تم تحميل هذا الملف من موقع المناهج الإماراتية

and Energy من وحدة Thermochemical من وحدة Chemical الكيميائية والتغيرات الطاقة

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← كيمياء ← الفصل الأول ← الملف

تاريخ إضافة الملف على موقع المناهج: 21-09-2024 18:44:06

إعداد: SCHOOL ALFAROUQ

التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

<u> اضغط هنا للحصول على جميع روابط "الصف الثاني عشر المتقدم"</u>

روابط مواد الصف الثاني عشر المتقدم على تلغرام

<u>التربية الاسلامية</u> <u>اللغة العربية</u> <u>اللغة العربية</u> <u>الرياضيات</u>

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة كيمياء في الفصل الأول

and Energy الحرارة من وحدة Heat مراجعة القسم الثاني Heat الحرارة من وحدة Chemical Change

1

and Energy الطاقة من وحدة Energy مراجعة القسم الأول الكيميائية والتغيرات الطاقة Chemical Change

2

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة كيمياء في الفصل الأول			
مذكرة الوحدة الأولى الطاقة والتغيرات الكيميائية أسئلة الاختبارات الوزارية السابقة	3		
تدريبات على الوحدة الأولى الطاقة والتغيرات الكيميائية	4		
عرض بوربوينت الوحدة الأولى الطاقة والتغيرات الكيميائية	5		

Chapter: Energy & Chemical Change

Section (3): Thermochemical Equations

THERMOCHEMICAL EQUATION:

It is a balanced chemical equation that includes the physical states of all reactants and products, and the energy change, usually expressed as the change in enthalpy (ΔH).

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l) \left\{ \Delta H = -891 \text{ kJ} \right\}$$

<u>Examples</u>

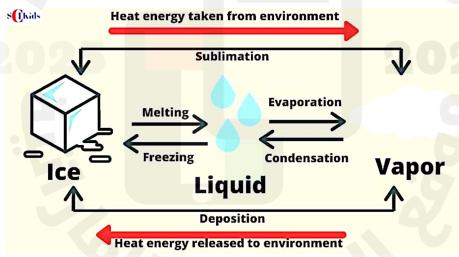
$$4\text{Fe(s)} + 3\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s) \ \Delta H = -1625 \text{ kJ}$$

 $N\text{H}_4N\text{O}_3(s) \rightarrow N\text{H}_4^+(aq) + N\text{O}_3^-(aq) \ \Delta H = 27 \text{ kJ}$

Exercise

[Q] Which of the following correctly represent these reactions?

- 1. 1625 kJ of heat is released to the surroundings in the reaction between Fe and O_2 to form Fe_2O_3
 - a. $4\text{Fe(s)} + 3\text{O}_2(\text{g}) \rightarrow 2\text{Fe}_2\text{O}_3(\text{s})$ $\Delta H_{\text{rxn}} = + 1625 \text{ kJ}$
 - b. $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$ $\Delta H_{rxn} = -1625 \text{ kJ}$
 - c. $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s) + 1625 \text{ kJ}$
 - d. $4Fe(s) + 3O_2(g) + 1625 kJ \rightarrow 2Fe_2O_3(s)$
- 2. 27 kJ of heat is absorbed from the surroundings in the process of dissolving NH_4NO_3 .
 - a) NH_4NO_3 (s) $\rightarrow NH_4^+$ (aq) + NO_3^- (aq) $\Delta H_{rxn} = 27 \text{ kJ}$
 - b) NH_4NO_3 (s) $\rightarrow NH_4^+$ (aq) + NO_3^- (aq) $\Delta H_{rxn} = -27 \text{ kJ}$
 - c) $NH_4NO_3(s) + 27 \text{ kJ} \rightarrow NH_4^+ (aq) + NO_3^- (aq)$
 - d) $NH_4NO_3(s) \rightarrow NH_4^+(aq) + NO_3^-(aq) + 27 kJ$


MOLAR ENTHALPY (HEAT) OF COMBUSTION ($\triangle H^{\circ}_{comb}$)

It is the enthalpy change for the **complete burning of one mole** of the substance.

$$C_6 H_{12} O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) \Delta H_{comb} = -2808 \text{ kJ}$$

(Table 1)		
Substance	Formula	ΔH° _{comb} (kJ/mol)
Sucrose (table sugar)	C ₁₂ H ₂₂ O ₁₁ (s)	-5644
Octane (a component of gasoline)	C ₈ H ₁₈ (I)	-5471
Glucose (a simple sugar found in fruit)	C ₆ H ₁₂ O ₆ (s)	-2808
Propane (a gaseous fuel)	C ₃ H ₈ (g)	-2219
Methane (a gaseous fuel)	CH ₄ (g)	-891

Standard state conditions: 298 K (25°C), 1 atm pressure

Molar enthalpy (heat) of vaporization (ΔH_{Vap}).

The heat required to vaporize one mole of a liquid.

Molar enthalpy (heat) of fusion (ΔH_{fus}).

The heat required to melt one mole of a solid substance

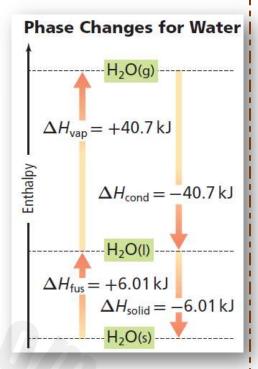

- Vaporization & fusion (melting) absorbs heat.
- Condensation & freezing releases heat.

Table 4 Standard Enthalpies of Vaporization and Fusion

Substance	Formula	$\Delta H_{ m vap}^{\circ}$ (kJ/mol)	ΔH_{fus}° (kJ/mol)	
Water	H ₂ O	40.7	6.01	
Ethanol	C ₂ H ₅ OH	38.6	4.94	
Methanol	CH ₃ OH	35.2	3.22	
Acetic acid	CH₃COOH	23.4	11.7	
Ammonia	NH ₃	23.3	5.66	

$$\Delta H_{\text{vap}} = -\Delta H_{\text{cond}}$$

$$\Delta H_{\text{fus}} = -\Delta H_{\text{solid}}$$

Examples.

 $H_2O(s) \rightarrow H_2O(l)$

$$H_2O(l) \rightarrow H_2O(g)$$
 $\Delta H_{\text{vap}} = 40.7 \text{ kJ}$

$$\Delta H_{\text{fus}} = 6.01 \text{ kJ}$$

$$H_2O(g) \rightarrow H_2O(l)$$

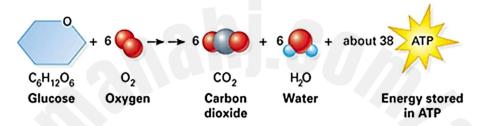
$$\Delta H_{\rm cond} = -40.7 \text{ kJ}$$

$$H_2O(l) \rightarrow H_2O(s)$$

$$\Delta H_{\text{solid}} = -6.01 \text{ kJ}$$

Exercises

- (1) Calculate the heat required to melt 25.7 g of solid methanol at its melting point. (ΔH_{fus} of solid methanol = 3.22 kJ/mol)
- (2) How much heat evolves when 275 g of ammonia gas condenses to a liquid at its boiling point? (ΔH_{cond} of ammonia = -23.3 kJ/mol)
- (3) What mass of methane (CH₄) must be burned in order to liberate (release) 12,880 kJ of heat? (ΔH°_{comb} of methane = -891 kJ/mol).


COMBUSTION REACTIONS

Any hydrocarbon burns in presence of oxygen to produce water vapor & carbon dioxide. (Complete Combustion).

[1] Combustion of glucose inside cells to produce energy (ATP).

The energy released is stored as chemical potential energy in the bonds of molecules of adenosine triphosphate (ATP).

[2] Combustion (burning) of methane gas (CH₄).

$$CH_4 (g) + 2O_2 (g) \rightarrow CO2 (g) + 2H_2O(l) + 891 \text{ kJ}$$

$$CH_4 \qquad 2O_2 \qquad CO_2 \qquad 2H_2O$$

$$CH_4 \qquad Oxygen \qquad CO_2 \qquad CO_2$$

(3) Combustion of gasoline (Octane) (C_8H_{18}).

$$C_8H_{18}\left(I\right) + 25/2 \ O_2\left(g\right) \ \to \ 8 \ CO_2\left(g\right) + 9 \ H_2O(I) + 5471 \ kJ$$

(4) Combustion of Hydrogen gas to produce water molecules

$$H_2(g) + 1/2 O_2(g) \rightarrow H_2O(l) + 286 \text{ kJ}$$

The combustion of hydrogen provides the energy to lift a space shuttle into the outer space.

EXERCISES

(1) How much heat is evolved when 54.0 g glucose ($C_6H_{12}O_6$) is burned according to this equation? $C_6H_{12}O_6$ (s) + 6 O_2 (g) \rightarrow 6CO₂ (g) + 6 H_2O (l) $\Delta H_{comb} = -2808$ kJ

[2] How much heat is absorbed when 45.00 g of $C_{(s)}$ reacts in the presence of excess SO_2 (g) to produce $CS_2(I)$ and CO(g) according to the following chemical equation? $5 C(s) + 2 SO_2(g) \rightarrow CS_2(I) + 4 CO(g) \qquad \Delta H^o = 239.9 \text{ kJ/mol}$

(3) Write a complete thermochemical equation for the combustion of ethanol (C_2H_5OH). $\Delta H_{comb} = -1367$ kJ/mol.

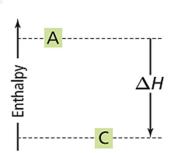
(4) Determine Which of the following processes are exothermic & Endothermic?

a.
$$C_2H_5OH(I) \rightarrow C_2H_5OH(g)$$

d.
$$NH_3(g) \rightarrow NH_3(I)$$

b.
$$Br_2(I) \rightarrow Br_2(s)$$

e.
$$NaCl(s) \rightarrow NaCl(l)$$


c.
$$C_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(I)$$

(5) Explain how you could calculate the heat released in freezing 0.250 mol water. (*Refer to the tables in the previous pages if required*).

(6) How much heat is released by the combustion of 206 g of hydrogen gas? $\Delta H_{comb} = -286 \text{ kJ/mol}$

(7) The molar heat of vaporization of ammonia is 23.3 kJ/mol. What is the molar heat of condensation of ammonia?

(8) The reaction A \rightarrow C is shown in the enthalpy diagram. Is the reaction exothermic or endothermic? Explain your answer.

