segments I, cannot be the literal
“bases” of circles, because circles “sit” on
a single point of tangency. They could
however be diameters. Assuming so, the
cross sectional area would be “r/2 times
radius-squared” or 7(1 — x2)/2. The re-
sulting volume would be 7/8 times the
previous case, or 27/3.

1

(a) V:/ [2(x+1)]2dx:§

—1
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41.

42.

43.

(b) Note that the area of an equilateral tri-
angle with side length 1 is v/312/4. This
means that for a slice we have
A(z) = V3(z +1)%/4
and

/ O V3(z+ 1) V3
= YT = X2
12
Reasoning as in Exercise 39, the line segment
I, is [2%,2 — 2?%],(1 < 2 < 1). The length of
this segment is
(2 —2?) — 22 = 2(1 — 2?),
hence in case (a)
A(z) =41 — 2%)? = 4(1 — 22% + z%).

The volume would again be

V= 2/01A(:c)da;

2 1\ 64
—s(1-242)=2.
8( 3+5) 15

With the same provisos as in Exercise 39, the
answer to (b) would be 7/8 times the (a)-case,
or 87/15.

For (c), the volume would be v/3/4 times the
(a)-case, or 16v/3/15.

(a) In this case, A(z) =

V = / (Inx) 2dx

1n2 —41In2+ 2.

(Inz)? and

1 2
(b) In this case, A(z) = g (an) and

2 2
m (Inz

V= —|—=] d

Jals) e
M2 w2
4 2 4
This time the line segment I, is [0,e~22], (0 <
x <Inb). If (a) this is the base of a square, the
cross-sectional area is A(r) = (e72%)? = e42,
The volume V, would be the integral

Inb5
/ A(x)dx
0
Inb _—dx Inb5
= / e iy = ¢
0 4
1— ()" 156
=50 — T — 2496.
4 625

In the (b)-case, the segment I, is the base of
a semicircle, so the cross-sectional area would

44.

45.

46.

47.

319

be

1 e=2e\? <7r) .
— | =(=)e ™
2 2 8
The resulting volume V;, would be

39
(7/8)V, = ﬁ ~ .09802.

(a) In this case, A(z) = (2% — /z)? and
1
V:/ ($2*\/E)2dﬂﬁ:i
0
(b) In this case,

e )—W(Mfand

ve [ (250 )2@:230

We must estimate 7 fo r))%dz.

The given table can be extended to give these
respective values for

f(z)2:4,1.44, .81,.16,1.0,1.96, 2.56.

Simpson’s approximation to the integral would
be

3
BI6} {4+ 4(1.44) + 2(.81)
+ 4(.16) + 2(1.0) +4(1.96) + 2.56} .

The sum in the braces is 24.42, and this must
be multiplied by 7/6 giving a final answer of
12.786.

Use Simpson’s rule.

v- | "l )P

0
~ @[(4.0)2 +4(3.6)% + 2(3.4)?
+4(3.2)% +2(3.5)% + 4(3.8)? + 2(4.2)?
+ 4(4.6)% + (5.0)?]
~ 94.01216

In this problem, let x = g(y) be the equation
of the given curve describing the shape of the
container. For each height y, let V(y) be the
volume of fluid in the container when the depth
is y. Later we will estimate V (y). For now, one
knows that V' (y) is the integral of 7[g(y)]?, or

by the fundamental theorem of calculus, that
= g
dy =mg\y)l -

In actual practice, y and hence V are functions
of t (time). Our primary interest is in y as a
function of ¢, but we will obtain this informa-
tion indirectly, first finding V' as a function of y.
It appears that g(y) is about 2y for 0 < y < 1,
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48.
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which leads to [g(y)]? = 4y?, V(y) = 47y3/3
(on 0 <y <1),and V(1) =4n/3 =4.2. We'll
keep the formula in mind for later, but for now
will use the value at y = 1 and the crude trape-
zoidal estimate

V(y+1) = V(y) +lg*(y) + g*(y + 1)]/2

to compile the following table:

(w9 9]V |

11 2 4 4.2

2| 2 9 24.6
31 3 9 52.9
41 3 9 81.2
5| 4 16 | 120.4

The assumption of uniform flow rate amounts
to dV/dt = constant, and if we start the clock
(t = 0) as we begin the flow, we get V = kt
for some k. The above table, supplemented by
the formula when y < 1, can be read to give
y (vertical) as a function of V' (horizontal).
But because V = kt, the graph looks exactly
the same if the horizontal units are time. In
the following picture, we have scaled it on the
assumption of a flow rate of 120.4 cubic units
per minute, a rate which requires one minute
to fill the container. The previous formula
4ry3 /3 = V(= kt = (120.4)t) (on 0 < y < 1),
becomes y = (3.06)t!/3 for very small ¢, and
accounts for the (barely discernible) vertical
tangent at ¢ = 0.

height

time

o

IS

4

<

N

o

= T T T T B

vvvvvvvvvvvvvvvvvvvv

49.

50.

x

T T T 7 (ﬁ
-2 - =
_0.4—]
—0.8—

For the points of intersection, solve
1—(z—1)"=1—2?
thatis,z? — 2z 4+ 1 = 22

V3

1
= _—=y=+—
orx 5 Yy 9

The desired volume V' is the sum of the volume
V1 generated by revolving the arc of the circle
2% + y? = 1 about the x-axis from z = 1 to
z = 1 and the volumeV; generated by revolv-
ing the arc of the circle (z — 1)*+y2 = 1 about
the x-axis from x =0 to x = %

Therefore V = V; + V5 where,
1

vlzn/(l_xﬂ)dx:w(x_”’;)

1

1/2
1/2
1 1 1 51
=T 1—=)—(=—— = —
[( 3) (2 24)] 24
1/2
and‘/'zzw/(l—(a:—l)z)dx
0
1/2 g (1/2
:7r/(2x—x2)da:—7r {xQ—}
3 11o
0
51

The required region is formed by intersection
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of revolving circle 22 + y? = 4 about y-axis
and revolving z = 1,—4 < y < 4about y-axis.
Desired volume V' is the volume obtained by
revolving the shaded region R about the x-axis
where R is bounded by x = 0,2 = 1 and the
arc of the circle 22 + 9% =4

r=1=y= +v/3

R=R;i+ Rx+ R3

R1 is bounded by z = 0,22 + 2 = 4,y = /3
R2 is bounded by z = 0,y = v3,y = —V/3

R3 is bounded by x = 0,22 + 3% =4,y = —/3
Let V1 ,V2 V3 be the respective volumes ob-
tained by revolving R1 , R2 , R3 about y-axis

_W{@_yjr _ o[l _8v3
3]lyz 3 3
V3
ngﬂ/ldy:%r\/g
-3
Va=W

V=Vi+W+V;
:%”(16—5\/5)

5.3 Volumes by

Cylindrical Shells

. Radius of a shell: r =2 —z

Height of a shell: h = 22
1
V= / 27(2 — x)z’da
-1

23 2t !
:2 —_—
(5 %)

2. Radius of a shell: » =2+ =z

Height of a shell: h = 22

1
V= / 21 (2 + 2)x?dr = 8%

. Radius of a shell: »r =z

Height of a shell: h = 2x
1
V= / 27x(2x)dx
0

4
e

A

o 9

2.5

2.0

TT T [ T T T T [T T T T [T T TT
2! 1

. Radius of a shell: » =2 — x.

Height of a shell: h = 2z.
1
8
V= / 27(2 — x)(2x)dx = ?ﬂ-
0

1.0

TT T [T T T T[T T T T [T TTT
.25 0.75 1

. Radius of a shell: r = z.
eight of a shell: h = f(z) = Va? + 1.
4

V= | 2rzv2?+ ldx

0

321
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4
1.0
=7 / 2z v x2 + 1dx i
0

2(x? +1) (amyt 2
=7 —F—— =— (172 -1 0.2
3 [ T s T T T T T TYUF T T T T T T T T T ]

0 -1.0 -0.5 0lo 0.5 1.0

—0.4

—0.6+

-0.8-

—1.01

8. Radius of a shell: r =4 —y.
Height of a shell: h = f(y) = 24/4 — y2.
2

V=/27r(4—y)2\/4—y2dy

2 -2
X 2

=47r/(4—y)\/4—y2dy

-2

2 2
6. Radius of a shell: r =2 — x. =2 87r/v4—y2dy—27r/yv4—y2dy
Height of a shell: h = f(x) = 22, 2 , 2
1 =2(87(2m)) — 0 =327
V=[2r(2-2)2?de =5 (S 2m) 20—
—1 i

1.6 =1

1.2—

0.8—]

0.4—]
. T T T e = e wp) -

-8 =] 1 2
% —0.4—]

—0.8—

-1.2—

—1.6—

—2.0—

7. Radius of a shell: r =2 —y. , A3 a2t
Height of a shell: h = f(y) = 24/1 — y2. =27 <4x+x _T_7>
1

V:/27r(2—y)2\/1—y2dy =

21 1

L 10. V:/ 2r(2 — 2) ((2 — 2%) — 2°) dz
=47T/(2—y)\/1—y2dy 1

-1 :271'/ (4—2x—4x2+2x3)da:

1 1 -1

1

-1 -1 -1
_ ™ g — 4.2 _ 32
_167r(4) 0 = dr =3
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11. V = /2 2m(2 +y)(4 — y*)dy

12. V = /2 21(2 — y) (4 — y*)dy

3 4|,
128w
3
2
13. V:/Zw(Sf:c)(e"”fxfl)dx
0
2
:277/((3—x)e”3—2x—|—m2—3)dx
0

.7;3
=27 {[(4—m)e”j—x2—|——3x}
3 0
8
:277{ 262—4+3—6>—(4—3)
~ 21.6448

14. V = /2 21(3 — z)(x — (22 — 2))dx

4
15. V = / 210(5 — y)[9 — (y — 1)?]dy

4

4 3
Yy Yy 2
=—-=-—-—=4+Ty"+24

( 4 3 Y y)

= 2887

-2

4
17. (a) V:/2 2m(y) (y — (4 —y)) dy

—7 | (16 — 8y +y*)dy

4
:w/ (—16 + 8y)dy
2

— 7 (—16y + 4y%)|, = 167

4
(@ v:/2 27(4—y) (y — (4 ) dy
4
= 27r/ (—2y* + 12y — 16)dy
2

2 3
21 (—g + 6% — 16y>

or
3

0

18. (a) V= 7r/ [(z+4)* = (—2)%] dz

-2
0
= 7T/ (8x + 16)dx
-2
=7 (42 + 16w)|22
= 327

4

2

323

0
(b) V:27r/ 2+2)- [(@+2)— (—2 —2)]dz

—2

0
= 27r/ (22° 4 8z + 8)dx

-2
2 3

=27 (; —|—4332—|—8x)

_ 3

3

0

-2
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0 5 3 2
© V=2 [ (-0)[@+2) - (-2~ Dlda r (_95 L sy +8y>
_92 1
0
= 271'/ (=222 — 4x)dx 117z
—2 - 5
2(E3 2 0 b _ ? 2 d
=2~ -2 (b) Vi=2r [ (y+ DI +y) —yldy
—92 5
_ 167 =27r/ (—y® 4 3y + 2)dy
== .
0 Yt 32 2
(d)V=7r/ (2 +2)%de = (-~ )|
—2 —
0 27
:7r/ (2% + 4z + 4)dx =
L 2
3 0 2 2 2 2
= (2 42t 4 ) ©V=r [ [+9) -+ 2%y
:8£ :7r/ (—y* — 3y + 8y + 12)dy
3 ~1 s o
19. (a) Method of shells. =7 (_y5 — 4?4+ 12y>
3 -1
_ 2
V= [2 27(3 — x)[x — (z° — 6)]dx 1627
; _ en
= / on(—a® — 42 — 3z + 18)dx 2 ,
- @ V=2n [ wr2le+y -y
6257 J
6 :27r/ (—y* —y* +4y+4)dy
(b) Method of washers. -1
vty ’
V= — 2?)dx =21 (-2 — 2 42y + 4y
13 »
- / 77( — 1322 + 36)da _ dom
—2 2
2507 1
-3 21. (a) V= / 7(2 — x)%da
(¢) Method of shells. O 4
3 - | (x2)2dx
vz/ 27 (3 + )z — (22 — 6)]dar Jo
-2
3 5 ) :7T/ (22 — 4z + 4)dx
:/ 2n(z® — 22° + 9z + 18)dx 0 )
-2
4
_ 8757 — 77/0 x dz
6 Yooa
(d) Method of washers. =7 o (=2 + 27 —dw +4)dx
5 3 1
V= / (6 + )2 — (+?)2)da (L e
53 .
:/ m(—a* + 2% + 122 + 36)dx 327
) = —
15
5007 1
3 (b)V*/ch(?fxfﬁ)dx
2 01
20 (a)V:ﬂ/ [(B+y)* — (v*+1)d :27r/ (22 — 2% — 2%) da
-1 0
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(c) V:27r/1(x—|—1)(2—x2—x

)dx

i
= 271'/ (=% = 22% + x + 2)dx
0

4 2563 CU2

1
:’R'/ (z* — 72 — 22 + 8)dx
0

5 73
:w(ﬂg_;_xu&)dx

L S S B R N N L S e S B S p
0.0 0.25 0.5 0.75 1.0

1

1
= 27T/ (—=y° =y + 2y)dy
0

y

=27 | —= —y33+y2)
4 0

5w

-6

(b) V =2r / 2 - y)? — (4*))dy

i
= 27r/ (—y4 + 9% — 4y +4)dy
0

3

5
Y Y 2
=2 — =+ =2 4
w(5+3 y+y)

1

0
_ 64
15

0.79
24. (a) V= 27T/ y[(2—y) —In(y + 1)]dy
~ 208

0.79
(b) Var / (2~ )® — n®(y + 1)dy

325
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~ 6.20

0.89
25. (a) Vx27r/ (2—x) - (cosx — x) dx
—0.89
~ 16.72
0.89
(b) Var [(2 —2%)? — (2 — cosz)?]dx
—0.89
~ 12.64
0.89
(c) V= 7r/ [(cosz)? — (2*)?]dx
—0.89
~ 4.09
0.89
(d) V=227 z(cosz — zt)dx
~299

0.85
26. (a) Var [(1 —2%)? — (1 —sinz)?|dx
~ 057"
0.85
(b) Va2r (1—2)- (sinz — 2?)dz
~ 0.47 0
0.85
(¢) Va2 z(sinz — 2?)dx
~0.38
0.85
(d) Var [(sinz)? — (22)%]dx
~ 0.28 0

27. Axis of revolution: y-axis
Region bounded by: = = \/y,z =y

1

28. Axis of revolution: y-axis
Region bounded by:
r=4—1322=0,y=0

"
. N
N T T T

“
"

=)
T L L A

o

vvvvvvvvvvvvvvvvvvvv

o
"
N
w
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29. Axis of revolution: y-axis
Region bounded by: y = =,y = 22
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30.

31.

32.

33.

VOLUMES BY CYLINDRICAL SHELLS

Axis of revolution: y = 4
Region bounded by:

Yy=x,y=—x,y =2

"
N T L ® L Y S 7}

"
"

o
oI T L N |

1
N
|
-
d
% o
-
N

If the r-interval [0, R] is partitioned by points
75, the circular band

{T? <a?+ y2 < 7'1'24-1}

has approximate area c(r;)Ar; (length times
thickness). The limit of the sum of these areas

is A = lim ) c(r;)Ar; = fo
=1

i=
we know that ¢(r) = 27r,
we can evaluate the integral, getting
R

=R
0

r)dr Because

2

.

27
™9

If we think of the area of a circle of radius R
as being built up as described in Problem 61,
then

A= / 2nrdr Viewed as a function of R, the
0

derivative is

— = 27 R so this is, of course, not a coinci-

dR
dence.

The volume that we are looking for is twice
the volume of a shell with radius  and height
V1— 22

In other words, The bead is mathematically

34.

35.

36. V

327

the solid formed up from revolving the region
bounded by y = V1 — 2%,z =1/2

and the z-axis around the y-axis.

Therefore

1

V:2o/ 2z 1 — x2dx
1/2

Let u=1— 22, du = —2zdxz,

andV—47r/ v/ 1 — 22dx
1/2

= —7477/ ut%du
2 3/4

:27[—'27.[43/2‘3/4
3 0
_ V3m 3
2

The size of the sphere is 47 /3 cm?
for the value of ¢ such that

47r/ \/1—x2dx—f
—471'/ V1 — 22dx

4 2
= gﬂ'(l—c )32 = 3™

, so we look

Hence we want the size of the hole to be

1
1 —\/31 ~ (0.6 cm.

Vi= [ z(1—2%)dx
xzc xt ! 1 2 &
- (2 4) T1 2T
We want )
V-Vi= 1—0V
Then
2 c* _ 1
2 4 40
~ 0.226

Letu=1—y /16,du = —ydy/S
0
V= —32\/%7r/ u'2du

1
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2 6430
32v/307 - = = il

5.4 Arc Length and

Surface Area

. For n = 2, the evaluations points are 0,0.5,1

SR~ 81+ S2

=V/(0-0.5)2+[f(0) — f(0.5)]
+/(1-0.5)2 +[f(1) — f(0.5)]2

=1/0.52 4+ 0.5% + /0.5 + 0.752

~ 1.460

For n = 4, the evaluations points:
0,0,25,0.5,0.75,1
4

s~ Z s; =~ 1.474
i=1

. For n = 2, the evaluations points are 0,0.5,1

S~ 81+ 82 ~ 1.566

For n = 4, the evaluations points:
0,0,25,0.5,0.75,1
4

s~ Z s; =~ 1.591
i=1

. For n = 2, the evaluations points are

0,7/2,m
SR~ 81+ S2

= /(7/2)2 + [cos(7/2) — cos 0]2
+/(7/2)2
=2 +4~3724

For n = 4, the evaluations points:
0,7/4,7/2,3n /4,
4

s~ Z s; ~ 3.790
=1

+ [cos T — cos(m/2)]?

. For n = 2, the evaluation points are 1,2, 3

S~ 81+ 82

=124+ (In2 —In1)2
+ /12 + (In3 — In2)2

~ 2.296
For n = 4, the evaluation points are
1,1.5,2,2.5,3

4

s~ Zsi ~ 4.161

. This is a straight line segment from (0,1) to

(2,5). As such, its length is
=/(6-1)2+(2-0)2
20 = 2v/5

1 2
x
. 5= {1+ ——=d
S [1 +1_x2x
1

= | ——d

/_1 Vi

= (sin 'z ! =T
( )

y'(x) = 6z/2, the arc length integrand is

V14 (y)?2 =1+ 36z

Let u 5 1 + 36z then
s:/ v1+ 36xdx
1

[ (5)

73
_ 2 s
3(36) o
1
= a(73\/ﬁ — 37V/37)
~ 7.3824
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“o\2 T
1/3
2<2+ln2)

2

1

~ 1.0965
/ 1 2 -2
10.y(m):§(ac +a7%)
3 2 2
T 1
= 1 —+—]d
i /1\/+(2+2x2> v
1/3\/x8+6334+1
e B
2/ x?
~ 5.152
3 1 1 1
ll.x’(y):y———:f S
2 2y 2 y3
1+(’)271+1 6 oy L
') = 1 \v "
1/ 4 1
2

14.

15.

16.

17.

18.

19.

20.

21.

22.

329

Here f (z) = 2In (4 — 2°)

+f @)=

(i @) = () = (155)

1

2
Now,s=/<4+x )dxz?ln(?))—l

4 — 22
0

1
s = 1+ (322)%dz
[\
= / V14 9z4dz = 3.0957
—1

2
5§ = / V14 924dr ~ 17.2607
2
2
s = / V14 (2 —22)%dx ~ 2.9578
0
w/4
5§ = / 14 sect zdx ~ 1.2780
0

s:/'¢FQi§ﬁﬁm

0

:/ V1 + sin? zdzx ~ 3.8201
0

3 1
S :/ 1+ —2dx =~ 2.3020
1 X

s = / V14 (xsinz)?dr = 4.6984
0

s = / V1+ e *sin? zdr ~ 13.1152
0
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23.

24. s

25.

26.
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Here f (z) =10 (ew/QO + e_””/go)

IR Y

R e ) )]
(5 ()

Now,
20

5 — / % (61/20 _'_671/20) da

—-20
20

:/<ea:/20+

0
— 920 (ea:/20 _ efa:/20>’
0
=20 (e — e ') ~ 47.0080

30 1 2
— / 1+ |: (em/SO _ e—m/SO):l dx

30 4
:/ 1 (61/30+6—1/30) da
302

_ (15690/30 _ 156—x/30) ‘30
~30

e*$/20) dx

20

= 30e — 30e~! ~ 70.51207161 ft.

In Example 4.4, y(z) = 5(e®/10 4 ¢=#/10)

y(0) = 5(e” +¢€") = 10

y(~10) = y(10)

=5(e! +e!)=15.43

sag = 1543 — 10 = 5.43 ft

A lower estimate for the arc length given the
sag would be

(10)2 + (sag)?
= 2v100 4 29.4849 ~ 22.76

This looks good against the calculated arc
length of 23.504.

If 22/3 + 4?/3 = 1, then in the first quad-
rant, y = (1 —2%/3)3/2 and taking only the
first-quadrant case (which would produce one
fourth of the total length s), we have y =
3 2

5(1 _ g2/3)L/2 (—335_1/3

e~ 13(1 — g2/3)1/2

—2/3(1 _ $2/3) — $_2/3 ~1

v')? =z

5:4/ V1+y?de
0

1
:4/ Va—2/3dx

0

28.

1
:4/ xV3dy
0
3 1
=42 2/3‘ =
<2)x . 6

There are some technicalities in fully justifying
the preceding computation, since the integrand
(z~'/3) is unbounded at z = 0, but the con-
clusion is sound.

.y =0 when z = 0 and when z = 60, so the

punt traveled 60 yards horizontally.

2 r = 2(30 - )

This is zero only when x = 30, at which point
the punt was (30)2/15 = 60 yards high.

60
5—/ 1+ 4——x dm

~ 1394 yards
s 1394 yards

- 4 sec
= 104.55 ft/s

3 feet
1 yard

4 sec

Since y(100) = 0, the ball traveled 100
yards. The maximum height of the ball is

2
y(50) = —5 yards.

100
1 (100 — 2
/ + 300 00 J:)] dx

~ 101.82215 yards

The arc length is s =
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30

31

32

33

34

35

36

37.
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1
. S:27r/ yds
Jo
:277/ x2\/1+ (2z)2dx
0

~ 3.8097

. S:/ 2msinazy/1 + cos? xdx
0

~ 14.42360

2
. S:27r/ yds
J0
:27r/ (22 — 2%)\/1 + (2 — 22)2dx
0

~ 10.9654

0
.S= / 2m(x® — 4x)\/1 + (322 — 4)2dx
—2

~ 67.06557

1
.S:27r/ yds

0
1
= 27r/ e"\/1 4+ e2@dx ~ 22.9430
0

2 / 1
. S:/ 2rlnz 1+—2dx
1 x

~ 2.86563

/2
. S:27r/ yds
0

/2
= 277/ coszV 1+ sin? zdz
0

~ 7.2117

2
1
.S = / 2wy /1 + ——dx ~ 8.28315
1 41‘

1
s1 = / \/ 1+ (625)°da
0
1
= / V14 36210z ~ 1.672
0

38.

39.

40.

S9 =
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/1 \/ 1+ (827)%da
0

{
= / V14 64z14dx ~ 1.720
0

S3 =

/01 \/ 1+ (1029)%dx

i
= / V14 100z18dz ~ 1.75
0

As n — oo, the length approaches 2, since one
can see that the graph of y = 2™ on [0, 1] ap-
proaches a path consisting of the horizontal
line segment from (0,0) to (1,0) followed by
the vertical line segment from (1,0) to (1,1).

(a)

For 0 <z <1, we have lim 2" =0
n—oo

Therefore, the length of the limiting curve
is 1 (the limiting curve is a horizontal
line). Connecting the limiting curve to
the endpoint at (1,1) adds an additional
length of 1 for a total length of 2.

y =2ty = 423

Y2 = IQ; y/2 =2z

Since both are increasing for positive x, y;
is “steeper” (ys is “flatter”) if and only if
Y1 > Yy, L,

1 1
4o > 2x, 2% > = \[
xw > 2x, x° > 0% x > 5
w/6
L1:/ vV 1+ cos? xdx ~ 1.44829
—m/6

el (1)) (%)

~ 1.44797 Hence

Ly  1.44797
L, 1.44829 ~ 9998

w/2
L, = / vV 1+ cos?2zdzr ~ 3.8202
—m/2

2
Ly = \/(2 sin g) + (n)?
=72 +4=3.7242

Hence

Lo
— =~ 0.9749
Ly

5

Ly = / JIF (67)2dz ~ 128.3491
3

Lo = /22 1 (65 — ¢3)2 ~ 128.3432

Hence

Ly
= 0.9999
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-3
(b) Ly = V1 + (e%)2da ~ 2.0006
5

Ly = /224 (e5—e3)2 ~ 20005
Hence

é ~ 0.9999

Ly

dor v e T 1 NI
o

41. (a) Considering only the vertical segment x =
1, (-1 < y < 1), the area after rotation,
as an integral in y, would be

2 /y_l ads(y) = 2 /_11 (1)V/1 + 02dy

42. (a) Surface area of a right circular cylinder of
radius r and height h.

y=—1 =
P I
= 2wy\£1:4ﬂ = "
(height times circumference) o]
y o
The full solid of revolution is a cylinder 3 x=r
with radius 1, and its top and bottom 1;
each have area 7(1)? = 7. Hence the total =
surface area is 47w + 7 + 7 = 67. AARRRES “71“*3““1“ (ARRRN)
x -+

2
1
Y
(b) S:/127r\/@ 1+<m> dy Consider alinez =rand 0 <y <h

- rotating about the y — axis to form a

1
Nomwr Right Circular Cylind
= /1 — 2, | ————— 12 Ircular Cylinder.
/71 Y V1—19? Y Here f (y) =r

1 Therefore, the surface area
= / 2ndy = 4w h
-1
5= [ans 1+ (7 W)y
0

(¢) The equation for the right segment of the

h
triangle is = (1 — y)/2. Hence the re- = /27rr 1+ (0)°dy = 27rh
=1

0

y
sulting area is 27r/ zds(y)
y=-1 (b) Surface area of a sphere of radius r

- () ()
e[ (50 i

_mE (Y

-5 (-5
The full revolved figure is a cone with
added base of radius 1 (and area m).
Hence the total surface area d

V5 + (V5 + 1) -

Consider a semicircle of radius r with
centre as the origin, its equation is

(d) 6m:4n: (VB+1)r=3:2:7 y=vr2—uz?

w
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for —r < x < r Rotating it about the
x — axis we get a sphere Here
r2 _ g2

fla) =

Therefore, the surface area

5=2ﬂ/f(x)

—zw/m\/1+

f' (x))*da

2
*—ﬁ) dx
:271'/\/7“2—3:2 1+%d$

re—x
—r
[ [p2 2+IZ’2
:271'/\/7’271'2 %dl’
-7

:27r/\/r27x2

= 27r/rdx

—r

= 47r?

r2 — g2

Surface area of cone of radius r and
height h

Consider a line y = (;)x Rotating it
about the x —axis, we get a cone of radius
r and height A Here

f@)= ()

Therefore, the surface area
h

S =or / f @1+ (f (@) de

43.

333

h
= 27r/ %\/7’2 + h%dx
0
2mr\/r2 + h? [ 22 h
2 (2
= ﬂrm =l
where | = v/r2 + h2 is the slanted height
of the cone.

0

For the path along the positive z — axis, the
equation of the path is f(x) = 0 Therefore
f (z) = 0 The distance covered along the
T — a;ms is

L= /\/1—1—]” da:—/d:v:>L1—s

Now, for the path along the curve

2
y=3@"

The equation of the path is
2
f (@)= 5(@)*

3
Therefore
Fa)=25at = f (@) =

The distance covered along these curve is

Ly = /1/1+f d:c—/x/ﬂdx

2
L 13/2 £
2= 3(s+ ) 3

(a) Consider Ly = 214

Ly  2(s+1)% -2 ,

Ij - 3s B
(s—i—l)% =3s+1or
(s+1)° = (3s+1)°

=352 —6s2—35=0

Thus s = 0 or s = 6.464102

or s = —0.464102

But s > 0,
therefore s = 6.464102
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(b) Consider the motion of the person along
the x — axis

Let g (t) be the distance walked along the
T — aris

Therefore g(t) =t,0 <t < z,= g (t) =1
Now, consider the motion of the person

2
along the curve y = 7@)3/2
9 3
f@ = g(t)?’/2 is the distance walked

2
along the curve y = g(x)B/Q,O <t<uz

Therefoae
FO)= 20 0<t <z f()= Vi
(¢ t
The ratio of the speeds = f,( ) = i =2
g (t 1
=t=4
(a) d \/i/I 1 sin2ud
—_ - U
d.fL' 0 3
1
= 5\/i- V4 —2sin’x
=+/1+4cos?2x
d (1 3/4
—_— v/ 1+ 1626 + / —_— dx)
dz < V141626
1
,\/1 + 1626
) 3/4
V1 + 1626 1+ 16$6
1/4( +162°)
V1+ 1626
L1t 3/
V1 -+ 1626 V1 + 1626
1+ 1625
=—— =+/1+ 162"
\/1 + 1626

5.5 Projectile Motion

1.

2
3
4.
5

y(0) =80,y'(0) =0
- y(0) = 100,4(0) = 0
. y(0) = 60,y'(0) = 10
y(0) =20,y'(0) = —4
. The initial conditions are

y(0) =30 and %'(0) =0

We want to find y/(t) when y(t) = 0.
We start with the equation y”(t) = —32.
Integrating gives y'(t) = —32t + ¢;.
From the initial velocity, we have

0=1y'(0) = —32(0) + ¢1, and so y'(t) = —32¢
Integrating again gives y(t) = —16t% + cs.
From the initial position, we have

30 = y(0) = —16(0) + ¢z and so

y(t) = —16t2 + 30.

Solving y(t) = 0 gives t = :t\/% The posi-
tive solution is the solution we are interested
in. This is the time when the diver hits the
water. The diver’s velocity is therefore

Yy (\/%) = 732\/§ ~ —43.8 ft/sec

. The initial conditions are

y(0) =120 and %'(0) =0

We want to find y'(t) when y(t) = 0. We start
with the equation y”(t) = —32.

Integrating gives y/'(t) = —32t + ¢;.

From the initial velocity, we have

0 =1y'(0) = —32(0) + ¢1, and so y'(t) = —32t.

Integrating again gives y(t) = —16t2+cy. From
the initial position, we have

120 = y(0) = —16(0) + ¢z and so

y(t) = —16t% + 120.

Solving y(t) = 0 gives t = :I:\/g. The
positive solution is the solution we are inter-
ested in. This is the time when the diver hits
the water. The diver’s velocity is therefore

15 /15
! — | = =324/ = ft/s
Y < 2) 3 5 t/sec

. If an object is dropped (time zero, zero ini-

tial velocity) from an initial height of yq, then
the impact moment is tp = \/yo/4 and the im-
pact velocity (ignoring possible negative sign)
is Vimpact = 32t0 = 8\/%

Therefore if the object is dropped from 30 ft,
the impact velocity is

8v/30 = 43.8178 feet per second.

If dropped from 120 ft, impact velocity is
8v/120 = 87.6356 feet per second.

From 3000 ft, impact velocity is

813000 ~ 438.178 feet per second.

From a height of h yo, the impact velocity is
8vhyo = 8vVhy/yo = Vh (8,/0) ,

which is to say that impact velocity increases
by a factor of v/h when initial height increases
by a factor of h.

. Ignoring air friction we have initial conditions

y(0) = 555.427 and 3//(0) = 0.

Integrating y" (t) = —32 gives
y'(t) = —32t + ¢;. The initial condition gives
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10.

11.

0 =y'(0) = —32(0) + ¢; and therefore
y'(t) = —32t.

Integrating again gives y(t) = —16t + co.

The initial condition gives
555.427 = y(0) = —16(0) 4 ¢o and therefore
y(t) = —16t? + 555.427.

We will assume that the baseball player catches
the ball when it is 6 feet above the ground, so
we solve

6 = y(t) = —16t> + 555.427. Solving gives
t ~ £5.86. We use the positive solution.

The velocity at this time is

y'(5.86) = —16(5.86) = —93.75 ft/sec

(If you assume the ball is caught at ground
level, the ball will be going 94.27 ft/sec.)

CAs vy () =-9.8,y (t) = —9.8t + ¥ (0)

Therefore, y (t) = —4.9t> + ' (0) t + y (0)

where y(0) represents the height of the cliff and
y(4) = 0.

Now, y (4) = —4.9 (16) + 4 (0) + y (0)

Thus, y (0) = 78.4 is the height of the cliff in
meters.

Let y (t) be the height of the boulder.
Therefore y” (t) = —9.8;y(3) =0 and

y' (0)=0

Thus, ¥’ (t) = —9.8t + 3/ (0) and

y(t) =—4.92 + ¢ (0)t +y(0)

Thus,

y(3)=—-4.9(9) + y (0) = y (0) = 43.1meters

Let y (t) be the height at any time t.

Here v (t) = —9.8

Therefore v (t) = —9.8¢t + v (0) = —9.8¢ + 19.6
ory (t) = —9.8t +19.6

=y (t) = —4.9t* +19.6t +y(0).

But y (0) = 0 therefore, y (t) = —4.9t> + 19.6 ¢
which is the height at ay time t. Also the ve-
locity at any instant ¢ is

v(t) =-9.8t+19.6 = —9.8(t —2)

Now for the maximum height,
v(t)=0=>t=2.

Therefore, maximum height is

y(2) = —4.9(2)> +19.6 (2) +y (0) = 19.6

He remains in the air until y (¢t) = 0.

That is, till —4.9t24+19.6t =0=t=0or t =4
Therefore, the amount of time he spent in the
air is 4sec.

The velocity with which he smacks back is
v(4) =-9.8(4—-2)=-19.6m/s

12.

13.

14.
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Let y (t) be the height at any time t.

Here v’ (t) = —9.8,

Therefore v (t) = —9.8t + v (0)

=y (t)=—-9.8t+v(0)

=y (t)=—4.9t> +v(0) t +y(0).

But y (0) = 0.

Therefore, y (t) = —4.9t? + v (0) ¢ which is the
height at any time t.

Now the maximum height is reached when

0
y' (t) =0 that iswhent:v( )

Therefore for the maximum height

y (9<2>) _ _4.9<119§?> v (0) (9(2))
= 784 = —4.9(“&?)2 +0(0) (g(g))
L Oy {4'9 +1] = 78.4

Reviewing the solution to Exercise 11, the dif-
ference is that v(0) is unknown. However, we
still see that

y = —16t2 + tv(0) = —t[16t — v(0)] (factoring,
rather than completing the square). The sec-
ond time that y = 0 can be seen to occur at
time ¢2 = v(0)/16, at which time

v(te) = =32t +v(0) = v(0)(—2+ 1) = —v(0)

Now we see
v(t) = =32t + v(0) = —32¢ + 16t2
= —16(2t — t2)

The peak was therefore at time t2/2, at which
time the height was —(t2/2)[16t2/2 — v(0)]

= —(22/2)[(v(0)/2) — v(0)]

= —(v(0)/32)[-v(0)/2] = v(0)/64.

In summary, Ymax = [v(0)/8]? in this problem
(and more generally, Ymax = [v(0)/8]% + y(0)).
If ymax = 20 inches = 5/3 feet, then

v(0)/8 = /5/3, and

v(0) = 84/5/3 ~ 10.33 feet per second.

This is considerably less than Michael Jordan’s
initial velocity of about 17 feet per second, but
the difference in velocity is not as dramatic as
in height (20 inches to 54 inches).

For a given initial velocity of vy, the velocity
and position are given by

y = =32t + v

y = —16t + vot

The maximum occurs when 4 = 0 or when
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15.

16.
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Vo
to = oo
07 32
and the maximum height is

s =10(3)" (33 (2)°

Therefore if the new initial velocity was 1.1vg
(an increase of 10%), the new maximum height
would be

2
1.1 2
) —121 (U—O)
8 8
In other words, it would be an increase in
height by 21%.

(a) If the initial conditions are
y(0) = H and y/(0) =0
Integrating y" (t) = —32 gives
Yy (t) = =32t + ¢;.

The initial condition gives

Y (t) = =32t + vy = —32t.

Integrating gives

y(t) = —16t% + cy.

The initial condition gives

y(t) = —16t> + H.

The impact occurs when y(t9) = 0 or

when ty = /yo/4 = \/ﬁ/ll Therefore
the impact velocity is
Y/ (to) = 32ty = —8VI
(b) If the initial conditions are
y(0) = 0 and ¢’ (0) = vy
Integrating y" (t) = —32 gives
Y (t) = =32t + ¢;.
The initial condition gives
y'(t) = —32t + vp.
Integrating gives
y(t) = —16t? + vot + ca.
The initial condition gives
y(t) = —16t% + vot.
The maximum occurs when ¢'(t) = 0 or
when ¢ = vy/32.
Therefore the maximum height is
vo\ 1603 vd )
4 (32)

T322 732 64
(a) The time tg when the lead ball hits the
ground satisfies

to
179 = 128001 h (| —
n(cos (20))

tO 179/12800
h{ — ] = /
COS 20 €

to ~ 3.3526

At time tg, the height of the wood ball is

7225 16
179 — =5 In (cosh (85t0>>

~ 179 — 169.0337 = 9.9663 ft

17.

18.

19.

(b) The time ¢; that the wood ball need to
hit the ground satisfies

7225 16
179 = = In (cosh (85t1>)

16 1432/7225
¢ _

g5'1) = ¢

t, ~ 3.4562

The wood ball need to be released about
t1 = to = 0.1036 seconds earlier.

cosh

The starting point is

y" = —9.8, y/(0) = 98sin(r/3) = 49v/3.

We get y(t) = —4.9t + ty/(0)

= —4.9¢(t — [v(0)/4.9])

= —4.9t(t — 10V/3)

The flight time is 10v/3. As to the horizontal
range, we have 2’ (t) constant and forever equal
to 98 cos(m/3) = 49. Therefore z(t) = 49t and
in this case, the horizontal range is 49(10v/3)
(meters).

Here 1/ (0) = 40sin (%) =20
Therefore y (t) = —4.9t 4+ 20t
— 1 (—4.9¢ + 20)

20
= the time of flight =t = 0= 4.082

Now, for the horizontal range x (t)

2/ (1) = 40cos (%) = 20v3

Therefore

x () = 20V/3t and

2 (4.082) = 20 (1.7321) (4.082) = 141.3919

Repeating the same for the angle 60°
O A

y' (0) = 405sin (3) 34.6410

Therefore

y(t) = —4.9t% + (34.6410) ¢

=y (t) =t (—4.9t + 34.6410)

34.6410
= the time of flight =t = = 7.0696

Now, for the horizontal range x (t)
x' (t) = 40 cos (g) =20

Therefore x (t) = 20t and
x (7.0696) = 20 (7.0696) = 141.3919

This problem modifies Example 5.5 by using
a service angle of 6° (where the Example 5.5
used 7°) and no other changes. Here the serve
hits the net.

Next we want to find the range for which the
serve will be in.

If 6 is the angle, then the initial conditions are
2'(0) = 176 cos 0, x(0) =0
y'(0) = 176sin6, y(0) = 10
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20.

Integrating «”(t) = 0 and y”(¢t) = —32, then
using the initial conditions gives

2/ (t) = 176 cos 0

x(t) = 176(cos 0)t

y'(t) = —32t + 176 sin 0

y(t) = —16t* 4 176(sin 0)t + 10

To make sure the serve is in, we see what hap-
pens at the net and then when the ball hits
the ground. First, the ball passes the net when
x = 39 or when 39 = 176(cos 0)t. Solving gives

t= % Plugging this in for the function
y(t) gives

39
4 176 cos 6
2
1639
176 cos 0

39
1 i —_ 1
+ 176(sin 0) (1760089) +10
1521

_ 2
= 1936860 0 +39tan6 + 10

We want to ensure that this value is greater
than 3 so we determine the values of 8 that give
y > 3 (using a graphing calculator or CAS).
This restriction means that we must have
—0.15752 < 6 < 1.5507

Next, we want to determine when the ball hits
the ground. This is when
0=y(t) = —16t> + 176(sin §)t + 10
We solve this equation using the quadratic for-
mula to get
,_ —176sin6 & V176 sin” ¢ + 640
B —32
We are interested in the positive solution, so
, _ 1765in6 + \/1762sin” 6 + 640
B 32
Substituting this in to
x(t) = 176(cos 0)t gives

2 = 44 cos (22 sinf + /484 sin% 6 + 10)

We want to determine the values of 8 that en-
sure that x < 60. Using a graphing calculator
or a CAS gives 0 < —0.13429

Putting together our two conditions on 6 now
gives the possible range of angles for which the
serve will be in:

—0.15752 < 6 < —0.13429

In these tennis problems, the issue is purely
geometric. Time is irrelevant. One can obtain
valuable information by eliminating time and
writing y as a function of . For example, with

21.

22,
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service angle of 6 (in degrees below the hori-
zontal), initial speed vy, and initial height h,
one has

y(t) = —16t% — tvgsin + h,
z(t) = tvg cos @, and hence

—1622 xsin 6
y=flz)=

vicos?2f  cosd

Now one could put z = 60 (the serve would be
in if f(60) < 0), or put = = 39 (the serve would
clear the net if f(39) > 3. If one were to set
f(60) = 0 and solve for vy, one would obtain
a critical speed (call it v1) for the given (h, ),
above which the serve would be out. Solving
f(39) = 3 one would obtain a second critical
speed (call it vo), below which the serve would
hit the net. Below we tabulate v; and v, for
h = 10 and selected values of 6.

+h

In the 7° line, we see that it would be neces-
sary to reduce the service speed to 149ft. /sec.
to get it in, and the net would not be a prob-
lem. The 7.6° line has these interesting fea-
tures: the service at 176 ft./sec. is out, whereas
the service at 170 ft./sec. is in.

[ h ]l 6 | o [ v |
| feet [ degrees | ft/sec [ ft/sec |
10 7.0 149.0 105.7
10 7.6 171.5 1174
10 8.0 193.6 127.8
Let (x(t),y(t)) be the trajectory. In this case
y(0) = 6,2(0) =0
y'(0) = 0,2/(0) = 130
2"(t) =0,2'(t) = 130
a(t) = 130t

This is 60 at time ¢ = 6/13. Meanwhile,
y'(t) = =32,y (t) = —32t
y(t) = —16t> +6

2
6 6 438
~ V=16 = - °
y(13> 6(13) 6= T69
6
— | = 2.59 ft
(i)

If the initial speed is now 80 ft/s, the equations
become

x(t) = 80t

y(t) = —16t> 4+ 6

The ball crosses home plate when x = 60, or
when ¢t = 3/4. At the home plate, we then
have,

y(3/4) = —16(3/4)? +6 = -3

In other words, the ball is “under” the ground
and the ball hits the ground before reaching
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home plate.

Let (x(t),y(t)) be the trajectory. In this case
5° is converted to 7/36 radians.

y(0) =5,2(0) =0

y'(0) = 120sin 55 ~ 10.46

2'(0) = 120 cos 55 ~ 119.54

2"(0) = 0

2/(t) = 119.54

2(t) = 119.54¢

This is 120 when

t =120/119.54 = 1.00385. . .

Meanwhile,

y'(t) = —32

y'(t) = —32t + 10.46

y(t) = —16t? + 10.46t + 5
y(1.00385) = —16(1.00385)2
+10.46(1.00385) + 5
y(1.00385) ~ —.62 ft

We are assuming that the height at 120 feet is
the same as the release height 5. Let 6 be the
angle of release (above the horizontal).

We have

y(t) = —16t* 4+ 120t sinf + 5

x(t) = 120t cos §

Thus x(t) will be 120 when ¢ = 1/cosf, at
which time y(t) will be 5 only if
—16 sin 6

12 =

cos? 6 Ocos@ 0
Hence if 120sin8 cosf = 16
60sin 260 = 16

20 = sin~*(16/60) = .2699. ..,
6 = .135 (radians) or about 7.7°

To find the aim, we need the length of the ver-
tical leg of a right triangle with opposite angle
7.7°, and adjacent leg 120 ft. Thus the player
should aim

120 tan(7.7°) ~ 120 tan(.135) ~ 16.2 ft

above the first baseman’s head.

(a) Assuming that the ramp height h is the
same as the height of the cars, this prob-
lem seems to be asking for the initial
speed vy required to achieve a horizontal
flight distance of 125 feet from a launch
angle of 30° above the horizontal. We
may assume x(0) = 0,y(0) = h, and we
find

y'(0) zuosm% = U—;
2'(0) = vg cos 7= ﬁvo

26.

27.

3
y'(t) = =32t + U—ZO x'(t) = gvo
y(t) = —16t> + U—;t + h,
3
x(t) = gvot.

a(t) will be 125 if t = 250/ (v/3vp) at
which time we require that y be h. There-

fore )

250 v < 250 )
16— ) +—=—|—— =0
<\/§vg) 2 \/§v0
vg = 8000 ~~ 68ft/s
V3

(b) With an angle of 45° = x/4, the equa-
tions become

"0)=w sinE -

y'(0) 0 1717 \?

2/(0) = vpcos — = ——~

" _ " \/g_

y'(t) = =32, 2"(t)=0

/ Vo / Vo

y'(t)=-32t+—=, 2'(t)=—7
V2 V2
’Uot

y(t) = —16t* + — + h,
V2

2(t) = vol

V2

where h is the height of the ramp.
We now solve z(t) = 125 which gives

125v/2
=
At this distance, we want the car to be at
a height h to clear the cars. This gives
the equation y(ty) = h, or

2
125+/2 12 2
Vo voV2

0=

=h

Solving for vy gives
vo = 2010 = 63.24 ft/s.

Let (x(t),y(t)) be the trajectory. In this case,
y(0) = 256, 2(0) = 0

4 (0) = 0,2/ (0) = 100

y'(t) =32, 2"(t) =0

y'(t) = —32t,y(t) = —16t> + 256

2/(t) = 100, z(t) = 100t

y will be zero when ¢t = 4, at which time x will
be 400. This is the drift distance.

(a) In this case with
p=0and w=1
2" (t) = —25sin(4t)
2 (0) =2z(0)=0
25 25

T'(t) = T cos 4t — T
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28.

29.

30.

25 25
z(t) = T sin 4t — Zt
(b) With 6 = g and w = 1
M — _oF o T
2" (t) = —25sin (4t+ 2)
2'(0)=2(0)=0

2 (t) = % cos (4t + z)

4 2
25 . s 25
(a) With 6y = g and w =2
" — 3 z
2" (t) = —25sin (St—l— 4)
2'(0) =0 = z(0)
o 25 T\ 25V2
2'(t) = g Cos (8t+ 4) 6
25 ™ 25V2  25V2
2(t) = Zisin (8t 4+ ) — =t - =2
(b) With 0y = — and w =
2" (t) = —25sin(4t + 7/4)
2'(0) = 2(0) =0
25 25v/2
Z'(t) = T cos(4t + m/4) — T\f
25 25(v/2  25v2
— 2 sin(4 4 _ Ve
x(t) 16 sin(4t + 7/4) 3 35

The initial conditions are

5(0) =0,s(0) =0.

Integrating s”(t) = —32 gives

§(t) = =32t +c1.

The initial condition gives

s'(t) = —32t.

Integrating gives

s(t) = —16t% + cs.

The initial condition gives

s(t) = —16t2.

Realizing that —32 was given in feet per
second?,and we are using centimeters now,
we use, 1 foot = 30.48 cms

and get

s(t) = —487.68t% cm

The yardstick is grabbed when s(ty) = —d,
that is when

~ 0.045V/d

t p—
0™ 487.68

Using the result from Exercise 15,

1)1:8\/E.

Now we need to compute how big vs is in order
for the ball to rebound to cH.

31.

32.
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The initial conditions are

v(0) = vy, 8(0) = 0.

Integrating a(t) = —32 gives

v(t) = —16t + v(0) = —16t + vy

Integrating again we get

s(t) = =82 + vat + s(0) = —8t% + vyt

s(tp) = cH when v(tg) = 0, that is when
to = 1)2/16

-8(55) +u(55) -

2
)

2 _oH

32 ¢

vg = V32cH

Now the coefficient of restitution is
ve  V32cH  Jc

V1 SvVH 2

From Exercise 5, time of impact is

= % seconds.

2% somersaults corresponds to 57 radians of

revolution.
Therefore the average angular velocity is

5t 207
——— = —— ~ 11.47 rad/sec
V30/4 /30 /

The initial conditions are
y(0) =10, 3/(0) = 160sin 45°
2(0) =0, and 2/(0) = 160 cos 45°

Integrating =" (¢) = 0 and y”(¢t) = —32 and us-
ing the initial conditions gives

2’ (t) = 80v/2

z(t) = (80v/2)t

y'(t) = —32t + 80v/2

y(t) = —16t% + (80v/2)t + 10.

We now want to solve for when y(t) = 5, which
gives the equation

—16t% + (80v2)t +10 =5

Solving gives

_ /12800 + 640
L —80v24 _;22800 6040 _0.087.7.16.

We, of course, take the positive solution.
2(7.16) = (80v/2)(7.16) =~ 810.1.

So, place the net 810.1 feet away from the can-
non.

y'(7.16) = —32(7.16) + 80v/2 ~ 116.0

Since we have 2/ = 80v/2 ~ 113.1, this means
that the impact velocity is

v=1/(2')*+ (¥')?

=/(116.0)2 + (113.1)2 =~ 162.0

which means the Flying Zucchini comes down
squash.(We should have known this—the ve-
locity at a height of 10 should have been equal
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to his initial velocity so his velocity at a height
of of 5 should be slightly higher, which it is.)

Let (z(t),y(t)) be the trajectory of the cen-
ter of the basketball. We are assuming that
y(0) = 6, x(0) = 0, the angle of launch 6 of the

13
shot is 52° (0 = —— in radians) and the initial
speed is 25 feet per second. Therefore
137
'(0) = 25sin — =~ 19.70
y'(0) sin ——

137
"(0) = 25 cos — = 15.39
z'(0) coS I

y'(t)=-32,2"(t) =0

y'(t) = =32t +19.70,2'(t) = 15.39

y(t) = —16t* + 19.70¢ + 6,

z(t) = 15.39¢.

x will be 15 when ¢ is about

15/15.39 = .9746..., at which time y will be
about

—16(.9746...)% + 19.70(.9746 ...) + 6 ~ 10

In other words, the center of the ball is at po-
sition (15,10) and the shot is good. More gen-
erally, with unknown 6, the number 19.70 is
replaced by 25 sin 6, while the number 15.39 is
replaced by 25cosf. y will be exactly 10 if

—16t> + 25t sin 6 + 6 = 10
,_ 25sin0 + V/625sin® § — 256

32

x = 25t cos .

As a function of 6, this last expression is
too complicated to use calculus (easily) to
maximize and minimize it on the 6f-interval
(48°,57°), but quick spreadsheet calculations
give these values:

(Observe that x is not a monotonic function of
0 in this range. It takes its maximum when 6 is
between 52.4 and 52.5 degrees. The evidence is
overwhelming that all the shots will be good.)

34.

L6 [ t [ = |
| degrees | seconds [ feet |
48.0 0.8757 | 14.6484
49.0 0.9021 14.7958
50.0 0.9274 14.9024
51.0 0.9516 14.9710
52.0 0.9748 | 15.0038
52.1 0.9771 15.0051
52.2 0.9793 | 15.0062
52.3 0.9816 15.0069
52.4 0.9838 | 15.0073
52.5 0.9861 15.0073
52.6 0.9883 | 15.0070
52.7 0.9905 15.0064
52.8 0.9928 | 15.0054
52.9 0.9950 | 15.0042
53.0 0.9972 15.0026
54.0 1.0187 | 14.9690
55.0 1.0394 14.9044
56.0 1.0594 | 14.8100
57.0 1.0787 14.6869

Let(z (t),,y (t)) be the trajectory of the centre
of the basketball.

Here y (0) = 8,2 (0) = 0,6 = 30°andv = 27.
Therefore y’(()):27sin% =13.5 and

2(0) = 27 cos% = 23.3827

y'(t) = =32 = y/(t) = —32t + 13.5,
Or y(t) = —16t> + 13.5¢ + 8 also,
2"(t) = 0= a'(t) = 23.3827

That is z(t) = (23.3827) ¢

(a) Consider z (t) = 15

15
t= Sa3sy ~ V0415,

for which
y (0.6415)
= —16(0.6415)> + 13.50 (0.6415) + 8
= 10.0759

Now, y(t) = 10 = ¢ = 0.6520 for which

2(0.6520) = (23.3827) (0.6520)
~ 15.2455

It is evident from the above calcula-
tions that the centre of the ball passes
through (15,10.0759) and (15.2455, 10).
This means that the centre of the ball goes
through the basket. The graph of the mo-
tion is as follows
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(b) When z (t) = 14.25 = t ~ 0.6094 this
gives y(t) = 10.2849.
That is (14.25,10.2845) lies on the curve.
Therefore the minimum distance between
the centre of the ball and the front rim is
0.2845. The minimum distance between
the centre of the ball and the back rim at
(15.75,10) is 0.5045'.

(c) If the ball is of diameter, then its radius
is . Since the minimum distance between
the center of the ball and the front rim is
less than the radius of the ball, the ball
hits the front rim.

(a) 85° = il7 radiance.

2’(0) =100 - cos (4Im) ~ 8.72
y/(0) = 100 - sin (327) ~ 99.62
2”(0) = —20

y"(0) =0

y(t) = 99.62t

x(t) = —10t% + 8.72t

y(to) = 90 when ¢y = 0.903

x(to) = (0.903) ~ —0.29
The ball just barely gets into the goal.

(b) Use the calculation from Exercise 35.(a),
y(t1) = 10 when ¢; = 0.100
(t) = 2(0.100) ~ 0.775
The kick does not go around the wall.

Let (x(t),y(t)) be the trajectory of the ship.
Some of our data is in feet, so we will take
g = —32 in this problem. We have

Yy’ (t) = 32

y'(t) = =32t + y/(0)

y(t) = =16t + ' (0)t + y(0)

2({t)=c

x(t) = ct + z(0)

Solving for ¢, we have
1
E(x —xz(0)) =t.

37.

38.
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Substituting this expression for ¢ in y(t), we
have

y—y(0) ,
=16 E(x - x(O))} +4/(0) E(w - x(O))}

Hence the path is a parabola.

Turning to the question of the duration of
weightlessness, we can assume z(0) = 0, and
we know that y/(t) = 0 when y — y(0) = 2500.
For this unknown time t¢; (the moment when
y' is zero), we have 0 = —32¢t; + '(0).
Therefore ¢t; = 3/(0)/32, and

2500 = y(12) = y(0)
y'(0) ooy [ ¢(0)
= —1 _—
0 { 2| TYO |5
_y'(0)?
64
hence 3/(0)2 = 64(2500)
y/(0) = 8(50) = 400, and
t, = 400/32 = 25/2.
We now know that y — y(0) = —16t% + 400t
for all ¢.

The second time (¢2) that y(t) = y(0) (af-
ter time zero) occurs when ¢t = 400/16 =
25 seconds.

This is the duration of the weightless experi-
ence. Note that t5 = 2t;. The plane must pull
out of the dive soon after this time.

Let y(t) be the height of the first ball at time
t, and let vg, be the initial velocity. We can
assume y(0) = 0. As usual, we have

Yy’ =-32,y = =32t + vy,

y = —1612 + tvg,.

The second return to height zero is at time
t = 16/vg,. If this is to be 5/2, then vg, = 40.
But the maximum occurs at time
Voy /32 =5/4

at which time the height
—16(25,/16) + 40(5/4) = 25feet.
For eleven balls, the difference is that the sec-
ond return to zero is to be at time 11/4, hence
vgy = 44, and the maximum height is 30.25.

(y(5/4)) is

In this case, we start with initial conditions
2'(0) = voz, 2(0) = 0;4/(0) = voy, y(0) = 0.
Integrating =" (¢) = 0 and y”(¢) = —32 and us-
ing the initial conditions gives

2/ (t) = vos

x(t) = vyt

y'(t) = =32t + voy

y(t) = —16t + voyt

The ball is caught when y(t) = 0 so we solve
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Oy

this equation to get t = vl—ﬁ Plugging this

into z(t) gives the horizontal distance

w=uz (@) — Yozty
16 16

The student must first study the solution to
Exercise 38. Here we have the additional z-
component of the motion, which as in so many
problems is z(t) = tvg,. With initial speed of
v9, and initial angle a from the wvertical, we
have vg, = vg cos o and

voz = vpsina.The horizontal distance at
elapsed time v, /16 (time of return to initial
height) is by formula

x(voy/16) = (voy/16)vo, which defines w.

As in Exercise 37, the maximum height occurs
at time vy, /32, and at this time the height h
is

—16(voy /32)* + voy (voy /32) = v5, /64
= (v0y/64)(16w /vy )
= (w/4)(cosa/sina) = w/(4tan a).

Thus w = 4htan .

The linear approximation is tan~ 'z = z,
i.e., tanx ~ x From Exercise 43, we have
w =4htana

Applying the linearization gives
w = 4h tan o ~ 4ha
or ax —

4h
A
This shows that Aa ~ 4—:

We must use the result

Ao ~ 4—: from Exercise 40.

With h = 25 from Exercise 51 (10 balls) and
w =1, we get

A about 1/100 = .01 radians

or about .6°

In this case, the height to juggle 11 balls is
30.25 feet. Therefore with Aw =1, we get

A 1
Ao ~ o9 ~ 0.0083 rad or about

4h ~ 4(30.25)
0.47°.

With trajectory (z,y), and assuming

2(0) = 0 and y(0) = 0, we have by now seen
many times the conclusion y = —gt? + tvsin 6.
The return to ground level occurs at time

t = 2vusinf/g, at which time the horizontal
range is & = tv cosf = v?sin(26)/g.

With v = 60 ft per second and 6§ = 25°, and
on earth with g = 32, this is about 86 feet, a

44.

45.

46.

short chip shot. On the moon with g = 5.2, it
is about 530.34 ft.

Let ((z(t),y(t)) be the trajectory of the initial
burst of water. If the angle of inclination of
the hose is #, we have the relations

tanf =m
‘ m
sinf =
1+ m?2
1
cosf =

We assume z(0) =0 and y(0) = 0 and then find
y'(t) = —32
y'(t) = =32t + vsinb

y =y(t) = —16t> + tvsiné
tvm
= y(t) = — 162 + —
v =) Vitn?
2'(t) = vcosb
tv
z=z(t) =tvcosd =

V14+m?
Solving the last equation in the form

. zv'1 +m?2

v
and inserting this in the y-formula, we find

1 2
Yy = _16332(_;72”1) +mx

Let (z(t),y(t)) be the trajectory of the paint
ball, and let z(¢) be the height of the target at
time t. We do assume that

y(0) = z(0) (target opposite shooter at timeof
shot) and

y'(0) = 0 (aiming directly at the target, hence
using an initially horizontal trajectory), and as
a result y — z has second derivative 0, and ini-
tial value 0.

However, this only tells us that

y—z=[y(0) - #(O)]t = (0}t

and if the target is already in motion (2’(0)
not zero), the shot may miss at 20 feet or any
distance.

If on the other hand, the target is stationary
at the moment of the shot, then the shot hits
at20 feet or any other distance.

In this problem, we have the falling object with
initial conditions
y1(0) = 0,1(0) = 100.

The object that is launched from the ground
has initial conditions

Y2(0) = 40,12(0) =0

We now integrate the equations

Yy (t) = —32 and y4 (t) = —32, using the initial
conditions, to get
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47.

48.

yi(t) = =32t
y1(t) = —16t2 + 100
yh(t) = —32t + 40

yo(t) = —16t2 + 40t

Now, we just solve y; (t) = ya(t), or

—16t2 4+ 100 = —16¢2 + 40t

Solving gives t = 2.5, so the objects collide af-
ter 2.5 seconds and this collision occurs at a
height of y,(2.5) = 0.

This may seem odd, but notice that the max-
imum height of the y2 object is only 25 feet.
What this means is that the y» object goes up
and then down and then the y; object only
catches the y; object when both objects actu-
ally hit the ground!

(a) The speed at the bottom is given by
1
imvz =mgH,v =+/29H
(b) Use the result from (a)
v =1/29gH = /2169 = 4/2g
= 4V/2- 32 = 321t /s

(¢) At half way down,
1
§mv2 + mh8 = mhlo6,

v=1+/2-(16 —8)g =4/g

= 4/32 ~ 22.63ft /s

(d) At half way down, the slope of the line
tangent to y = 22 is, 2 - /8 = 41/2
Hence we know that

Ul:4ﬁ

Vg
At the same time,
(vy)? + (v2)? = (4y/9)*

2 16g

Ty

g
e =4/ = =~ 3. ft
v = 4y 2~ 3.939 ft/s
29

First we compute the speed v of the bowling
ball at the moment when it rolls right out of
the window.

V30
30 = 16t2,tg = e

40
10 = tOUO,UO - \/ﬁ.

From conservation of energy

L o
- = mah
5 mgh,

1 (40 )2 ,
-m|——] =m
2"\ 30 g

5
The height of the ramp should be 5

5.6 Applications of Integration

to Physics and Engineering

1. We first determine the value of the spring con-

stant k. We convert to feet so that our units
of work is in foot-pounds.

k
5:F(1/3):§andsok:15.

W= / " Pla)da

0

1/2 15
= / 15xdx = 3 foot-pounds.
0

. We first determine the value of the spring con-

stant k. We convert to feet so that our units
of work is in foot-pounds.

10 = F(1/6) = g and so k = 60.
3

W = F(x)dx
0

1/4 15
= / 60xdr = 3 foot-pounds.
0

. The force is constant (250 pounds) and the dis-

tance is 20/12 feet, so the work is
W = Fd = (250)(20/12)
= 1250/3foot-pounds.

. The force is constant (300 pounds) and the dis-

tance is 6 feet, so the work is
W = Fd = (300)(6) = 1800 foot-pounds.

. If x is between 0 and 30,000 feet, then the

weight of the rocket at altitude z is

1
10000 — T

Therefore the work is

30,000 T
/ (10,000 _ —)dx
; 15

221\ [30:000
= (10,0002 — —
(100002 - 55)

= 270,000,000 ft-1b

0

. If x is between 0 and 10,000 feet, then the

weight of the rocket at altitude z is 8000 — %
Therefore the work done is
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9.

10.
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10,000
W= /0 (8000 - 1%) da

= 60, 800, 000ft-1b

The weight of the 40 feet long chain is 1000
pounds. Therefore the weight of the 30 feet
long chain is 750 pounds. The force acting here
is 750 pounds and the distance traced due to
the applied force is 30 feet. Hence the work
done is

W =Fd

= (750) - (30)
= 22500 foot-pounds.

. Let = be the distance of the bucket from the

initial position. Consequently x increases from
0 to 80. As the sand from the bucket leaks at
rate of 2 1b/s, the weight of bucket at the dis-
tance x is (100 — %) Therefore work done is

80 T 22 80
W = / (100 — f) do = (1003: - )
; 2 1),

= 8000 — 1600
= 6400 ft-1b.

(a) W= /01 800x(10x)dx

= (400.’172 — 820x3>

400
= 7 mile-1b

1

0

= 704,000 ft-1b

(b) Horsepower is not equal to 800x(1 — x)
because this is the derivative with respect
to distance and not with respect to time.
Average horsepower is the ratio of

total work done divided by time:
704,000 ft-1b
——— =16 hp

80 s
100
(a) W = / 62.47(1002 — 22)(200 + 2)da
0

100
= 62.47 / (20,0002 — 1002* — 2°) da
0

= 8,168,140,899 ft-1b

(b) This is the same as Exercise 10.(a) except
the limits of integration change to reflect

that the tank is only filled half way:
50
W = 62.47(1002 — 2%)(200 + z)dx

0
= 3,777,765, 166 ft-1b

11.

(a)

e

E—

88—

- =

Let x represent the distance measured (in
ft) from the bottom of the tank, as shown
in the above diagram. The entire tank
corresponds to the interval
0<2<9843 (1 mt = 3.281 ft).

Let us partition the tank into

O=xg <21 <29 < .. <xp =9.843.

such that
9.843
Ty — Tij—1 = Az =

n

for each 1 =1,2,3,,n.

This partitions the tank into n lay-
ers, each corresponding to an interval
(i1, x;].

Let us consider a water layer correspond-
ing to [x;—1,;], which is a cylinder of
height Az and radius 3.281 ft(1mt) . This
layer must be pumped at a distance of
(9.843 — ¢;) for ¢; € [x-1, ;)

Thus the force exerted in doing so,is

F; =~ (Volume of the cylindrical slice)

x (Weight of the water per unit volume)
~ 7(3.281)° (Az) x (62.4)

~ 2110.31 (Az)

Thus the corresponding work done
W; = 2110.31(9.843 — ¢;) (Ax)

Therefore t}}le total work done

W= lim ; (2110.31 (9.843 — ¢;) (Az))

9.843
= 2110.31 / (9.843 — z)dx
0
22\ 0843
= 2110.31 <9.843x - )’
2 0

= 102228.48 feet pounds
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Let x represent the distance measured (in
ft) from the bottom of the tank, as shown
in the above diagram. The entire tank
corresponds to the interval 0 < z < 3.281
(as Imt = 3.281 ft). Let us partition the
tank into

O0=20 <21 < T2 < ... <z = 3.281.
such that 3 981
T — 21 = Ax = —— for each

i =1,2,3,,n.  This partitigns the tank
into n layers, each corresponding to an
interval [x;_1,z;]. Let us consider a
water layer corresponding to [z;—1,;].
Which is a cuboid of length 9.843, width
21/6.562x — x2 and height Az.

The width is calculated with the help of
the following figure.

P

x

In the above figure O is the centre of the
circle of radius r. OP =r — x,

AP = /12— (r — 2)* = V2rz — 2%
AB = 2\/2rz — z?

The said layer must be pumped at a
distance of (2r —¢;) for ¢; € [xi—1,24).
Thus the force exerted in doing so, is
F; ~ (Volume of the cuboid shaped slice)
x (Weight of the water per unit volume)
= (length x width x height) x (62.4)

~ (9.843 % 2v/6.5622 — 22 x Ax) x

12.

13.

14.
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(62.4)

~ 1228.411/6.5622 — 22 (Az)

Thus the corresponding work done

W; = 1228.41v6.562x — 22 (6.562 — ¢;) (Ax)

Therefore the total work done

W = (1228.41)
n

x lim " (\/6.5623: ~ 22 (6.562 — ¢) Ax)

n—oo
i=1
6.562
= 1228.41 / Vv 6.5622 — 22 (6.562 — x)dx
0
= 136304.64 feet pounds

We set up our coordinates similar to Example
6.3, with x representing vertical distance from
the vertex (the bottom of the tank). If slice
the water in horizontal slices, these slices have

radius r = g and the volume of a cylindrical

2
slice is mr?Ax = %Az. The weight density

of water is 62.4, which gives the force exerted
by this slice of water as 15.6rz?Az. This slice
of water must travel up a distance of 10 — x
and therefore the work required to pump this
slice out of the tank is

W; =~ 15.6m2? Az (10 — z)
~ 15.6(10 — z)T? Az

Now, we add up the work for all the slices and
turn it into an integral.

10
W= / 15.6(10 — z)72’dx
0

ES

~ 40841 foot-pounds

10
100
w =/ axdr = ¢
0
c

2
2
W1:/ axdng
0 2
w 21100
Wi = 5 gives - = 550

¢ = V50 ~ 7.1 feet

The answer is greater than 5 feet because the
deeper the laborer digs, the more distance it is
required for him to lift the dirt out of the hole.

By calculation, the width at x feet depth is
5 — x/2, therefore

* t 1
W(z) = / t <5 — 2) dt = v522”% — §x3
0
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15.

16.

17.

18.

19.

20.
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W (6) = 66

1
Solving imz — —2% = 33 we get

9
T ~ 4.0 feet

We estimate the integral using Simpson’s Rule:

.0008
J:/ P(t)dt
0
.0008

308)

+ 4(4000) + 2(5000) + 4(5200)
+ 2(2500) + 4(1000) + 0]
~ 2.133
2.13 = J =mAv = .01Av
Av = 213 ft/sec
The velocity after impact is therefore
213 — 100 = 113 ft/sec.

[0 + 4(1000) + 2(2100)

We compute the impulse using Simpson’s rule:

.6
~ —— |0+ 4(8000) + 2(16, 000
+4(24,000) + 2(15,000) + 4(9000)[5pt] +0]
~ 7533.3
7533.3 = J = mAv = 200Av
Av = 37.7 ft/sec

Since the velocity after the crash is zero, this
number is the estimated original velocity.

F'(t) is zero at t = 3, and the maximum thrust
is F(3) = 30/e ~ 11.0364

It is implicit in the drawing that the thrust
is zero after time 6. Therefore the impulse is

6
/ 10te~"3dt = 90 — 270e 2 ~ 53.55.
0

The impulse is
6

J = / F(t)dt = 48. The impulse of Exer-

0
cise 17 was about 53.55 which means that the
rocket of Exercise 17 would have greater veloc-
ity and therefore a higher altitude.

m = / dr =15
M = / dr = 48
Therefore,

M 4

m 15 5

So the center of mass is to the right of x = 3.
6
x
——)dx=15
( 6) v

m:/ 3
M—/::y(?)—g)dm—éﬁ

22,

23.

24.

25.

26.

27.

So, therefore

M 42 14
52—2—2322.8

m
So the center of mass is to the left of x = 3.

27 2
1 z+4+3
. m= = d
" /_3 (46+690> v
27

_ 690 +:c+33
3 \46 " 690

~ .0614 slugs ~

m—/32 i—|—$+3 2da:
o 0 46 690

= 0.08343 slugs ~ 42.418 oz

27 2
z+4+3
M= / (46 690) d

~

31.5 oz

m 0614
This is 3 inches less than the bat of Example
6.5, a reflection of the translation three inches
to the left on the number line.

32 2
M:/ T i+x+3 dxr
0 46 690

~ 1.72495

T = M = 20.6745

m
Compared to the baseball bat of Example 6.5,
this baseball bat is longer and therefore has
more mass further out.

30
m = / 00468(16 60) dx

~ .0614 slugs
30
3 x
M = 4 d
/ .00468x (16 60> T

=~ 1.0969
weight = m(32)(16) = 31.4 oz
M 1.0969 .
T= o T oew YA

The center of mass of the wooden bat of Ex-
ample 6.5 is at 19.6 inches. The center of mass
of the aluminum bat of Exercise 25 is at 17.8
inches—moving the sweet spot to the inside.

Area of the base is 5 3+1)=2.
Area of the body is 1 x 4 = 4.

1
Area of the tip is 5(1 x1)=—
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28.

29.

Base:
5
3 —2z)dr = — ~ .4167.
m= / x) B 6
Body:
5
m:/ pdx = 12p
1
T=—=3
m
m = / 6 — z)dx =~ 2.67p
16
_:— — &~ 5.33
. m 3

We use the coordinate system as in Exercise 29,
with £ = 0 corresponding to the left of the
rocket.

5
From Exercise 27, the base has total mass gp
and center of mass at x = I
From Exercise 27, the body has total mass 12p
and center of mass at = = 3.

1
From Exercise 27, the tip has total mass Ep

and center of mass at z = 3

The total mass of these three particles is

40
m= 3 p and the moment of these particles is

= (3) () s
() (9

2809

72
The center of mass of the system is

__ M _ (2809 \ (3
“m o\ 2 ”) \a0p
2809

= —— =292
960 920

The z-coordinate of the centroid is the same
as the center of mass from z = 0 to z = 4 with

—p

density p(z) = 2% hence

M f04 3/2-2%dr 8
r=——=-=—

m f04 3/2-xdr 3
The y-coordinate of the centroid is the same
as the center of mass from y = 0 to y = 6 with

2
density p(y) =6 — gy, hence

= M f02/3 ( 2)dy:
mo o [Sy3. (6--y)dy

30.

31.

So the center of the given triangle is the point

(8/3,2).

o= —TTrTT—T"TT
00 04 08 12 16 20 24 28 32 3.6 40

Again we need to find both the z-coordinate
and y-coordinate of the centroid. But in this
case, since everything is symmetric, in fact we
can easily see that the centroid is going to be
(4,2).

4.0—

00 08 16 24 32 40 48 56 64 72 80

This time the z-coordinate of the centroid is
obviously « = 0, so the question remains to
find the y-coordinate.

This is the same as finding the center of mass
from y = 0 to y = 4 with density

y) = /4 —y, hence
M fyuv/A—ydy
m fo VA —ydy
—f40(4ul/2 —u?/?) du
—fful/Qdu
(8/3-uP2 =25 WP
= 1
2/3-ud/?|

y=

_8
5

So the centroid is the pint (0,8/5).
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32.

33.

34.

35.
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This time the y-coordinate is obviously y = 0.
The z-coordinate can found using the density
p(z) =2z, from z = 0 to © = 4, and

M [loctdr 8

m f04 2xdz 3
So the centroid is (8/3,0).

4.0—

f:

3.2

2.4—

1.6—

0.8—]

0.0—

0lo
—0.8—
e
24
a2

—4.0

With z the depth, the horizontal width is a
linear function of x, given by x + 40. Hence,

60
F= / 62.4x(x + 40)dx
0

60

= 8,985,600 b
0

3
— 624 <% T 201;2)

In this case, we just change the limits of inte-

gration.
60

62.4z(z + 40) dz = 8,840,000 1b

F =
10

Let x be the vertical deviation above the cen-
ter of the window, the horizontal width of the
window is given by 2v/25 — x2, depth of water
40 + z, and hydrostatic force

5
62.4/ (x +40)2/25 — 22dz
-5
5
= 62.4/ 224/25 — 22dx
5

5
+ 62.4(40) / 2/25 — 22dz
5

36.

37.

38.

39.

40.

~ 196,035 pounds.

Let x be the distance from the surface of the
water. For a given value of z, the width of the
window is constant, 40. The force exerted on
the window by a slice of water, of depth x is
F; =~ (62.4)(40)zAz.

We sum these forces up over the height of the
window and turn it into an integral:

10
P / (62.5)(10)dz — 31,250 Ib,
0

Assuming that the center of the circular win-
dow descends to 1000 feet, then by the previous
principle, after converting the three inch radius
to 1/4 feet, we get F' = 12,252 pounds. An al-
ternate calculation in which x is the deviation
downward from the top edge of the window,
would be

0.5
Fe / 62.4(999.75 + )
0

-24/(0.25)2 — (0.25 — x)2dx

0.5
= / 124.8(999.75 + )/ 0.5z — z2dx
0

~ 12,252 1b

Due to the fact that the size of the watch is so
small, we can assume that the force will be ap-
proximately the same regardless of orientation
of the watch.

The hydrostatic force is given by F' = pdA
where, p is the density of the water (62.4),
d is the depth (60), and A is the area, A =
7(1/12)%

Putting these together gives

F ~ (62.4)(60)(7w/144) ~ 81.68 1b.

(100 tons)(20 miles/hr)

(100 - 2000 1bs)(20 - 5280 ft)
3600sec
~ 5,866,667 ft-1b/s
5,866,667
- 550
~ 10,667 hp

hp

This is a matter of slicing and approximating.
Divide the subinterval [a, b] into n equal subin-
tervals. Then, we take the limit as n — oo,
which turns the Riemann sum into an integral.
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41.

42.

43.

44.

n b
J= nlggoz;F(ti)At :/a F(t)dt

The bat in Exercise 23 models the bat of Ex-

ample 6.5 choked up 3 in.
From Example 6.5:

f(z) = 1.z :
= \46 " 600) °
27
f(z) - 2?dx ~ 27.22.
3

From Exercise 23:

1 z+3\’
1@ = (55 + %)
27
f(x) - 2?dx ~ 20.54.
3

1:2{$d2%ctio2r(1) %14moment:
e T ~24.5%

27.22
28 2
1 x
- —+2) 4
" /0 <46+690> v
30

2
—I—/ (1—1-36) dx
28 \92 690

~ 0.05918 slugs.

28 2
1 T

M= —4+—1]d

/0 v (46 + 690) v
+/30 (1 + )2d

| — —_— X

be \92 " 690

~ 1.1398 slugs
M
T =—~19.258

m
The center of mass moves in.

a 2 1
/ 2px2b\/ 1-— %daz = — pra®b
—a a 4

If the racket was solid wood, then the second

moment would be

a 2
Mg:/ 2pbx2\/1—z—2dx:pza3b
—a a 4
But, the racket is not solid wood. We have
to subtract the contribution to the second mo-

ment from the empty space. This amount is
equal to the second moment of a smaller wood

racket:
M, = / 2p(b — w)a?
—(a—w)
2
x
1——d
(a—w)p2 ™

= pla—w)P(b—w)

45.

46.

349

Therefore the second moment is
M = My — M,
™
=0y [a®b — (a — w)*(b—w)]
Using the formula in Exercise 42, we find that
the moments are 1323.8 for the wooden racket,

1792.9 for the mid-sized racket, and 2361.0 for
the oversized racket. The ratios are

mid over
~ 135, —— ~1.78
wood " wood
dM o 9 9
= pZ [Sa b—3(a—w)*(b— w)]
Sincea >a—wand b>b—w
dM
— > 0.
da >

Therefore as a increases, M increases.

DL - ) + (a0

d
It is easy to see that —— > 0. Therefore as w

w
increases M increases making the racket more
stable.

5.7 Probability

1.

fx) =42 >0for 0 <z <1 and
1

/ 4a’de = o), =1-0=1

0

. f(x) = =z > 0 on the interval [0,2] and

. f@)=2+223>0for 0 <2 <1and

1
2 £C4

1 3 X

. f(z) = cosz > 0 over [0,7/2] and

/2
/ cosxdr = 1.
0

1
. flz) = isinx > 0 over [0, 7] and

=1

/”1 . 1
—sinzdr = = —cosx
0 2 2 B

. f(x) =e/2 >0 over [0,In4] and

In4
=1.

In4
/ e 24y = —2e~*/?
0 0

. We solye for ¢:

1= / cxdr = g which gives ¢ = 4.
0
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10.

11.

12.

13.

14.

15.

16.

17.

18.
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. We solye for c:

1:/ cx+a:2dm:E+
O 2

w| =

4
which gives ¢ = 3

. We sol}/e for c:

1= / ce dx = —E(e_4 -1
O 4

4
which gives ¢ = ——.
—e

We 8013/'6 for c:
1= / 2ce”Cdr = 2 — 2e7%¢
0

1
which gives ¢ = 3 In 2.

‘We solve for c:
c 1
1= =ctan 'z
/0 1+ 22 0

™ Vs
=c(7-0)=¢]
4

s

which gives ¢ =

~ 1.2732

P(70 < 2 < 72)

! 08(x—68)2
= ——e P T0) gr ~ 0.157
70 V2w
P(76 < X < 80)
80
= [ 0L —0ms@-687 4y ~ 0.00068634
76 V2T
P(84 < z < 120)
120 4

- T o 08(@=68)? 1 o 776 % 1071
84 V2T

P(14 < X < 60)

60 0.4 )
= — e 008(z=68)" 70 ~ 0.00068714
14 V2w

1 1/4
P (O <z< ) = / 6e %% dx
4 0

o6 3/4 = (—e™¥/? +1) = 77687

0.5
P(0< X <0.5)= / 6e~5%dx ~ 0.95021
0

19.

20.

21.

22,

23.

24.

25.

26.

2
P1l<z<2)= / 6e % dx
1

fefﬁmﬁ = (—e 72 4 e7%) =~ .00247

10
PB3<X <10)= / 6e~ %% dx
3

~ 1.52300 x 1078

1
PO0<z<1)= / dxe 2 dx
0

=1-3e"2~ .504

2
P1<X<2) = / dre”**dr ~ 0.31443
1

10
Mean: / x(4rve™?")dx =~ 0.9999995
0

1
The maximum is at x = 3 and the mean is at
T ~ (0.31443.

b 1
Mean: u :/ xf(x)dz :/ 3x3dx
a 0

3
=-=0.75
4

Median, we must solve for m:

1 m m
- = / f(z)dx = / 3x2dr = m?
2 a 0

1

which gives m = —= =~ 0.7937.

%

b 1
Mean: uz/ xf(x)dm:/ 4zt dx
a 0
4
=F= 0.8

Median, we must solve for m:

1 m m
- = / flx)dx = / 4z3dr = m*
2 a 0

1

— =~ 0.84009.
V2

which gives m =
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29.

30.

b
Mean: ,uz/ xf(x)dz

1
=/ x( 4/ )dxz0.4413
0 1+£C2

Median, we must solve for m:
1 m
e / f(x)dx

" 4/m
_/0 (Hw?)dx
4

= m= tang ~ 0.4142

b
Mean: ,uz/ xf(x)dx
a
! 2/7
= | — | dz
/0 (vl—xQ)
~ 0.6366

Median, we must solve for m:

3= [ rws
[

m

= — sinflm‘o
T

I
7T(sm m 0)

= Zgin"'m

T

= m= sing ~ 0.7071

b
Mean: ,u:/ zf(x)dx

™1
= / —x sin xdx
0 2

1 .
= i(smm—xcosx)

U

0
Median, we must solve for m:

- Z " fayds

= sinzdz = = (1 — cosm)

DN =

0
which gives
m = cos™ *(0) = % ~ 1.57.

b
Mean: ,uz/ xf(x)dx

/2
= / x cos xdx
0

— g — 1~ 0.57080

31. Density f(z) = ce=4%,[0,b],b> 0

32.

33.

34.

m

= f(z)dx

a

(b) Median, we must solve for m:
1
2

m
:/ cosxdr = sinm
0

which gives m = %

b
1:/ ce ¥ dx
0

C _4x C/ —4p
= — — P _1
46 0 4 (e )
B 4
T em

Asb—o00,c— 4

From Exercise 31, ¢ =

b
u:/ cre Ydx
0

[1—e (1 +4b)]

c
T 16
— e 4 (1 + 4b)

T4l — e
Now, taki{lg the limit,

lim p = -
L

Density f(z) = ce=%%,[0,0],b >0

b
1:/ ce %% dx
0
b

—¢ —6z € —6b
= —e =—= (e - 1)
6 o 6
_ 6
Tl
Asb— 00, c— 6
b
W= / xee 5% dx
0 b
C€_6C
= (—6x —1)
36 0
ce 6 c
= —6b—1)+ —
36 ( )+ 36
1
As b — oo, u — 5
. A
l—eab
1—e®(1+ab)
k= a(l —e—ab)
1

lim p=—
b—oo a

~ 0.5236.

1—e
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38.
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To find the probability of these events, we add
the probabilities.

(a) P(X > 5) = 0.0514 + 0.0115 + 0.0016 +
0.0001 = 0.0646

(b) P(X < 4) = 0.0458 + 0.1796 + 0.2953 +
0.2674 + 0.1473
= 0.9354

(¢) P(X > 6)=0.0115 + 0.0016 + 0.0001
=0.0132

(d) P(X =3 or X = 4)
= 0.2674 + 0.1473
= 0.4147

(a) P(X =2or X =3) =0.441 + 0.343
=0.784

(b) P(X >1)=0.189+0.44140.343 = 0.973

(a) Suppose the statement is not true. Then
there must be a game before which the
player’s winning percentage is smaller
than 75% and after which the player’s
winning percentage is greater than 75%.
Then there are integers a and b (note that
a>m,b>nand a—b=m—n), such
that .
%<Zand%>%Then
4a < 3b, and 4a+4>3b+ 3
3b+4>4a+4>3b+3.

But there is no integer between the two
numbers 3b + 4 and 3b + 3, and thus such
situation will never happen. Thus there
must be a game after which the player’s

winning percentage is exactly 75%.

(b) Using the same argument as in the previ-
ous problem, we can conclude that:
If after a certain game, a game player’s
winning percentage is strictly less than

100k—+1, and then the player wins sev-
eral games in a row so that the win-

k
ning percentage exceeds 100m, then
at some point in this process the player’s

k
inning percentage is exactly 100——.
w gp g Xactly 1

First the first quartile, we solve
C

0.25 = In 2e~ (M 2)%/2 g,
0

—9 (1 _ 67(1n2)c/2>
Solving gives
c¢=—2In(7/8)/In2 ~ 0.3853 days.

39.

40.

41.

42.

For the third quartile, we solve
c

0.75 = In 2e~ (0 2)z/2 4y

0
—9 (1 _ 67(1n2)c/2)
Solving gives
c=—2In(5/8)/1In2 ~ 1.3561 days.

4 2
o—-08(z—68)

f) = o
Fla) = —\;;4 (¢ — 68)6—.08(x—68)2
#(z) = _'0646—.08(30768)2

Var
- (1—.16(x — 68)?)

The second derivative is zero when
x—68==41/v/0.16 = +1/0.4 = £5/2

Thus the standard deviation is 5

For this, we have p = 68 and 0 = g
Ppu—o<X<pu+o)

= P(65.5 < X < 70.5) ~ 0.6827
Plp—20 <X <p+20)

= P(63 < X < 73) =~ 0.9545
P(u—30c <X <pu+30)

= P(60.5 < X < 75.5) ~ 0.9973

f'(p) =mp™ ' (1—p)

f'(p) =0 when p = % and

, <0 ifp<m/n
f(p){ >0 ifp>m/n

Hence f(p) is maximized when p = m

n
In common senses, in order for an event to hap-
pen m times in n tries, the probability of the
event itself should be about m/n.

In the picture, although it might appear that
y > 1/2, the conditions are that 0 < y < 1/2,
and the labeling in the drawing implies that the
lower line is the closer. This is indeed always an
allowable assumption (by turning the picture
upside down if necessary). In the right triangle
whose hypotenuse is the lower half-needle, the
vertical side is of length (sin#)/2. Therefore
the needle hits the lower line if y—(sin 8) /2 < 0,
or if y < (sinf)/2. As to the actual probabil-
ity ratio, the denominator is just 7/2, while

the numerator is
cos _*COS7T+COSO_2_1
2 |, 2 2
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43.

44.

45.

The total probability of hitting a line is thus
2/m =~ 63.66%.

To find the maximum, we take the derivative
and set it equal to zero:

#(z) = —2az(bz — 1)(ba + 1)e """ = 0. This
gives critical numbers x = 0, £—.

Since this will be a pdf for the interval [0, 4m],
we only have to check that there is a maximum

1
at 7 An easy check shows that
1
f'(z) > 0 on the interval {0, b] and

1
f'(z) < 0 for z > —. Therefore there is a

b
1
maximum at © = m = 3 (the most common
speed).
To find a in terms of m, we want the total

probability equal to 1. Since m = —, we also

b
1
make the substitution b = —.
4m R 5 m
1= axe /™ dy
0
Solving for a gives

4m 5 N
a= (/ e~ % /m dx)
0

Note: this integral is not expressible in terms
of elementary functions, so we will leave it like
this. Using a CAS, one can find that

a = 2.2568m?

-1

F(t) = 4—3/2,0.38¢—100/t

40
/ k- f(t)dt =1 for k = 0.000318.
0

30
/ 0.000318 - f(¢)dt ~ 0.0134
20

The probability of a 2k-goal game ending in a
oD e
%) (k+1

(2k) =~ ~——p" (1 - p)*

= Tme PUY
f(2k) < f(2k — 2) for general k.

f(2k) 2k —1

=2 1—

Fok—9) T p(L—-p)
Here Rl :2—%<2.

On the other hand,
2
R R +1>0
D) =2 U,p p 1=

p(1—p) <
f2k) 2k -1
fk—2) 7 k

1=

1

2
— < —
p p_4a

Now we get p(l—p)

46.

47.
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1
<2-2- 1= 1. So f(2k) < f(2k — 2). In other
words, the probability of a tie is decreasing as
the number of goals increases.

The probability HT'T appears first is the mean
of that probability over the four possibilities
for the first two coin tosses.

Let P(HT) be the probability HTT appears
first following HT.

Suppose the first two throws are HH. Then the
third throw can be either H or T. If it’s H,
then we are back in the same position: the pre-
ceding two throws are HH. But if it’s T, then
player B has won. So the probability of player
A winning in this case is 0. Putting the two
possibilities for the third throw together, as a
mean, the probability that player A wins fol-
lowing HH is:

P(HH):%XP(HH)+ L

1

3 X 0= iP (HH).
Now suppose the first two throws are HT. If
the third throw is H, then neither player has
won, and the probability HTT will ultimately
win is (by definition) P(TH). (The last two
throws were TH.) On the other hand, if the
third throw is T, then player A has won! So
this time the weighted mean for the probabil-
ity that player A wins, following HT is:

1 1 1
P (HH) = o x P (TH) + 5 x 1= P (TH) + 5

Similarly, we get

P (TH) — % « P (HH) + % « P(HT) and
P(TT) = % x P (TH) + % x P(TT).
Therefore, we have

P(HH) =0

P(HT) = P(HT)/4 + 1/2 P(HT) = 2/3
P(TH) = P(HT)/2 =1/3

P(TT) = P(TH) P(TT) = 1/3

The mean of these four results gives us the
probability of HTT appearing before HHT is
1/3. Hence, the probability of HHT appearing
before HTT is 2/3. Therefore, player B is twice
as likely to win.

(a) The functions f (x) and g () are the pdfs,
such that f (z) = a + bx + cz?;
f(a?) =g(a).
Therefore by definition,
);9(x) >0 and

/f d:r—/ g(x)dr =1

Consider f(x) = a + bx + cx? and
g(z) = f(2?) = a + bx? + cx?.
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1
Thus, 1 :/ f(x)dx
0

1
:/ (a+bx+cm2)dx
0

x? x3 !
P bi p—
(az+ 5 +c3>

1
and 1 :/ g(x)dx
0
1
= / (a + bz + ca:4) dx
0

x3 xP !
= b— _—
(aa:+ 3 +c5)

Solving (1) and (2), we get,
b= —a=14 S,
) 15
Thus f (z) = 1—&-%— %x%—cﬁ
15cz? — 12cx + ¢ + 15)

or f(a) = -

(b) Mean of pdf g:
b
uw= / xg(z)dx

L (15ca* — 12¢22 + ¢+ 15
:/ x( )dx
0

15
1
15 Jo
_ 1 (1503:6 _ 12ea? N (c+ 15)302)

(15ca® — 12¢2® + (¢ + 15) z) da
1

15 6 4 2
=0.5

0

Ch. 5 Review Exercises

1. Area :/ (a:2+2—sinx) dx
0

™

23
= <3 +2x+cosx)

3

T
= — 4+ 21 -2
3+7r

0

1
2. Area z/ (" —e ") dx
0

1
=("4e )| =et+e -2
0

1
3. Area :/ - (2:c2 - x) dx
0

. Solving e~

1

(2, 2
13" )| T2

. First solve 2 — 3 = —22 4+ 5 to find that the

intersections points are r = —2, 2.

Area = /_2[(—:102 +5) — (2* — 3)] da

2 2 64
= (3”6 +8x> =5

T =92 — 22 we get

r ~ —0.537,1.316

1.316
Area ~ / (2—2"—¢")da
— 537
23
= 2 —_ -
(-5 )

1.316

~ 1.452
—.537

. First solve 42 = 1 —y to find that the intersec-

. . —1++5
tions points are y = —

_1;\/5
Area = 1—y)—y’]d
o= [ 10-0) -y
(T

2 3 —1-V5

2

_ 55
=5

1 2
.Area:/ x2dx+/ (2 —2z)dx
0 1

2

2 8
.Areaz/xzdxzf
0 3

. If P is the population at time ¢, the equation

1S

P'(t) = birth rate — death rate
=(10+2t)— (4+t) =6+1

Thus P = 6t + t2/2 + P(0), so at time t = 6,
P(6) = 36 + 18 + 10,000 = 10,054.
Alternatively,

6
A:/O [(10 + 2¢) — (4 + t)]dt
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10.

11.

12.

13.

14.

6
=54

:/06(6—|—t)dt: <6t+t22> .

population = 10,000 + 54 = 10,054

For this we use Simpson’s rule on the function

(f = 9)(x).

/O (@) - ga)) de

2
z%[(3.2—1.2)4—4(3.5—1.5)+2(3.8—1.6) +
4(3.7-2.2)+2(3.2—2.0)+4(3.4—2.4) +2(3.0—
2.2)+4(2.8-2.1)4+2(2.3-2.3) +4(2.9—2.8)+
(3.4 —2.4)]
~ 2.1733.

2
V:/ 7(3 + )% dx
0

2
:71'/ (9 + 62 + 2?) dx
0
3
— <9x—|—3x2+x3)

987

3

If we consider slices perpendicular to the z-
axis, then the area of a slice is equal to (10 +
2z)(4 + z) (length times depth). We integrate
the areas from z =0 to z = 2:

2
Area = / (10 4+ 22)(4 + x) dx
0

2

0

4
= % ~ 121.33 cubic feet.

Use trapezoidal estimate:

0.4
V=04 (2 +14+18+20+21

0.4
+ 1.8+ 1.1+ 2)

16.

0

(© V= / (2 + Vi)2dy
- [ w2 viray

4
7r/ (4 + 492 4 y)dy
0

4
- 77/ (4 — 4y'% + y)dy
0

=T

8- gy?’/?

3

5
(—é -2 +32:v>

14087

15

4
ﬂ/ (8y'/*)dy
0

t 1287

43
3

3

m(x? +2)? da

(=2t — 422 + 32) da
2

-2

355
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2
(d) V = / 7T[(4 _ x)2 _ (4 _ 21,)2] dx (d) Meth0(12 of shells.
g v:/ 2n(4— )[4 - 1)
1 (" — )] dy
L
17, @) V= [ 22—y - vy a0

1
= 27r/ (2y — 2y°)dy
0

1
1 19. s=/ 14 (423)° dz ~
—1

0 0
o 20. s:/ VIt (22 + 1)2da ~ 1.14779
= — ~1
1 ) 2 61/2 2
b>V=/7T(2—y)dy 21.3/ 1+( 5 ) da =~ 4.767
0 -2
1
—/ m(y)*dy ™
Jo 22. s = / V14 4cos? 2z dx =~ 5.27037
—7r/ (4 — dy)d 0
0 1
:7r(4y—2y2)’(1):277 23. S:/O 21(1 — 2®)\/1 + 422 dx
1 ~ 5.483
(c) V:/ m((2—y)+1)d )
0
' 2 24. S = / 223 \/1+ 9% da ~ 3.56312
—/ m(y+1)°dy 0
0
1 "
B B 9 25. h (t) —32
o, ( ) = —32t
—W/O (y™ + 2y + 1)dy h(t) = —16t* + 64
. /1 (8 — 8y)d This is zero when ¢t = 2, at which time h/(2) =
a 0 y)ey —32(2) = —64. The speed at impact is re-
=7 (8y — 4y2)|é = 4r ported as 64 feet per second.
@ Vv /1 om(d (2 ) d 26. In this case we have the equations
= T — — J—
0, PRSI T B(t) = —32
h(0) =64 K(0)=4
=2 -1 2y
W/O (8 = 10y +2y7)dy B (t) = —32t +4
2.3\ | h(t) = —16t% + 4t + 64
:27r(8y—5y2+y) (.).
3 /1o This is zero when
_ 22m 1+ /257
3 t=to=—"%—
18. (a) Method of shells. Therefore the velocity at impact is
2
—32(1 + /257
V:/ 2my[(4 — y?) — (v* — 4)] dy B (to) = %—#4
0
= 167 = —4/257 ~ —64.125 ft /s
51271'
) V= / (4—y*)dy = 27. " (t) = —32,2"(t) = 0,
y(0) = 0,2(0) =0
/
) v=/ 78— v*)* — vl dy /(0) = assin (7)
—2 / - E
5197 (O)—48cos(9>
= ¥ (0) ~ 16.42,2'(0) ~ 45.11

3
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28.

29.

30.

y'(t) = =32t + 16.42
y(t) = —16t* 4 16.42t

This is zero at t = 1.026. Meanwhile,

2/ (t) = 45.11

x(t) = 45.11¢

2(1.026) = 45.11(1.026) =~ 46.3 ft This is the
horizontal range.

In this case we have the equations

y'(t)=-32,2"(t) =0
y(0) = 6,2(0) =0

/ . T ’ T
y'(0) = 48sin 3 ¢ (0) = 48005§

y'(t) = —32t + 48sin g
2'(t) = 48 cos g

y(t) = —162 + 48t sing +6

x(t) = 48t cos g

We now solve y(t) =0 or

~16¢% + 48t sin 5 + 6= 0

which gives ¢t &~ 1.3119, this is the time of flight.

The horizontal range is
2(1.3119) ~ 59.17 feet.

y(0) = 6,2(0) = 0

, . 2
= — | =111
y'(0) = 80sin (45 3,
, 27
= —_ =~ 22
z'(0) = 80 cos <45 79

y"(t) = —32,2"(t) =0

y'(t) = =32t +11.13

y(t) = —16t* +11.13t + 6

7' (t) = 79.22

x(t) = 79.22t

This is 120 (40 yards) when ¢ is about 1.51. At
this time, the vertical height (if still in flight)
would be

y(1.51) = —16(1.51)% 4 11.13(1.51) + 6

= —13.6753,

Since this is negative, we conclude the ball is
not still in flight, has hit the ground, and was
not catchable.

If we repeat Exercise 29, but we’ll leave the
2

angle as 6 (we will plug in § = 24° = % later

t00).

Our equations become

y(0) =6, x(0)=0

y'(0) = 80sind, 2'(0) = 80 cosf
y'(t)=-32, 2'(t)=0

31.

357

Integrating and using the initial conditions
gives

y'(t) = —32t + 80sin 6

x'(t) = 80cos b

y(t) = —16t> 4 80t sinf + 6

x(t) = 80t cos b

We solve for the time when the ball is 40 yards
down the field:

120 = z(t) = 80t cos §

Solving gives

to=1t= 3 sec

The height at this time is

3 2
y(to) = —16 (2 sec 0)
3 .
+ 80 <2 sec0) sinf + 6
= —36sec? 6+ 120tanf + 6

Let us say that the ball is catchable if it is be-
tween 0 and 8 feet high when the ball reaches
the 40 yard point (the player can dive or jump
to catch alow or high ball). To determine when
this occurs, we graph the function and see that
for the ball to be catchable it must be thrown
with angle in the range:

15.23° < 6 < 19.51°

124

L

IS
T S R N B R

14 16 18 20 22
theta

L

R (t) = —32
h,(O) = Vo
h(0)=0

R (t) = =32t + vy

This is zero at ¢t = vg/32.
2 2 2

Vg vg v Y§
() =0 (55 3=
32 0 322 + 32 64
If this is to be 128, then clearly vy must be

V/(64)(128) = 64v/2 ft /sec.

Impact speed from ground to ground is the
same as launch speed, which can be verified
by first finding the time ¢ of return to ground:
—16t% + vot =0
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32.

33.

34.

35.
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t= 00/16
and then compiling

h/ (U0/16) = —32(’[)0/16) + vg = —g
We want to determine how far in the z-
direction the drop travels. We have initial con-
ditions
2’'(0) = 100, z(0) =0
y'(0) = 0, y(0) = 120
2'(t) = 100, z(t) = 100t,
y'(t) = —32t, y(t) = —16t% + 120

We first solve 0 = y = —16t> + 120 to get

/15
t = CR This is when the supplies hit the

ground. We plug this into the equation z(t) to
determine how far the supplies traveled.

15 /15
— =1 — =~ 273.
x( 2) 00 5 73.86

So, the supplies should be dropped 273.86 feet
before the target.

F=kx, 60=£k-1, k=60

2/3 2/3
W= / 60z dx = 302°|
30-4 40
== ftlb
9 3

Remember to convert miles to feet.
8
W = / (800 + 2z) dx
0

= 6464 mile-pounds
= 3.413 x 107 foot-pounds.

m = /x—2x+8)d
o2

= <3x +8x) .

M= / 2% — 2z +8) d

:/04(353—295 + 8z) da
<

x4

= 4

1 3 —I—x)
M_ %256 16
m U2 7112 7

Center of mass is greater than 2 because the
object has greater density on the right side of
the interval [0, 4].

36.

37.

38.

39.

40.

41.

42.

2
44
m:/(x272x+8)dx:—.
0 3
2, 44
M= | z(z®—2x+8)de=—.
0 3
_ M
T=—=1
m

The center of mass is at one because the den-
sity function is symmetrical about the point
x = 1. (The graph of y = 2?2 — 2z + 8 is a
parabola with vertex at = = 1.)

80
F= / 62.42(140 — z) dx
0
80
= 62.4/ (1402 — %) dx
0

3
— 624 (70:c2 _ ";)

= 62.4(80)%(130/3)
~ 17,305,600 1b

80

0

10
F= / 62.4(20)z dz = 46800 Ib

.0008
J =~ 3@) {0+
+ 4(2400) +
+2(2200) +
=1.52

J =mAv

1.52 = .01Av
Av =152 ft/s
152 — 120 = 32 ft/s

4(800) + 2(1600)

2(3000) 4 4(3600)
4(1200) + 0}

2
J= / 3000£(2 — t) dt = 4000
0

Since J = mAw, we have Av = % =40 and

the speed before the collision must have been
40 feet per second (about 23.7 miles per hour).

f(z) =2+ 22 on [0,1]
fl@)>0for 0 <z <1and

1 2 4
3 I
/()(x+2:z:)dx—<2+2>

The function is positive on the interval, and

In2
/ §6721 dr =1.
o 3

1
=1
0
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2

c —c
[ e
1z x

Therefore ¢ = 2

43.

44. We want to solve for ¢:
4 c
1= / ce ™ dr=—(1—e®)
0 2

Solving gives

5
45. (a) P(x < .5) :/ 4™ dx
0

= —6_49”].15 =—et4e 2117

1 1/12 )
46. (a) P(X < — :/ 9ze 3" dx
12 0

=1- Ze—l/‘l ~ 0.026499
1 1
(b) P ( <X < 1) :/ 9ze ™3 dx
2 1/2

= 26*3/2 — 4¢3 &~ 0.35868

359

1
y:/ x(m+2w3) dx
0

1
=M 07333
o 15

3 22

3+5

:/ (x+2x3) dx
0

LL’Q LL’4C 02 C4
BECIECY Ry

Therefore ¢ + ¢* =1,

c:\/_l%\/gmo.m

In2
8
w= / —ze 2 dx
0o 3

L 11 2~ 0.26895
=-—-In2=0.
2 3

For the median, we have to solve the equa-
tion

DN | =

m 4
0.5 = /0 26_21 dx = 5(1 — ™)

Solving gives

1
m = 2 In(8/5) ~ 0.23500
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