الملف نموذج تدريبي امتحاني ثاني موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← رياضيات ← الفصل الثاني ## روابط مواقع التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم للسلسلي المتعدم على تلغرام وابط مواد الصف الثاني عشر المتقدم على تلغرام التربية الاسلامية الاسلامية اللاسلامية الاسلامية اللاس | المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة رياضيات في الفصل الثاني | | |--|---| | كل مايخص الاختبار التكويني لمادة الرياضيات للصف الثاني عشر
يوم الأحد 9/2/2020 | 1 | | تدريبات متنوعة مع الشرح على الوحدة الرابعة(النهايات
والاتصال) | 2 | | تدريبات متنوعة على تطبيقات الاشتقاق | 3 | | قوانین هندسیة | 4 | | الاختبار القياسي في الرياضيات | 5 | REVISION 10 TERM 2 12 ADVANCED MATH 2021-2022 النموذج التجريبي الثاني ## SUCCESS تم تصميم المراجعة طبقا لهيكل الاختبارات والمتسجدات التدريب الجيد يضمن لك التفوق MR — AHMED ATA خطوة واحدة للتفوق انتظروا المزيد من سلسة المراجعات النهائية 1 AHMED ATA AHMED ATA AHMED ATA graph the function and completely discuss the graph of $f(x) = \frac{x^2 - 1}{x}$ 1) x intercept = AHMED ATA 3) vertical asymptote 3) vertical asymptote f'(x) = AHMED ATA 4) horizontal asymptote $$f''(x) =$$ AHMED ATA HMFD ATA AHMED ATA AHMED ATA - 7) intervals decreasing - 5) local maxi muni AHMED ATA - 8) concave down - 9) inflection point and local minimun 0566010255 2 AHMED ATA AHMED ATA AHMED ATA graph the function and completely discuss the graph of $f(x) = \frac{x^2 + 4}{x^3}$ 2) y - interept = 3) vertical asymptote f'(x) = AHMED ATA 4) horizontal asymptote $$f^{\prime\prime}(x) =$$ AHMED ATA HMFD ATA AHMED ATA AHMED ATA - 7) intervals decreasing - 5) local maxi muni AHMED ATA - 8) concave down - 9) inflection point and local minimun MR / ahmed Ata 0566010255 AHMED ATA AHMED ATA graph the function and completely discuss the graph of $f(x) = \frac{x}{x^3}$ 2) y - interept = 3) vertical asymptote $$f'(x) =$$ AHMED ATA AHMED ATA AHMED ATA AHMED ATA 5) local maxi muni 9) inflection point and local minimun MR / ahmed Ata 0566010255 4 AHMED ATA AHMED ATA AHMED ATA graph the function and completely discuss the graph of $f(x) = \frac{2x}{x^2 - 1}$ - 1) x—intercept = - AHMED ATA - 3) vertical asymptote f'(x) = $$2) y-interept =$$ AHMED ATA 4) horizontal asymptote ATA $$f''(x) =$$ AHMED ATA HMED ATA AHMED ATA AHMED ATA - 5) critical numbers - 6) intervals increasing - 7) intervals decreasing - 5) local maxi muni AHMED ATA - 7) concave up - 8) concave down - 9) inflection point and local minimun T MR / ahmed Ata 0566010255 AHMED ATA AHMED ATA graph the function and completely discuss the graph of $f(x) = \frac{x^2}{x^2 + 1}$ 2) y - interept = 4) horizontal asymptote $$f''(x) =$$ AHMED ATA f'(x) = AHMED ATA AHMED ATA AHMED ATA 6) intervals increasing 3) vertical asymptote - 7) intervals decreasing - 5) local maxi muni AHMED ATA - 8) concave down - 9) inflection point and local minimun A three-sided fence is to be built next to a straight section of river, which forms the fourth side of a rectangular region. The enclosed area is to equal 1800 ft². Find the minimum perimeter and the dimensions of the corresponding enclosure AHMED ATA AHMED ATA a) $$x = 15$$, $y = 120$ and permeter = 150 ft b) $$x = 30$$, $y = 60$ and permeter = 120 ft c) $$x = 45$$, $y = 40$ and permeter $= 130$ ft d) x = 60, y = 30 and permeter ≈ 150 ft AHMED ATA AHMED ATA A three-sided fence is to be built next to a straight section of river, which forms the fourth side of a rectangular region. There is 96 feet of fencing available. Find the maximum enclosed area and the dimensions of the corresponding enclosure a) $$x = 32$$, $y = 36$ and Area = $1152ft^2$ AHMED ATA b) $$x = 48$$, $y = 24$ and $Area = 1152ft^2$ c) $$x = 24$$, $y = 48$ and $Area = 1152ft^2$ d) $$x = 36$$, $y = 32$ and $Area = 1152ft^2$ AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 AHMED ATA A two-pen corral is to be built. The outline of the corral forms two identical adjoining rectangles. If there is 120 ft of fencing available, what dimensions of the corral will maximize the enclosed area? a) $$x = 45$$, $y = 10$ and $Area = 450ft^2$ AHMED ATA b) $$x = 25$$, $y = 25$ and $Area = 625ft^2$ c) x = 20, y = 30 and $Area = 600 ft^2$ AHMED ATA AHMED ATA \vec{a} $\vec{x} = 30$, y = 20 and $Area = 600 ft^2$ AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 A showroom for a department store is to be rectangular with walls on three sides, 6-ft door openings on the two facing sides and a 10-ft door opening on the remaining wall. The showroom is to have 800 ft² of floor space. What dimensions will minimize the length of wall used? - a) 58ft length of wall wehn x = 20ft and y = 40ft - b) 58ft length of wall wehn x = 30ft and y = 30 ft - c) 58ft length of wall wehn x = 40ft and y = 20 ftAHMED ATA - d) 58ft length of wall wehn x = 25ft and y = 35ft AHMED ATA MR / ahmed Ata AHMED ATA 0566010255 12 AHMED ATA AHMED ATA AHMED ATA A box with no top is to be built by taking a 6 in by 10 in sheet of cardboard, cutting x-in. squares out of each corner and folding up the sides. Find the value of x that maximizes the volume of the box. a) $$x = \frac{8-\sqrt{19}}{3}$$ AHMED ATA $$x = \frac{8 + \sqrt{19}}{2}$$ AHMED ATA $$c) x = \frac{4 - \sqrt{19}}{3}$$ $$c) x = \frac{4\sqrt{19}}{3}$$ AHMED ATA ΔΗΜΕΌ ΔΤΔ AHMED ATA AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 Oil spills out of a tanker at the rate of 120 gallons per minute. The oil spreads in a circle with a thickness of $\frac{1}{4}$ in Given that 1 ft³ equals 7.5 gallons, determine the rate at which the radius of the spill is increasing when the radius reaches 100 ft AHMED ATA AHMED ATA AHMED ATA b) $$n' \in \frac{96}{25\pi} ft/min$$ AHMED ATA AHMED ATA $$d) r' = \frac{112}{25\pi} ft/min$$ AHMED ATA 0566010255 Oil spills out of a tanker at the rate of 120 gallons per minute. The oil spreads in a circle with a thickness of in Given that 1 ft³ equals 7.5 gallons, determine the rate at which the radius of the spill is increasing when the radius reaches 200 ft AHMED ATA AHMED ATA a) $$r' = \frac{48}{25\pi} ft/min$$ b) $$v' \in \mathbb{R} \frac{96}{25\pi} ft/min$$ AHMED ATA AHMED ATA $$d) \ r = \frac{112}{25\pi} ft/min$$ And the distance of distanc AHMED ATA 0566010255 Oil spills out of a tanker at the rate of 90 gallons per minute. The oil spreads in a circle with a thickness of $\frac{1}{8}$ in Determine the rate at which the radius of the spill is increasing when the radius reaches 100 feet AHMED ATA AHMED ATA AHMED A a) $$r' = \frac{48}{25\pi} ft/min$$ $$b = \frac{96}{25\pi} ft/min$$ AHMED ATA AHMED ATA c) $$r' = \frac{144}{25\pi} ft/min$$ $$d) \ r' = rac{112}{25\pi} \ ft/min$$ AHMED ATA AHMED ATA AHMED ATA 0566010255 Oil spills out of a tanker at the rate of g gallons per minute. The oil spreads in a circle with a thickness of $\frac{1}{4}$ in Given that the radius of the spill is increasing at a rate of 0.6 ft/min when the radius equals 100 feet, determine the value of g. AHMED ATA a) $$v' = 68.9 \, gal/min$$ b) $$v' = 38.1 \, gal/min$$ AHMED ATA c) $$v' = 45.9 \ gal/min$$ d) $v' = 58.9 \, gal/min$ AHMED ATA AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 AHMED ATA Assume that the infected area of an injury is circular. If the radius of the infected area is 3 mm and growing at a rate of 1 mm/hr, at what rate is the infected area increasing? - a) the area is incraesing by rate $3\pi \, mm^2/h^{\text{IED}}$ ATA - b) the area is incraesing by rate $6\pi \text{ mm}^2/h$ - c) the area is incraesing by rate 9π mm²/h - d) the area is incraesing by rate $12\pi \text{ mm}^2/h$ AHMED ATA AHMED ATA AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 Assume that the infected area of an injury is circular. If the radius of the infected area is 6 mm and growing at a rate of 1 mm/hr, at what rate is the infected area increasing? - a) the area is incraesing by rate $3\pi \, mm^2/h^{\text{IED ATA}}$ - b) the area is incraesing by rate $6\pi \text{ mm}^2/h$ - c) the area is incraesing by rate 9π mm²/h - d) the area is incraesing by rate $12\pi \text{ mm}^2/h$ AHMED ATA AHMED ATA AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 Suppose that a raindrop evaporates in such a way that it maintains a spherical shape. Given that the volume of a sphere of radius r is $V = \frac{4}{2}\pi r^2$ and its surface area is $A = 4\pi r^2$, if the radius changes in time, show that V' = Ar'. If the rate of evaporation (V') is proportional to the surface area, then radius changes the radius changes at a constant rate AHMED ATA - a) radius changes at a constant rate - b) radius changes by rate 4 AHMED ATA c) rat of radius decreasing by 2 d) radius changes by rate $\frac{4}{3}$ AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 Suppose a forest fire spreads in a circle with radius changing at a rate of 5 feet per minute. When the radius reaches 200 feet, at what rate is the area of the burning region increasing? AHMED ATA AHMED ATA AHMED ATA **AHMED** - a) $2000 ft^2/min$ - b) $2000\pi ft/min$ - Δc) $2000\pi ft^2/min$ AHMED ATA AHMED ATA d) $1500\pi ft^2/min$ AHMED ATA AHMED ATA AHMED ATA 0566010255 AHMED ATA from the wall at the rate of 3 ft/s and the ladder remains in contact with the wall, find the rate at which the top of the ladder is dropping when the bottom is 6 feet from the wall. AHMED ATA AHMED ATA AHMED ATA AHMED ATA a) $$y'(t) = 2.25 ft/sec$$ b) $$y'(t) = -2.25 ft/sec$$ c) $$y'(t) = 3.25 ft/sec$$ AHMED ATA d) y'(t) = -3.25 ft/sec AHMED A AHMED ATA AHMED ATA 0566010255 AHMED ATA from the wall at the rate of 3 ft/s and the ladder remains in contact with the wall, Find the rate at which the angle between the ladder and the horizontal is changing when the bottom of the ladder is 6 feet from the wall. AHMED ATA AHMED ATA AHMED ATA a) $$\theta'(t) = \frac{3}{8} rad/sec$$ $$A|b\rangle |\theta\rangle (t) = -\frac{5}{8} rad/sec$$ AHMED ATA c) $$\theta'(t) = -\frac{3}{8} rad/sec$$ d) $\theta'(t) = -\frac{7}{8} rad/sec$ d) $$\theta'(t) = -\frac{7}{8} rad/sec$$ AHMED ATA AHMED ATA Suppose that $C(x) = 0.02x^2 + 2x + 4000$ is the total cost (in AED) for a company to produce x units of a certain product. Compute the marginal cost at x = 100 AHMED ATA AHMED ATA AHMED ATA AHMED ATA a) 2 AED b) 5.98 AED c) 4 AED AHMED ATA d) 6 AED AHMED ATA AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 AHMED ATA Suppose that $C(x) = 0.02x^2 + 2x + 4000$ is the total cost (in AED) for a company to produce \boldsymbol{x} units of a certain product. Compute actual cost of producing the 100th unit AHMED ATA AHMED ATA AHMED ATA AHMED ATA a) 2 AED b) 5.98 AED c) 4 AED AHMED ATA d) 6 AED AHMED ATA - a) tanx + secx + c - b) secx tanx + c c) tan x - sec x + c AHMED ATA AHMED ATA AHMED ATA d) 2secx + c AHMED ATA AHMED AHMED ATA AHMED ATA AHMED ATA AHMED ATA $$a) - 4cscx + c$$ b) $$4cscx + c$$ c) **4 sec**x + c AHMED ATA MR / ahmed Ata 0566010255 Find the general antiderivative AHMED ATA AHMED ATA AHMED ATA AHMED ATA $$a) \frac{1}{2} ln \big| x^2 + 4 \big| + c$$ $$|ab| |a| |x^2 + 4| + c$$ c) $$2ln|x^2 + 4| + c$$ d) $2ln|x + 4| + c$ $$d) \ 2\ln|x+4|+c$$ AHMED ATA AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255 Find the general antiderivative AHMED ATA AHMED ATA $$\int_{A+M} \frac{e^x}{e^x} dx$$ AHMED ATA AHMED ATA a) $$\ln |e^x + 3| + c$$ b) $$\ln |e^x| + c$$ c) $$ln|e^x + 3| + c$$ $d) \ln |e^{-x} + 3| + c$ AHMED ATA AHMED ATA AHMED ATA AHMED ATA MR / ahmed Ata 0566010255