تم تحميل هذا الملف من موقع المناهج الإماراتية

Asymptotes and infinity at Limits الملف ملخص وأوراق عمل درس

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← رياضيات ← الفصل الأول

روابط مواقع التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

روابط مواد الصف الثاني عشر المتقدم على تلغرام

<u>الرياضيات</u>

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة رياضيات في الفصل الأول				
رياضيات متكاملة دليل المعلم	1			
دليل المعلم	2			
الفصل الاول الوحدة الأولى المتباينات غير الخطية	3			
جميع أوراق عمل	4			
مراجعة نهائية قبل الامتحان	5			

Mathematicians try to convey as much information as possible with as few symbols as possible. For instance, we prefer to say $\lim_{x\to 0} \frac{1}{x^2} = \infty$ rather than $\lim_{x\to 0} \frac{1}{x^2}$ does not exist, since the first statement not only says that the limit does not exist, but also says that $\frac{1}{x^2}$ increases without bound as x approaches 0, with x > 0 or x < 0.

THEOREM 5.1

For any rational number t > 0,

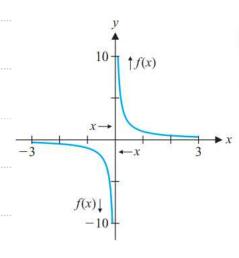
$$\lim_{x \to \pm \infty} \frac{1}{x^t} = 0,$$

where for the case where $x \to -\infty$, we assume that $t = \frac{p}{q}$, where q is odd.

THEOREM 5.2

For a polynomial of degree n > 0, $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, we have

$$\lim_{x \to \infty} p_n(x) = \begin{cases} \infty, & \text{if } a_n > 0 \\ -\infty, & \text{if } a_n < 0 \end{cases}.$$

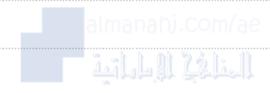


EXAMPLE 5.1 A Simple Limit Revisited

Examine $\lim_{x\to 0} \frac{1}{x}$.

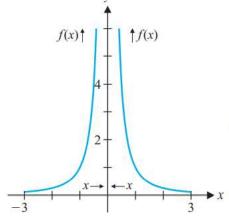
$$\lim_{x\to 0^+} \frac{1}{x} = \infty \text{ and } \lim_{x\to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0} \frac{1}{x}$$
 does not exist.



EXAMPLE 5.2 A Function Whose One-Sided Limits Are Both Infinite

Evaluate $\lim_{x\to 0} \frac{1}{x^2}$.



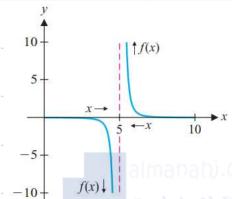
$$\lim_{x \to 0^+} \frac{1}{x^2} = \infty \quad \text{and} \quad \lim_{x \to 0^-} \frac{1}{x^2} = \infty.$$

Since both one-sided limits agree (i.e., both tend to ∞), we say that

$$\lim_{x \to 0} \frac{1}{x^2} = \infty.$$

EXAMPLE 5.3 A Case Where Infinite One-Sided Limits Disagree

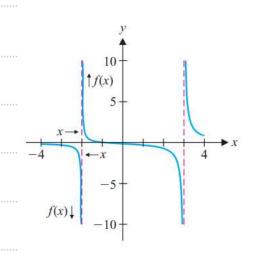
Evaluate $\lim_{x \to 5} \frac{1}{(x-5)^3}$.



$$\lim_{x \to 5^+} \frac{1}{(x-5)^3} = \infty.$$

$$\lim_{x \to 5^{-}} \frac{\frac{1}{1}}{(x-5)^3} = -\infty.$$

Finally, we say that
$$\lim_{x\to 5} \frac{1}{(x-5)^3}$$
 does not exist,

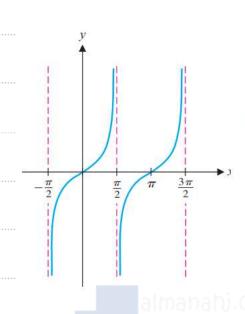


Evaluate
$$\lim_{x \to -2} \frac{x+1}{(x-3)(x+2)}$$
.

$$\lim_{x \to -2^+} \frac{x+1}{(x-3)(x+2)} = \infty$$

$$\lim_{x \to -2^{-}} \frac{x+1}{(x-3)(x+2)} = -\infty.$$

$$\lim_{x \to -2} \frac{x+1}{(x-3)(x+2)}$$
 does not exist.



EXAMPLE 5.5

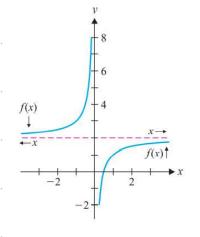
A Limit Involving a Trigonometric Function

Evaluate $\lim_{x \to \frac{\pi}{2}} \tan x$.

$$\lim_{x \to \frac{\pi}{2}^{-}} \tan x = \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sin^{+} x}{\cos x} = \infty$$

$$\lim_{x \to \frac{\pi}{2}^+} \tan x = \lim_{x \to \frac{\pi}{2}^+} \frac{\sin x}{\cos x} = -\infty.$$

 $\lim_{x \to \frac{\pi}{2}} \tan x \text{ does not exist.}$



EXAMPLE 5.6 Finding Horizontal Asymptotes

Find any horizontal asymptotes to the graph of $f(x) = 2 - \frac{1}{x}$.

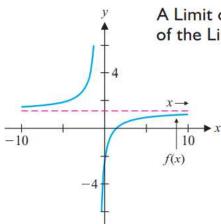
Solution We show a graph of y = f(x) in Figure 1.38. Since as $x \to \pm \infty$, $\frac{1}{x} \to 0$, we get that

$$\lim_{x \to \infty} \left(2 - \frac{1}{x} \right) = 2$$

and

$$\lim_{x \to -\infty} \left(2 - \frac{1}{x} \right) = 2.$$

Thus, the line y = 2 is a horizontal asymptote.



A Limit of a Quotient That Is Not the Quotient of the Limits

Evaluate
$$\lim_{x \to \infty} \frac{5x - 7}{4x + 3}$$
.

Solution You might be tempted to write

$$\lim_{x \to \infty} \frac{5x - 7}{4x + 3} = \frac{\lim_{x \to \infty} (5x - 7)}{\lim_{x \to \infty} (4x + 3)}$$
$$= \frac{\infty}{\infty} = 1.$$

EXAMPLE 5.8 Finding Slant Asymptotes

Evaluate $\lim_{x \to \infty} \frac{4x^3 + 5}{-6x^2 - 7x}$ and find any slant asymptotes.

we perform a long division:

$$\frac{4x^3 + 5}{-6x^2 - 7x} = -\frac{2}{3}x + \frac{7}{9} + \frac{5 + 49/9x}{-6x^2 - 7x}.$$

Since the third term in this expansion tends to 0 as $x \to \infty$, the function values approach those of the linear function

$$-\frac{2}{3}x+\frac{7}{9}$$

as $x \to \infty$. For this reason, we say that the graph has a **slant (or oblique) asymptote.** That is, instead of approaching a vertical or horizontal line, as happens with vertical or horizontal asymptotes, the graph is approaching the slanted straight line $y = -\frac{2}{3}x + \frac{7}{9}$.

Evaluate $\lim_{x\to 0^-} e^{1/x}$ and $\lim_{x\to 0^+} e^{1/x}$.

Solution A computer-generated graph is shown in Figure 1.41a. Although it is an unusual looking graph, it appears that the function values are approaching 0, as x approaches 0 from the left and tend to infinity as x approaches 0 from the right. To verify this, recall that $\lim_{x\to 0^-}\frac{1}{x}=-\infty$ and $\lim_{x\to -\infty}e^x=0$. (See Figure 1.41b for a graph of $y=e^x$.) Combining these results, we get

$$\lim_{x \to 0^{-}} e^{1/x} = 0.$$

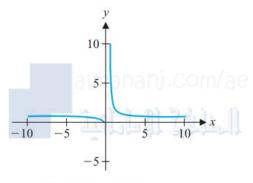


FIGURE 1.41a $y = e^{1/x}$.

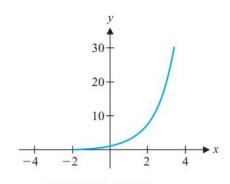


FIGURE 1.41b $y = e^x$.

Similarly,
$$\lim_{x\to 0^+} \frac{1}{x} = \infty$$
 and $\lim_{x\to \infty} e^x = \infty$, so that

EXAMPLE 5.10 Two Limits of an Inverse Trigonometric Function

Evaluate $\lim_{x\to\infty} \tan^{-1} x$ and $\lim_{x\to-\infty} \tan^{-1} x$.

 $-\frac{\pi}{2}$ $\frac{\pi}{2}$

FIGURE 1.42b

 $y = \tan x$

Solution The graph of $y = \tan^{-1} x$ (shown in Figure 1.42a) suggests a horizontal asymptote of about y = -1.5 as $x \to -\infty$ and about y = 1.5 as $x \to \infty$. We can be more precise with this, as follows. For $\lim_{x \to \infty} \tan^{-1} x$, we are looking for the angle that θ must approach, with $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, such that $\tan \theta$ tends to ∞ . Referring to the graph of $y = \tan x$ in Figure 1.42b, we see that $\tan x$ tends to ∞ as x approaches $\frac{\pi}{2}$. Likewise, $\tan x$ tends to $-\infty$ as x approaches $-\frac{\pi}{2}$, so that

$$\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2} \quad \text{and} \quad \lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}.$$

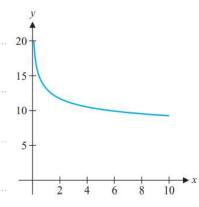


FIGURE 1.43a

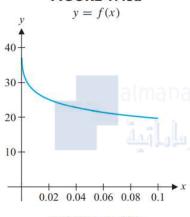


FIGURE 1.43b y = f(x)

EXAMPLE 5.11 Finding the Size of an Animal's Pupils

Suppose that the diameter of an animal's pupils is given by f(x) mm, where x is the intensity of light on the pupils. If $f(x) = \frac{160x^{-0.4} + 90}{4x^{-0.4} + 15}$, find the diameter of the pupils with (a) minimum light and (b) maximum light.

Solution Since f(0) is undefined, we consider the limit of f(x) as $x \to 0^+$ (since x cannot be negative). A computer-generated graph of y = f(x) with $0 \le x \le 10$ is shown in Figure 1.43a. It appears that the y-values approach 20 as x approaches 0. We multiply numerator and denominator by $x^{0.4}$, to eliminate the negative exponents, so that

$$\lim_{x \to 0^{+}} \frac{160x^{-0.4} + 90}{4x^{-0.4} + 15} = \lim_{x \to 0^{+}} \frac{160x^{-0.4} + 90}{4x^{-0.4} + 15} \cdot \frac{x^{0.4}}{x^{0.4}}$$
$$= \lim_{x \to 0^{+}} \frac{160 + 90x^{0.4}}{4 + 15x^{0.4}} = \frac{160}{4} = 40 \text{ mm}.$$

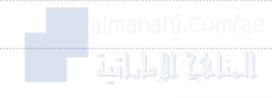
This limit does not seem to match our graph. However, in Figure 1.43b, we have zoomed in so that $0 \le x \le 0.1$, making a limit of 40 looks more reasonable. For part (b), we consider the limit as x tends to ∞ . From Figure 1.43a, it appears that the graph has a horizontal asymptote at a value somewhat below y = 10. We compute the limit

$$\lim_{x \to \infty} \frac{160x^{-0.4} + 90}{4x^{-0.4} + 15} = \frac{90}{15} = 6 \text{ mm}.$$

So, the pupils have a limiting size of 6 mm, as the intensity of light tends to ∞ .

In exercises 5–22, determine each limit (answer as appropriate, with a number, ∞ , $-\infty$ or does not exist).

5.
$$\lim_{x \to -2} \frac{x^2 + 2x - 1}{x^2 - 4}$$



6.
$$\lim_{x \to -1^{-}} (x^2 - 2x - 3)^{-2/3}$$

7.
$$\lim_{x \to 0} \cot x$$

$$8. \lim_{x \to \pi/2} x \sec^2 x$$

9.
$$\lim_{x \to \infty} \frac{x^2 + 3x - 2}{3x^2 + 4x - 1}$$

10.
$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{4x^2 - 3x - 1}$$

11.
$$\lim_{x \to -\infty} \frac{-x}{\sqrt{4+x^2}}$$

almanahj.com/ae

12.
$$\lim_{x \to \infty} \frac{2x^2 - 1}{4x^3 - 5x - 1}$$

$$13. \lim_{x \to \infty} \ln \left(\frac{x^2 + 1}{x - 3} \right)$$

Lesson	: Limits	at Infinity and	Asymptotes

NA.	or		_		•	_ '	١.
w	Or	K S I	np	ρт		•	

1	1

14.	lim	ln(x	sin	x)
	$x \rightarrow 0^+$			

15.	lim	e^{-2/x^3}	A. A. A. GE A. A. A.

16.
$$\lim_{x \to \infty} e^{-(x+1)/(x^2+2)}$$

17.	lim	cot ⁻¹	1 χ
	$x \to \infty$		

18.
$$\lim_{x \to \infty} \sec^{-1} \frac{x^2 + 1}{x + 1}$$

19. $\lim_{x\to 0} \sin(e^{-1/x^2})$

Lesson	: Limits at Infinity and Asymptotes	Worksheet (5)	13
20.	$\lim_{x \to \infty} \sin(\tan^{-1} x)$		

21.	lim	$e^{-\tan x}$	ئىڭ	il	طار	Li	ان	1	

22. $\lim_{x \to 0^+} \tan^{-1}(\ln x)$

In exercises 23–28, determine all horizontal and vertical asymptotes. For each side of each vertical asymptote, determine whether $f(x) \to \infty$ or $f(x) \to -\infty$.

23. (a)
$$f(x) = \frac{x}{4 - x^2}$$

(b)
$$f(x) = \frac{x^2}{4 - x^2}$$

24. (a)
$$f(x) = \frac{x}{\sqrt{4+x^2}}$$

(b)
$$f(x) = \frac{x}{\sqrt{4 - x^2}}$$

25.
$$f(x) = \frac{3x^2 + 1}{x^2 - 2x - 3}$$

26.
$$f(x) = \frac{1-x}{x^2+x-2}$$

27.
$$f(x) = 4 \tan^{-1} x - 1$$

28.
$$f(x) = \ln(1 - \cos x)$$

almanahj.com/ae

In exercises 29–32, determine all vertical and slant asymptotes.

29.
$$y = \frac{x^3}{4 - x^2}$$

30.
$$y = \frac{x^2 + 1}{x - 2}$$

31.
$$y = \frac{x^3}{x^2 + x - 4}$$

32.
$$y = \frac{x^4}{x^3 + 2}$$
 Imanahi.com/ae

33. Suppose that the size of the pupil of a certain animal is given by f(x) (mm), where x is the intensity of the light on the pupil. If $f(x) = \frac{80x^{-0.3} + 60}{2x^{-0.3} + 5}$, find the size of the pupil with no light and the size of the pupil with an infinite amount of light.

36. Find a function of the form
$$f(x) = \frac{20x^{-0.4} + 16}{g(x)}$$
 such that $\lim_{x \to 0^+} f(x) = 5$ and $\lim_{x \to \infty} f(x) = 4$.

51. Suppose that f(x) is a rational function $f(x) = \frac{p(x)}{q(x)}$ with the degree of p(x) greater than the degree of q(x). Determine whether y = f(x) has a horizontal asymptote.

52. Suppose that f(x) is a rational function $f(x) = \frac{p(x)}{q(x)}$ with the degree (largest exponent) of p(x) less than the degree of q(x). Determine the horizontal asymptote of y = f(x).

53. Suppose that f(x) is a rational function $f(x) = \frac{p(x)}{q(x)}$. If y = f(x) has a slant asymptote y = x + 2, how does the degree of p(x) compare to the degree of q(x)?

almanahj.com/ae

54. Suppose that f(x) is a rational function $f(x) = \frac{p(x)}{q(x)}$. If y = f(x) has a horizontal asymptote y = 2, how does the degree of p(x) compare to the degree of q(x)?

55. Find a quadratic function q(x) such that $f(x) = \frac{x^2 - 4}{q(x)}$ has one horizontal asymptote $y = -\frac{1}{2}$ and exactly one vertical asymptote x = 3.

56. Find a quadratic function q(x) such that $f(x) = \frac{x^2 - 4}{q(x)}$ has one horizontal asymptote y = 2 and two vertical asymptotes $x = \pm 3$.

57. Find a function g(x) such that $f(x) = \frac{x^3 - 3}{g(x)}$ has no vertical asymptotes and has a slant asymptote y = x.

58. Find a function g(x) such that $f(x) = \frac{x-4}{g(x)}$ has two horizontal asymptotes $y = \pm 1$ and no vertical asymptotes.

In exercises 59–64, label the statement as true or false (not always true) for real numbers a and b.

59. If $\lim_{x \to \infty} f(x) = a$ and $\lim_{x \to \infty} g(x) = b$, then $\lim_{x \to \infty} [f(x) + g(x)] = a + b$.

60. If
$$\lim_{x \to \infty} f(x) = a$$
 and $\lim_{x \to \infty} g(x) = b$, then $\lim_{x \to \infty} \left[\frac{f(x)}{g(x)} \right] = \frac{a}{b}$.

61. If
$$\lim_{x \to \infty} f(x) = \infty$$
 and $\lim_{x \to \infty} g(x) = \infty$, then $\lim_{x \to \infty} [f(x) - g(x)] = 0$.

62. If $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} g(x) = \infty$, then $\lim_{x \to \infty} [f(x) + g(x)] = \infty$.

almanan).Com/ae

63. If
$$\lim_{x \to \infty} f(x) = a$$
 and $\lim_{x \to \infty} g(x) = \infty$, then $\lim_{x \to \infty} \left[\frac{f(x)}{g(x)} \right] = 0$.

64. If $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} g(x) = \infty$, then $\lim_{x \to \infty} \left[\frac{f(x)}{g(x)} \right] = 1$.