تم تحميل هذا الملف من موقع المناهج الإماراتية

الملف أوراق عمل الوحدة الرابعة differentiation of Applications

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← رياضيات ← الفصل الثاني

روابط مواقع التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

روابط مواد الصف الثاني عشر المتقدم على تلغرام

<u>الرياضيات</u>

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة رياضيات في الفصل الثاني	
كل مايخص الاختبار التكويني لمادة الرياضيات للصف الثاني عشر يوم الأحد 9/2/2020	1
تدريبات متنوعة مع الشرح على الوحدة الرابعة(النهايات والاتصال)	2
تدريبات متنوعة على تطبيقات الاشتقاق	3
قوانین هندسیة	4
الاختبار القياسي في الرياضيات	5

Revision

Grade 12 ADVANCED

Lesson 4-1
Linear approximation &

Lesson 4-2 Indeterminate L'HOPITAL Ru

IMAD ODEH

DEFINITION 1.1

Imad Odeh

The linear (or tangent line) approximation of f(x) at $x = x_0$ is the function $L(x) = f(x_0) + f'(x_0)(x - x_0)$.

almanahi.com/ae

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad \text{for } n = 0, 1, 2, 3, \dots$$

1.
$$f(x) = \sqrt{x}, x_0 = 1, \sqrt{1.2}$$

2.
$$f(x) = (x+1)^{1/3}, x_0 = 0, \sqrt[3]{1.2}$$

3.
$$f(x) = \sqrt{2x+9}, x_0 = 0, \sqrt{8.8}$$

4.
$$f(x) = 2/x$$
, $x_0 = 1$, $2/0.99$

Exercise

5.
$$f(x) = \sin 3x, x_0 = 0, \sin(0.3)$$

6.
$$f(x) = \sin x, x_0 = \pi, \sin(3.0)$$

THEOREM 2.1 (L'Hôpital's Rule)

Suppose that f and g are differentiable on the interval (a, b), except possibly at the point $c \in (a, b)$ and that $g'(x) \neq 0$ on (a, b), except possibly at c. Suppose further that $\lim_{n \to \infty} \frac{f(x)}{f(x)}$ has the indeterminate form $\frac{0}{0}$ or $\frac{\infty}{20}$ and that

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \text{ (or } \pm \infty). \text{ Then,}$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

$$\frac{\mathbf{0}}{\mathbf{0}}$$

$$\frac{\infty}{\infty}$$
,

$$\infty - \infty$$
,

$$\mathbf{0}$$
 . ∞ ,

$$\mathbf{0^0}$$
 , $\mathbf{1^\infty}$, $\infty^{\mathbf{0}}$

$$\begin{array}{c}
0 \\
0 \\
0
\end{array}$$

$$\begin{array}{c}
0 \\
0
\end{array}$$

$$\begin{array}{c}
\infty \\
\infty \\
\infty \\
\infty \\
\infty \\
0
\end{array}$$

Evaluate
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x}$$
.

Evaluate
$$\lim_{x\to\infty} \frac{e^x}{x}$$
.

Evaluate
$$\lim_{x\to\infty} \frac{x^2}{e^x}$$
.

Evaluate
$$\lim_{x\to 0} \left[\frac{1}{\ln(x+1)} - \frac{1}{x} \right]$$
.

مؤسسة الإمرارات للتعليم المدرسي EMIRATES SCHOOLS ESTABLISHMENT

Evaluate
$$\lim_{x \to \infty} \left(\frac{1}{x} \ln x \right)$$
.

Evaluate
$$\lim_{x \to 1^+} x^{\frac{1}{x-1}}$$
.

Evaluate
$$\lim_{x\to 0^+} (\sin x)^x$$
.

Evaluate
$$\lim_{x \to \infty} (x+1)^{2/x}$$
.

Evaluate 1.
$$\lim_{x \to -2} \frac{x+2}{x^2-4}$$

- A) -4
- B) $\frac{1}{4}$ almanahi.com/ae
- C) $-\frac{1}{2}$
- D) Does not exist

2.
$$\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$$

- A) -4
- B) —4anahi.com/ae
- **C)** $\frac{1}{4}$
- D) Does not exist

3.
$$\lim_{x \to \infty} \frac{3x^2 + 2}{x^2 - 4}$$

- **A)** ∞
- B) 3/manahi.com/ae
- C) $\frac{3}{2}$
- D) Does not exist

مؤسسة الإمارات للتعليم المدرسي EMIRATES SCHOOLS ESTABLISHMENT

Exercise

Evaluate

4.
$$\lim_{x \to -\infty} \frac{x+1}{x^2+4x+3}$$

A)
$$\frac{1}{4}$$

C) 0

D) Does not exist

Evaluate

5.
$$\lim_{t\to 0} \frac{e^{2t}-1}{t}$$

- A) =
- B) 2 Imanahi.com/ae
- **C)** ∞

D) Does not exist

6.
$$\lim_{t\to 0} \frac{\sin t}{e^{3t}-1}$$

- 4)
- B) 3/manahi.com/ae
- **C)** ∞
- D) Does not exist

21.
$$\lim_{x \to \infty} \frac{\ln x}{x^2}$$

$$22. \lim_{x\to\infty} \frac{\ln x}{\sqrt{x}}$$

$$25. \lim_{t \to 1} \frac{\ln(\ln t)}{\ln t}$$

$$29. \lim_{x\to 0^+} \frac{\ln x}{\cot x}$$

30.
$$\lim_{x \to 0^+} \frac{\sqrt{x}}{\ln x}$$

