
*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا
https://almanahj.com/ae

* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر المتقدم اضغط هنا
https://almanahj.com/ae/15
* للحصول على جميع أوراق الهف الثاني عشر المتقدم في مادة فيزياء ولجميع الفصول, اضغط هنا https://almanahj.com/ae/15physics
* للحصول على أوراق عمل لجميع مواد الصف اثثاني عشر المتقدم في مادة فيزياء الخاصة بـ الفصل الثالث اضغط هنا https://almanahj.com/ae/15physics3
* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الثاني عشر المتقدم اضغط هنا
https://almanahj.com/ae/grade15
للتحدث إلى بوت المناهج على تلغرام: اضغط هنا
https://t.me/almanahj_bot

SAT Subject Physics Formula Reference

This guide is a compilation of about fifty of the most important physics formulas to know for the SAT Subject test in physics. (Note that formulas are not given on the test.) Each formula row contains a description of the variables or constants that make up the formula, along with a brief explanation of the formula.

Kinematics

SAT Subject Physics Formula Reference

Kinematics (continued)

	$v_{\mathrm{f}}=$ final velocity	
$v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta x$		
	$a=$ acceleration	Use this formula when you
	don't have Δt.	
Δx	$=$ displacement	

Dynamics

SAT Subject Physics Formula Reference

Dynamics (continued)

$\Delta p=F \Delta t$	$\Delta p=$ change	
	in momentum	$F \Delta t$ is called the impulse.
$F=$ applied force		
$\Delta t=$ elapsed time		

Work, Energy, and Power

$W=F d \cos \theta$ or $W=F_{\\|} d$	$\begin{aligned} W= & \text { work } \\ F= & \text { force } \\ d= & \text { distance } \\ \theta= & \text { angle between } K \\ & \text { and the direction } \\ & \text { of motion } \\ F_{\\|}= & \text {parallel force } \end{aligned}$	Work is done when a force is applied to an object as it moves a distance $d . F_{\\|}$is the component of F in the direction that the object is moved.
$\mathrm{KE}=\frac{1}{2} m v^{2}$	$\begin{aligned} \mathrm{KE} & =\text { kinetic energy } \\ m & =\text { mass } \\ v & =\text { velocity } \end{aligned}$	The definition of kinetic energy for a mass m with velocity v.
$\mathrm{PE}=m g h$	$\begin{aligned} \mathrm{PE}= & \text { potential energy } \\ m= & \text { mass } \\ g= & \text { acceleration due } \\ & \text { to gravity } \\ h= & \text { height } \end{aligned}$	The potential energy for a mass m at a height h above some reference level.

SAT Subject Physics Formula Reference

Work, Energy, Power (continued)

$W=\Delta(\mathrm{KE})$	$W=$ work done $\mathrm{KE}=$ kinetic energy	The "work-energy" theorem: the work done by the net force on an object equals the change in kinetic energy of the object.
$\mathrm{E}=\mathrm{KE}+\mathrm{PE}$	$\mathrm{E}=$ total energy $\mathrm{KE}=$ kinetic energy $\mathrm{PE}=$ potential energy	The definition of total ("me- chanical") energy. If there is no friction, it is conserved (stays constant).
$P=\frac{W}{\Delta t}$	$P=$ power W $=$ work	Power is the amount of work done per unit time (i.e., power is the rate at which work is done).

Circular Motion

SAT Subject Physics Formula Reference

Circular Motion (continued)

$v=\frac{2 \pi r}{T}$	$v=$ velocity $r=$ radius $T=$ period	This formula gives the veloc- ity v of an object moving once around a circle of radius r in time T (the period).		
$f=\frac{1}{T}$	$f=$ frequency			
$T=$ period			\quad	The frequency is the number
:---				
of times per second that an				
object moves around a circle.	,			

Torques and Angular Momentum

SAT Subject Physics Formula Reference

Springs

$F_{s}=k x$	$\begin{aligned} F_{s} & =\text { spring force } \\ k= & \text { spring constant } \\ x= & \text { spring stretch or } \\ & \quad \text { compression } \end{aligned}$	"Hooke's Law". The force is opposite to the stretch or compression direction.
$\mathrm{PE}_{s}=\frac{1}{2} k x^{2}$	$\mathrm{PE}_{s}=$ potential energy $k=$ spring constant $x=$ amount of spring stretch or compression	The potential energy stored in a spring when it is either stretched or compressed. Here, $x=0$ corresponds to the "natural length" of the spring.

Simple Harmonic Motion

$T_{s}=2 \pi \sqrt{\frac{m}{k}}$		The period of the simple har- monic motion of a mass m at- tached to an ideal spring with spring constant k.
$T_{p}=2 \pi \sqrt{\frac{l}{g}}$	T_{p} $=$ period of motion l $=$ pendulum length g $=$ acceleration due to gravity	The period of the simple har- monic motion of a mass m on an ideal pendulum of length l.

SAT Subject Physics Formula Reference

Gravity

$F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$	$F_{g}=$ force of gravity			
$G=$ a constant	Newton's Law of Gravitation:			
$m_{1}, m_{2}=$ masses				
r	$=$ distance of			
separation			\quad	thive formula gives the attrac-
:---				
a distance r apart.				

Electric Fields and Forces

SAT Subject Physics Formula Reference

Electric Fields and Forces (continued)

$U_{E}=k \frac{q_{1} q_{2}}{r}$	$\begin{aligned} U_{E} & =\text { electric } \mathrm{PE} \\ k & =\text { a constant } \\ q_{1}, q_{2} & =\text { charges } \\ r & =\text { distance of } \\ & \text { separation } \end{aligned}$	This formula gives the electric potential energy for two charges a distance r apart. For more than one pair of charges, use this formula for each pair, then add all the U_{E} 's.
$\Delta V=\frac{-W_{E}}{q}=\frac{\Delta U_{E}}{q}$	$\begin{aligned} \Delta V & =\text { potential difference } \\ W_{E} & =\text { work done by E field } \\ U_{E} & =\text { electric } \mathrm{PE} \\ q & =\text { charge } \end{aligned}$	The potential difference ΔV between two points is defined as the negative of the work done by the electric field per unit charge as charge q moves from one point to the other. Alernately, it is the change (in)electric potential energy per unit charge.
$V=k \frac{q}{r}$	$V=$ electric potential $k=$ a constant $q=$ charge distance of separation	This formula gives the electric potential due to a charge q at a distance r from the charge. For more than one charge, use this formula for each charge, then add all the V 's.
$E=\frac{V}{d}$	$\begin{aligned} E & =\text { electric field } \\ V & =\text { voltage } \\ d & =\text { distance } \end{aligned}$	Between two large plates of metal separated by a distance d which are connected to a battery of voltage V, a uniform electric field between the plates is set up, as given by this formula.

Circuits

	$V=$ voltage	"Ohm's Law". This law gives
$V=I R$	$I=$ current	the relationship between the battery voltage V, the current I, and the resistance R in a circuit.

SAT Subject Physics Formula Reference

Circuits (continued)

$P=I V$ or $P=V^{2} / R$ or $P=I^{2} R$	$\begin{aligned} P & =\text { power } \\ I & =\text { current } \\ V & =\text { voltage } \\ R & =\text { resistance } \end{aligned}$	All of these power formulas are equivalent and give the power used in a circuit resistor R. Use the formula that has the quantities that you know.
$\begin{gathered} R_{\mathrm{s}}= \\ R_{1}+R_{2}+\ldots \end{gathered}$	$\begin{aligned} R_{\mathrm{s}}= & \text { total (series) } \\ & \text { resistance } \\ R_{1}= & \text { first resistor } \\ R_{2}= & \text { second resistor } \end{aligned}$	When resistors are placed end to end, which is called "in series ${ }^{\circ}$, the effective total resisis just the sum of the individual resistances.
$\begin{array}{r} \frac{1}{R_{\mathrm{p}}}= \\ \frac{1}{R_{1}}+\frac{1}{R_{2}}+ \end{array}$	$R_{\mathrm{p}}=$ total (parallel) resistance $R_{\mathrm{H}}=$ first resistor $R_{2}=$ second resistor	When resistors are placed side by side (or "in parallel"), the effective total resistance is the inverse of the sum of the reciprocals of the individual resistances (whew!).
$q=C V$	$\begin{aligned} q & =\text { charge } \\ C & =\text { capacitance } \\ V & =\text { voltage } \end{aligned}$	This formula is "Ohm's Law" for capacitors. Here, C is a number specific to the capacitor (like R for resistors), q is the charge on one side of the capacitor, and V is the voltage across the capacitor.

SAT Subject Physics Formula Reference

Magnetic Fields and Forces

$F=I L B \sin \theta$	$F=$ force on a wire $I=$ current in the wire $L=$ length of wire $B=$ external magnetic field $\theta=$ angle between the current direction and the magnetic field	This formula gives the force on a wire carrying current I while immersed in a magnetic field B. Here, θ is the angle between the direction of the current and the direction of the magnetic field (θ is usually 90°, so that the force is $F=I L B$).
$F=q v B \sin \theta$	$F=$ force on a charge $q=$ charge $v=$ velocity of the charge $B=$ external magnetic field $\theta=$ angle between the direction of motion and the magnetic field	The force on a charge q as it travels with velocity v through amagnetic field B is given by this formula. Here, θ is the angle between the direction of the charge's velocity and the direction of the magnetic field (θ is usually 90°, so that the force is $F=q v B)$.

Waves and Optics

$v=\lambda f$	$v=$ wave velocity $\lambda=$ wavelength $f=$ frequency	This formula relates the wave- length and the frequency of a wave to its speed. The for- mula works for both sound and light waves.
$v=\frac{c}{n}$	$v=$ velocity of light $c=$ vacuum light speed $n=$ index of refraction	When light travels through a medium (say, glass), it slows down. This formula gives the speed of light in a medium that has an index of refraction $n . ~ H e r e, ~$ n

SAT Subject Physics Formula Reference

Waves and Optics (continued)

$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$	$n_{1}=$ incident index $\theta_{1}=$ incident angle $n_{2}=$ refracted index $\theta_{2}=$ refracted angle	"Snell's Law". When light moves from one medium (say, air) to another (say, glass) with a different index of refraction n, it changes direction (refracts). The angles are taken from the normal (perpendicular).
$\frac{1}{d_{\mathrm{o}}}+\frac{1}{d_{\mathrm{i}}}=\frac{1}{f}$	$\begin{aligned} d_{\mathrm{o}} & =\text { object distance } \\ d_{\mathrm{i}} & =\text { image distance } \\ f & =\text { focal length } \end{aligned}$	This formula works for lenses and mirrors, and relates the focal length, object distance, andimage distance.
$m=-\frac{d_{\mathrm{i}}}{d_{\mathrm{o}}}$		The magnification m is how much bigger $(\|m\|>1)$ or smaller $(\|m\|<1)$ the image is compared to the object. $m<0$, the image is inverted compared to the object.

Heat and Thermodynamigs

$Q=m c \Delta T$	heat added or removed		
$m=$ mass of substance			
$c=$ specific heat			
$\Delta T=$ change in			
temperature		\quad	The specific heat c for a sub-
:---			
stance gives the heat needed			
to raise the temperature of a			
mass m of that substance by			
ΔT degrees. If $\Delta T<0$, the			
formula gives the heat that			
has to be removed to lower the			
temperature.			

SAT Subject Physics Formula Reference

Heat and Thermodynamics (continued)

Pressure and Gases

		$P=$ pressure $F=$ $F=$ force		
$A=$ area			\quad	The definition of pressure. P
:---				
is a force per unit area exerted				
by a gas or fluid on the walls				
of the container.				

SAT Subject Physics Formula Reference

Pressure and Gases (continued)

		The "Ideal Gas Law". For $P V$
	$V=$ pressure	"ideal" gases (and also for
real-life gases at low pressure),		
reme	$T=$ temperature	the pressure of the gas times the volume of the gas divided by the temperature of the gas is a constant.

Modern Physics and Relativity

