

مراحعة الوحدة الخامسة resistance and current التيـار والمقاومة	1
مراحعة الوحدة الخامسة Resistance and Current التـيار والمقاومة	2
مراحعة الوحدة الخامسة التيار والمقاوهة	3
مراحعة الوحدة الخامسة التيار والمقاوهة	4
اللمروس المطلوبة للفصل الثاني)	5

12 Advanced Physics 2023/24

 Current and Resistance

Done by Teacher Alaa Al Faqeh

Manasra Academy

Ch5: Current and Resistance

5.1 (The electric current): i
"The electric current, \boldsymbol{i}, is the net charge passing a given point in a given time, divided by that time."

$$
i=\frac{d q}{d t} . \quad q=\int d q=\int_{0}^{t} i d t^{\prime} . \quad i=\left|\frac{\Delta q}{\Delta t}\right|
$$

Note: -The unit of current is C / s and is called Ampere(A).

Direct current:

"current that flows in only one direction, which does not change with time."
Example:
During lightning strikes from a cloud to the ground, currents as high as 25,000 A can occur and last for about 40 ms . How much charge is transferred from the cloud to the earth during such a strike?
Solution:

$$
Q=i \cdot t \quad \Rightarrow \quad Q=25000 \times 40 \times 10^{-3} \Rightarrow Q=1.0 \mathrm{C}
$$

Q1: How many electrons flow through a point in a wire in 3.00 s if there is a constant current of $i=4.00 \mathrm{~A}$?
A) 7.5×10^{-19} electron
B) 7.5×10^{19} electron
C) 2.5×10^{19} electron
D) 2.5×10^{-19} electron

Q2: The quantity of charge through a conductor is modeled as: $Q=\left(4.00 \mathrm{C} \mathrm{s}^{-4}\right) \mathrm{t}^{4}-\left(1.00 \mathrm{Cs}^{-1}\right) \mathrm{t}+(6.00 \mathrm{mC})$. What is the current at time $\mathrm{t}=3.00 \mathrm{~s}$
A) 231 A
B) 431 A
C) 623 A
D) 765 A

Q3: A current flows in a conducting wire whose strength changes with time according to the equation $\left[I(t)=3.0+2.0 t^{3}\right]$, where the time is measured in seconds, and the current is measured in amperes. How much charge does this current pass in $\mathbf{2} \mathbf{s}$?
A) 2 C
B) 14.9 C
C) 14 C
D) 2.7 C

Q4: The electric current is defined as:

A) The net charge passing the cross-sectional area of a conductor in a certain time interval.
B) The net charge passing the cross-sectional area of a conductor in a certain time interval times this time interval.
C) The net charge passing the cross-sectional area of a conductor in a certain time interval divided by this time interval.
D) The current density through the conductor divided by the time interval taken to pass.

Q5: The electric current can be calculated from the
$\square i=q \Delta t$
C.S
$\square i=\frac{q}{\Delta t} \quad, \quad \frac{s}{C}$
$\square i=\frac{\Delta t}{q} \quad, \quad \frac{s}{C}$
$\boxminus i=\frac{q}{\Delta t} \quad, \quad \frac{C}{s}$

5.2: (Current density): \vec{J}

-The current per unit area flowing through the conductor.

$$
i=\int \vec{J} \cdot d \vec{A} \quad \oint^{\text {g }} \quad=\frac{i}{A} \quad \text { measured in } \mathrm{A} / \mathrm{m}^{2}
$$

Q6: A copper wire with a diameter of 1.02 mm , carries a constant current of 1.67 A. Find the current density.

$$
J=\frac{i}{A}=\frac{1.67}{\pi\left(\frac{1.02 \times 10^{-3}}{2}\right)^{2}}=2.04 \times 10^{6} \frac{A}{\mathrm{~m}^{2}}
$$

Q7: The current density through a conductor is defined as:

A) The total current passing the cross-sectional area per unit time.
B) The cross-sectional area of a conductor times the current per unit cross- Sectional area.
C) The charge per unit area passing through a conductor`s cross- Sectional area.
D) The current passing per unit perpendicular cross-Sectional area of a conductor.

Q8: The current density of a conductor is given by:
A) $J=\rho E$
B) $J=i / A$
C) $J=A / i$
D) $J=\rho L / A$

Q9: A copper wire has a diameter $\mathrm{d}_{\mathrm{cu}}=0.0500 \mathrm{~cm}$, is 3.00 m long, and has a density of charge carriers of 8.50×10^{28} electrons $/ \mathrm{m}^{3}$. As shown in the figure, the copper wire is attached to an equal length of
 aluminum wire with a diameter $\mathrm{d}_{\mathrm{Al}}=0.0100 \mathrm{~cm}$ and density of charge carriers of 6.02×10^{28} electrons $/ \mathrm{m}^{3}$. A current of 0.400 A flows through the copper wire. What is the ratio of the current densities in the two wires, $\mathrm{J}_{\mathrm{Cu}} / \mathrm{J}_{\mathrm{Al}}$?

5.3: (Resistivity and resistance):

Ohm`s Law:

"The electric current flowing through a conductor is directly proportional to the potential difference across it."

The resistance: R

"The resistance is a material's opposition to the flow of electric current."
"The resistance is the ratio of the potential difference across a resistor to the resulting current."

(

Factors affecting the resistance of a conductor:

-Length: L R α L (The longer the conductor the larger the number of collisions with ions and other electrons)
-Cross sectional area: A $\quad R \alpha \frac{1}{A} \quad$ (The wider the conductor the smaller the number of collisions with ions and other electrons)
-Type of material: R differs from a material to other depending on its atomic structure (atomic lattice).

$$
R=\frac{\rho L}{A}
$$

The resistivity: ρ

"A measure of how strongly a material opposes the flow of electric current."
It equals the ratio of the applied electric field to the current density:

$$
\left.\rho=\frac{E}{J} \quad \rho \rho=\frac{R A}{L} \quad \rho=\frac{E}{J}=\frac{\Delta V / L}{i / A}=\frac{R A}{L} \quad \text { (measured in } \Omega \mathrm{m}\right)
$$

The conductance: G

"The conductance is the reciprocal of the resistance."

$$
G=\frac{1}{R} \quad \Rightarrow \quad G=\frac{i}{\Delta V}
$$

(measured in Ω^{-1})

The conductivity: σ

"The conductivity is the reciprocal of the resistivity."

$$
\left.\sigma=\frac{1}{\rho} \quad \Rightarrow \quad \sigma=\frac{L}{R A} \quad \quad \text { (measured in } \Omega^{-1} \mathrm{~m}^{-1}\right)
$$

Example:

What is the resistance of the 100.0 m copper wire that is typically used in wiring household electrical outlets with diameter of 2.053 mm and resistivity of $1.72 \times 10^{-8} \Omega \mathrm{~m}$?
Solution:

$$
R=\frac{\rho L}{A} \quad \Rightarrow \quad R=\frac{1.72 \times 10^{-8} \times 100}{\left(3.3112 \times 10^{-6}\right)} \quad \Rightarrow \quad R=0.520 \Omega
$$

Q10: Which of the following statements is true for the resistance of a copper wire at room temperature?
A) It increases as its length increases and its cross-sectional area decreases.
B) It increases with both its length and its cross-sectional area.
C) It increases as its cross-sectional area increases and its length decreases.
D) It increases by decreasing both its length and its cross-sectional area.

Q11: Calculate the effective resistance of a pocket calculator that has a $1.35-\mathrm{V}$ battery and through which $\mathbf{0 . 2 0 0} \mathbf{~ m A ~ f l o w s . ~}$
A) 6750Ω
B) 2350Ω
C) 1245Ω
D) 1554Ω

Q12: A 10 V potential difference is applied across a 1000 Km conducting wire with a cross sectional area ($5 \mathrm{~cm}^{2}$). If a current of $3 \times 10^{-3} \mathrm{~A}$ passes through the conductor, Find the resistivity and the conductivity of this wire?

$$
\sigma=\frac{1}{\rho} \Rightarrow \sigma=\frac{L}{R A}
$$

Q13: What current flows through a 2.54-cm-diameter rod of pure copper that is 20.0 cm long, when $1.00 \times 10^{3} \mathrm{~V}$ is applied to it? $\left(\rho=1.72 \times 10^{-8} \Omega \mathrm{~m}\right)$

Q14: What is the resistance of a copper wire of length $L=10.9 \mathrm{~m}$ and diameter $\mathrm{d}=1.3 \mathrm{~mm}$? The resistivity of copper is $1.72 \times 10^{-8} \Omega \mathrm{~m}$.

Q15: What is the resistance of the 80.0 m standard copper wire with section area $\mathrm{A}=$ $5.2612 \times 10^{-6} \mathrm{~m} 2 \quad \rho=1.72 \times 10^{-8} \Omega m$
A) 0.26Ω
B) 0.62Ω
C) 0.88Ω
D) 0.77Ω

Q16: The diameter of copper wire is 8.252 mm . Find the resistance of a $1.00-\mathrm{km}$ length of such wire used for power transmission. $\rho=1.72 \times 10^{-8} \Omega m$
A) 0.12Ω
B) 0.22Ω
C) 0.32Ω
D) 0.52Ω

Q17: A voltage difference of (12.0 V) was applied between the two ends of a wire whose length is $(1000 \mathrm{~m})$ and its cross-sectional area is $4.5 \mathrm{~mm}^{2}$, a current of $\left(3.20 \times 10^{-3} \mathrm{~A}\right)$ flow through it , find the resistivity of the wire.
A) $1.72 \times 10^{-8} \Omega \mathrm{~m}$
B) $1.68 \times 10^{-5} \Omega \mathrm{~m}$
C) $7.12 \times 10^{-8} \Omega \mathrm{~m}$
D) $6.18 \times 10^{-8} \Omega \mathrm{~m}$

Q18: What is the resistance of a copper wire that has length $L=70.0 \mathrm{~m}$ and diameter $\mathrm{d}=$ 2.60 mm ? $\rho=1.72 \times 10^{-8} \Omega \mathrm{~m}$
A) 0.119Ω
B) 0.139Ω
C) 0.163Ω
D) 0.22

Q19: What is the resistance of the 100.0-m standard copper wire having a diameter of 2.053 mm that is typically used in wiring household electrical outlet
A) 0.52Ω
B) 0.11Ω
C) 0.66Ω
D) 0.41Ω

Q20: What is the resistance of a copper wire of length $I=10.9 \mathrm{~m}$ and diameter $\mathrm{d}=1.3 \mathrm{~mm}$? The resistivity of copper is $1.72 \times 10^{-8} \Omega \mathrm{~m}$.
A) 0.141Ω
B) 0.111Ω
C) 0.661Ω
D) 0.411Ω

5.4: (Electromotive Force and Ohm's law):

For a circuit like the one shown in Figure, the emf device provides the potential difference that creates the current flowing through the resistor. Therefore, in this case, Ohm's Law can be written in terms of the external emf as:

$$
V_{e m f}=i R_{\mathrm{eq}}
$$

*We will treat here resistors as ohmic devices; that is, devices that obey Ohm's Law.

*The change in potential is referred to as the potential drop across the resistor.
*Sources of emf add potential difference to a circuit, and potential drops through resistors reduce potential in the circuit.
\mathbf{V}_{t} is the potential difference between the two terminals of the emf source when the current is non zero (Note: $\mathbf{V}_{\boldsymbol{t}} \leq \mathrm{V}_{\text {emf }}$)

Ther potential difference across a battery when no current flows is Vemf *Ohm`s law for the simple circuit shown, where the battery has an internal resistance R_{i} is:

$$
V_{e m f}=i R_{e q}=i\left(R+R_{i}\right) \quad \mathrm{i}=\mathrm{V}_{\mathrm{t}} / \mathrm{R}
$$

Types of resistors:
1- Ohomic resistor: (the current is directly proportional to the potential difference)

Like metallic conducting wire

2- Non- Ohomic resister: (The current has no direct proportionality with the potential difference.)

Like transistors and diodes

ΔV
Rechargeable batteries also display a rating in mAh (milliampere-hour), which provides information on the total charge the battery can deliver when fully charged. The mAh is another unit of charge:
$1 \mathrm{mAh}=\left(10^{-3} \mathrm{~A}\right)(3600 \mathrm{~s})=3.6 \mathrm{As}=3.6 \mathrm{C}$.

Q21: A battery has a potential difference of 14.5 V when it is not connected in a circuit. When a 17.91Ω resister is connected across the battery, the potential difference of the battery drops to 12.68 V . What is the internal resistance of the battery?

Q22: When a battery is connected to a 100Ω resistor, the current is 4 A . When the same battery is connected to a 400Ω resistor, the current is 1.01 A . Find the emf supplied by the battery and the internal resistance of the battery?

Q23: What are the relative values of the two resistances in the figure.
A) $R 1<R 2$
B) $R 1=R 2$
C) $R 1>R 2$
D) Not enough information is given in the figure to compare the resistances.

Resistance of the human body:

*For most people the human body resistance is in the range $500 \mathrm{k} \Omega<\mathrm{R}_{\text {body }}<2 \mathrm{M} \Omega$. Most of this
resistance comes from the skin, in particular, the layers of dead skin on the outside.
*However, if the skin is wet, its conductivity is increased, and, the body's resistance is lowered. *For a given potential difference, Ohm's Law implies that the current then increases.
*Handling electrical devices in wet environments or touching them with your tongue is thus a very bad idea.

Scan the code for the explanation and solutions or visit www.manasra.academy.

5.5(Resistors in Series):

- Connection as shown in figure.
-All resistors in series group have the same current;

$$
i_{1}=i_{2}=i_{3}=\ldots \ldots=i_{t o t}
$$

-The electric potential of each resistor is directly proportional to its resistance;
$\Delta V \propto R$
-The total potential equals the sum of the individual potentials;

$$
\Delta V_{\text {tot }(\text { seriesgroup })}=\Delta V_{1}+\Delta V_{2}+\Delta V_{3}+\cdots
$$

-The equivalent resistance equals the sum of the individual resistances;

$$
R_{e q}=R_{1}+R_{2}+R_{3}+\cdots \ldots
$$

For identical resistance in series: $\quad R_{\text {eq }}=n R \quad$ (n : number of resistance)
Q24: In the figure shown three resistors are connected to a potential difference 12 V .
1- What is the equivalent resistance of the three resistors?
2- Calculate the current for each resistor.
A) $50 \Omega, 0.2 \mathrm{~A}$
B) $30 \Omega, 0.2 \mathrm{~A}$
C) $30 \Omega, 0.4 \mathrm{~A}$
D) $50 \Omega, 0.4 \mathrm{~A}$

Q25: A learner connected two lamps A and B as in the figure with a battery, and noticed that the brightness of lamp A is greater than the brightness of lamp B. Answer the following 1 -What does the difference in brightness of the two lamps indicate.
 2 -If the learner connects point b to point a with a connecting wire without resistance. what will happen to the brightness of each of the two lamps?

Q26: Three identical resistors, \mathbf{R}_{1}, R_{2}, and R_{3}, are wired together as shown in the figure. An electric current is flowing through the three resistors. The current through $\mathbf{R}_{\mathbf{2}}$
A) is the same as the current through R_{1} and R_{3}.
B) is a third of the current through R_{1} and R_{3}.
C) is twice the sum of the current through R_{1} and R_{3}.

$D)$ is three times the current through R_{1} and R_{3}.

Q27: Which of the following is an incorrect statement?
A) The currents through electronic devices connected in series are equal.
B) The potential drops across electronic devices connected in parallel are equal.
C) More current flows across the smaller resistance when two resistors are in parallel connection.
D) More current flows across the smaller resistance when two resistors are in serial connection

Q28: Depending to figure R_{2} equal to:
A) 3Ω
b- 5Ω
C) 1Ω
D) 2Ω

Q29: Depending to figure $V_{\mathbf{3}}$ equal to:
A) 1.5 V
B) 2.5 V
C) 3.5 V
D) 4.5 V

Q30: Two resistors, $\mathrm{R} 1=3.00$ תand $\mathbf{R 2}=5.00 \Omega$, are connected in series with a battery with Vemf $=8.00 \mathrm{~V}$ and an ammeter with $\mathrm{RA}=1.00 \Omega$, as shown in the figure. What is the current measured by the ammeter
A) 0.5 A
B) 0.88 A
C) 1.5 A
D) 1 A

Resistors in Parallel (5.6):

- Connection as shown in figure.
-All resistors in parallel group have the same electric potential (voltage);

$$
V_{1}=V_{2}=V_{3}=\ldots \ldots=V_{t o t}
$$

-The electric current in each resistor is inversely proportional to its

$$
\text { resistance; } \quad i \propto \frac{1}{R}
$$

-The total current equals the sum of the individual currents;

$$
i_{\text {tot }(\text { parallel group })}=i_{1}+i_{2}+i_{3}+\ldots \ldots \ldots \ldots
$$

-The reciprocal of the equivalent resistance equals the sum of reciprocals of the individual resistances;
 of

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots
$$

For identical resistance:
$R_{\text {eq }}=R / n \quad(n$: number of resistance)

(a)

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R}+\frac{1}{R_{3}} \Rightarrow \frac{1}{R_{e q}}=\frac{1}{1}+\frac{1}{2}+\frac{1}{2} \Rightarrow R_{e q}=0.5 \Omega
$$

(b) $\quad i_{t o t}=\frac{V_{t o t}}{R_{e q}} \Rightarrow i_{t o t}=\frac{3}{0.5} \Rightarrow i_{t o t}=6 \mathrm{~A}$
(c) $\quad i_{1}=\frac{V_{1}}{R_{1}} \quad \Rightarrow \quad i_{1}=\frac{3}{1} \quad \Rightarrow \quad i_{1}=3 A$

$$
\begin{aligned}
& i_{2}=\frac{V_{2}}{R_{2}} \Rightarrow i_{2}=\frac{3}{2} \Rightarrow i_{1}=1.5 \mathrm{~A} \\
& i_{3}=\frac{V_{3}}{R_{3}} \Rightarrow i_{3}=\frac{3}{2} \Rightarrow i_{3}=1.5 \mathrm{~A} \\
& i_{1}+i_{2}+i_{3}=3+1.5+1.5=6 \mathrm{~A}=i_{t o t}
\end{aligned}
$$

Note:

1- If one of the lamps burns out or is removed from its place, the brightness of the rest of the lamps will not be affected.
2- When adding a new lamp in parallel, the brightness of any lamp is not affected, and the value of the current passing through each lamp is not affected. However, the total current passing through the circuit increases because the equivalent resistance decreases:

Mixed connection circuitrs :

Q31: In the circuit in the figure, there are three identical resistors ($R=4$ Ω). The switch, S , is initially open. When the switch is closed, find the current flowing in $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}} . \mathrm{V}_{\text {emf }}=\mathbf{1 2} \mathbf{V}$

Q32: According to the circuit bellow:

A- Find the potential difference across R_{2}.
B- Find the current in R3.

Q33: Five resistors $R 1=1.00 \Omega, R 2=2.00 \Omega, R 3=3.00 \Omega, R 4=6.00 \Omega$, and $R 5=4.00 \Omega$, are connected as shown in figure. 18.00 V battery is attached to group.
(a) What is the equivalent resistance?
(b) Find the current supplied by the source to the circuit.
(c) Calculate the voltage drop across each resistor.

Solution:

(a) $R_{34}=\left(\frac{1}{R_{3}}+\frac{1}{R_{4}}\right)^{-1} \Rightarrow R_{34}=\left(\frac{1}{3}+\frac{1}{6}\right)^{-1} \Rightarrow R_{34}=2 \Omega$

$$
R_{e q}=R_{1}+R_{2}+R_{34}+R_{5} \Rightarrow R_{e q}=1+2+2+4 \quad \Rightarrow \quad R_{34}=9 \Omega
$$

(b) $i_{\text {tot }}=\frac{V_{\text {tot }}}{R_{\text {eq }}} \Rightarrow i_{\text {tot }}=\frac{18}{9} \Rightarrow i_{\text {tot }}=2 \mathrm{~A}$
(c) $i_{1}=i_{2}=i_{34}=i_{5}=i_{t o t}=2 \mathrm{~A}$
$V_{1}=i_{1} R_{1} \quad \Rightarrow V_{1}=2 \times 1=2 \mathrm{~V} \quad V_{2}=i_{2} R_{2} \quad \Rightarrow V_{2}=2 \times 2=4 \mathrm{~V}$
$V_{3}=V_{4}=V_{34}=i_{34} R_{34} \quad \Rightarrow V_{3}=V_{4}=2 \times 2=4 V \quad$ and $\quad V_{5}=i_{5} R_{5} \quad \Rightarrow V_{5}=2 \times 4=8 \mathrm{~V}$

Q34: In the circuit shown in the figure, $\mathrm{R}_{\mathbf{1}}=3.00 \Omega, \mathrm{R}_{\mathbf{2}}=6.00 \Omega, \mathrm{R}_{\mathbf{3}}=\mathbf{2 (}$ and $V_{\text {emf }}=12.0 \mathrm{~V}$.
(a) Determine a value for the equivalent resistance.
(b) Calculate the magnitude of the current flowing through R_{3} on the top branch of the circuit (marked with a vertical arrow)

Q35: A battery with $\mathrm{V}=1.500 \mathrm{~V}$ is connected to three resistors as shown in the figure.
(a) Find the potential drop across each resistor.
(b) Find the current in each resistor.

Q36: What is the equivalent resistance of the five resistors in the circuit in the figure?

Q37: What is the current in the circuit shown in the figure when the switch is
(a) open?
(b) closed?

5.7(Energy and Power in electric Circuits):

A battery must do work to drive charges dq, from the negative terminal to the positive terminal (within the emf device) equal to the increase in electric potential energy of that charge, $\mathrm{d} U$.

$$
d U=d q \Delta V=i d t \Delta V
$$

Using the definition of power:

$$
P=\frac{d U}{d t}=\frac{i d t \Delta V}{d t}=i \Delta V \text { (The power is the rate of dissipated or produced energy) }
$$

This work is stored as electric potential energy:
$\mathrm{P}=\mathrm{U} / \mathrm{t} \quad$. the unit of power is $\mathrm{W}(\mathrm{J} / \mathrm{S})$

$$
P=i \Delta V=i^{2} R=\frac{\Delta V^{2}}{R}
$$

Electrical Energy cost :

Cost $=P(K W) \times t(h) \times$ Rate
(1 KW.h=3.6×106 J)

Q38: A DC winch motor is rated at 20 A with a voltage of 115 V . What is the power consumed by the motor?
A) 2300 W
B) 1300 W
C) 3300 W
D) 200 W

Q39: A flashlight has a light bulb filament resistance of 8Ω and a battery voltage of 6 V . Calculate the power that the lamp puts out when it is turned on.
A) 4.5 W
B) 8 W
C) 1.5 W
D) 10 W

Q40: A flashlight has a light bulb filament resistance of 8Ω and a battery voltage of 6 V .

Calculate:

1- The power that the lamp puts out when it is turned on.
2- If you were asked to replace the device's light bulb with another so that the device lights up for a longer period without changing the battery, would you replace it with a lamp whose filament resistance is greater or less than 8Ω, and mention the reason.

Scan the code for the

Q41: Using the figure, when the two switches are closed at the same moment, lamp A lights up for a period of time less than B before it goes out. If the two batteries are the same, compare the resistance of the two lamps with the explanation.

Q42: How much money will a homeowner owe an electric company if he turns on a 100 W incandescent light bulb and leaves it on for a hole year. Assume that the cost of electricity is 0.12AED /Kwh.?

Q43: A TV is used to watch a football game for 1.5 h . If the device resistance 20Ω and operates at 220 V , suppose the cost of electricity is 25 fils per Kw.h. How much money will be paid to watch the game?

Choose the correct answer:

1)If the current through a resistor is increased by a factor of 2 , how does this affect the power that is dissipated?
\square It decreases by a factor of 4 .
\square It increases by a factor of 2.
\square It decreases by a factor of 8 .
\square It increases by a factor of 4 .
2)You make a parallel combination of resistors consisting of resistor A having a very large resistance and resistor B having a very small resistance. The equivalent resistance for this combination will be:
\square slightly greater than the resistance of the resistor A.
\square slightly less than the resistance of the resistor A.
\square slightly greater than the resistance of the resistor B.
\square slightly less than the resistance of the resistor B.
3)Two cylindrical wires, 1 and 2 , made of the same material, have the same resistance. If the length of wire $\mathbf{2}$ is twice that of wire 1 , what is the ratio of their cross-sectional areas, A_{1} and A_{2} ?
$\square A_{1} / A_{2}=2$
$A_{1} / A_{2}=4$
$\square \quad \mathrm{A}_{1} / \mathrm{A}_{2}=0.5$
$\square \quad \mathrm{A}_{1} / \mathrm{A}_{2}=0.25$
4)All three light bulbs in the circuit shown in the figure are identical. Which of the three shines the brightest?
\square A and B
A
B
$\square \quad \mathrm{C}$

5) All of the six light bulbs in the circuit shown in the figure are identical Which ordering correctly expresses the relative brightness of the bulbs? (Hint: The more current flowing through a light bulb, the brighter it is!)

- $\mathrm{A}=\mathrm{B}>\mathrm{C}=\mathrm{D}>\mathrm{E}=\mathrm{F}$$C=D>A=B=E=F$
- $\mathrm{A}=\mathrm{B}=\mathrm{E}=\mathrm{F}>\mathrm{C}=\mathrm{D}$$\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{D}=\mathrm{E}=\mathrm{F}$

Scan the code for the explanation and solutions or visit www.manasra.academy.
6) Which of the arrangements of three identical light bulbs shown in the figure draws most current from the battery?
\square A
$\square B$
$\square C$
$\square A$ and C

7) Which of the arrangements of three identical light bulbs shown in the figure has the highest resistance?
$\square A$

- CA and C

A

B

C
8) Three identical light bulbs are connected as shown in the figure. Initially the switch is closed. When the switch is opened (as shown in the figure), bulb C goes off. What happens to bulbs A and B ?
Both bulbs A and B get brighter.
\square Both bulbs A and B get dimmer.
\square Bulb A gets dimmer, and bulb B gets brighter.
\square Bulb A gets brighter, and bulb B gets dimmer.

9) Which of the following wires has the largest current flowing through it?

- a 1-m-long copper wire of diameter 1 mm connected to a 10-V battery
\square a $0.5-\mathrm{m}$-long copper wire of diameter 0.5 mm connected to a $5-\mathrm{V}$ battery
- a 2-m-long copper wire of diameter 2 mm connected to a 20-V battery
a 1-m-long copper wire of diameter 0.5 mm connected to a 5-V battery
\square All of the wires have the same current flowing through them.

10) Ohm's Law states that the potential difference across a device is equal to
\square the current flowing through the device times the resistance of the device.
\square the current flowing through the device divided by the resistance of the device.
\square the resistance of the device divided by the current flowing through the device.
\square the current flowing through the device times the cross-sectional area of the device.
\square the current flowing through the device times the length of the device.

11) Which of the following is an incorrect statement?

\square The currents through electronic devices connected in series are equal.
\square The potential drops across electronic devices connected in parallel are equal.
\square More current flows across the smaller resistance when two resistors are in parallel connection.
\square More current flows across the smaller resistance when two resistors are in serial connection.
12) Identical batteries are connected in three different arrangements to the same light bulb as shown in the figure. Assume that the batteries have no internal resistance. In which arrangement will the bulb shine the brightest?
$\square \mathrm{A}$

B
$\square C$
\square The bulb will have the same brightness in all three arrangements.

13) Identical batteries are connected in three different arrangements to the same light bulb as shown in the figure. Assume that the batteries have no internal resistance. In which arrangement will the bulb shine the brightest?
$\square A$
$\square B$C
\square The bulb will have the same brightness in all three arrangements.

14) The electric resistance of the human body is very high:
\square when the body is wet
\square if the skin is dry
when touch electric wires with tongue
if sharp electric wire penetrates the skin

15)For resistors in series, which of the following is always true?

\square potential difference is the same for each one of the resistors in series.
\square the equivalent resistance is less than that of any individual resistance.
\square the total current is distributed in inverse ratios between resistors in series.
\square the total potential difference is distributed in direct ratios between resistors in series.
16) In the figure shown, the equivalent resistance for the group is:
$\square \frac{21 R}{8}$
$\square \frac{8 R}{3}$
$\square \frac{R}{2}$
$\square \frac{6 R}{5}$

17) Filament bulb whose resistance is 8.0Ω operating under a potential difference of 4.5 V . What is the intensity of the current passing through the lamp?
$\square 0.56 \mathrm{~A}$
$\square 9.4 \mathrm{~A}$

- 1.8 A
36 A

18) What is the potential difference between the two terminals of a 5.0Ω resistor with a current 5.0 A?
$\square 1.0$ V
10.0 V
25.0 V
$1.0 \times 10^{2} \mathrm{~V}$
19) Which of the following affects the resistance of a wire?Length
\square TemperatureType
All of the above
20) The rated power recorded on light bulbs measures:
\square rate of energy released in the form of heat and light
\square the density of the charge carriers
\square the potential difference that they need
\square the amount of negative charge passing through it
21) What is the current flowing in a 75 W filament bulb that operates at 120 V ?

- $9.0 \times 10^{3} \mathrm{~A}$
$\square 1.6 \mathrm{~A}$
- $\quad 1.95 \times 10^{2} \mathrm{~A}$
0.63 A

22) When the current passing through a circuit -with a constant resistance- is tripled, by which factor does the power change?
$\square \frac{1}{9}$
$\square \quad \frac{1}{3}$

- 3

9
23) In a cathode ray tube, the electron beam current is $7.5 \times 10^{-5} \mathrm{~A}$. What is the amount of charge that hits the screen during 5.0 s?
$5.3 \times 10^{-6} \mathrm{C}$
$5.6 \times 10^{-2} \mathrm{C}$
$3.8 \times 10^{-4} \mathrm{C}$
$2.8 \times 10^{-3} \mathrm{C}$
24) Filament bulb with 240Ω resistance operates at a potential difference of $\mathbf{1 2 0}$ V. How strong is the current passing through it?

- 0.20 A
0.50 A
1.0 A
2.0 A

25) Which of the following wires have the largest resistance?
\square aluminum wire 10 cm length, 3 cm radius
\square aluminum wire 10 cm length, 5 cm radius
\square aluminum wire 5 cm length, 3 cm radius
\square aluminum wire 5 cm length, 5 cm radius
26) A current of 4.00 A passes through a $5.00 \times 10^{2} \mathrm{~W}$ heater. What is the potential difference between the two ends of the heater?
$8.00 \times 10^{-3} \mathrm{~V}$
$2.50 \times 10^{1} \mathrm{~V}$

- $1.25 \times 10^{2} \mathrm{~V}$
$2.00 \times 10^{3} \mathrm{~V}$

27) A current of 6.0 A passes through a 325 W heater. What is the resistance of the heater?
4.5Ω
9.0Ω
$\square 54 \Omega$
88Ω
28) What is the potential difference between the two ends of the lamp whose resistance is 136Ω when operating at the power of $1.00 \times 10^{2} \mathrm{~W}$?
$\square 220 \mathrm{~V}$
$\square 136 \mathrm{~V}$
$\square 125$ V
117 V
29) An 80.0 W power filament bulb whose resistance is 45Ω. what is the current passing through the filament bulb?
0.56 A
0.75 A
1.3 A
1.8 A
