

نموذج الهيكل الوزاري بريدج المسار المتقدم

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← فيزياء ← الفصل الثاني ← الملف

تاريخ نشر الملف على موقع المناهج: 21-02-2024 13:02:31

التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم							
		CHANNEL					
روابط مواد الصف الثاني عشر المتقدم على تلغرام							
<u>الرياضيات</u>	<u>اللغة الانجليزية</u>	اللغة العربية	<u>التربية الاسلامية</u>				

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة فيزياء في الفصل الثاني						
مراجعة الوحدة السابعة Fields Magnetic الحقول المغناطيسية	1					
مراجعة شاملة الوحدة السادسة دوائر التيار المستمر	2					
حل مراجعة على الوحدة الخامسة مع أسئلة الامتحانات السابقة	3					
ورقة عمل درس كثافة التيار الكهربائي	4					
مراجعة الوحدة الخامسة resistance and current التيار والمقاومة	5					

	1 .				Reference(s) in the Student Bo	nk			
2023/2024	_	Part الجزه	Question السؤال	Learning Outcome* تاتي التعليم	المرجع في كتاب الطالب المرجع في كتاب الطالب Example/Exercise مثال/تمرين	مر Page الصفحة			
2 Physics/Bridee		SWIFT	1	Show that by definition the electric current is related to net charge through the equation between current and charge related to time Apply the relations to calcuate electric current at a point and the [i=dq/dt] net amount of charge passing a given point in time t.	As mentioned in the textbook	117			
الفيزياء/ بريدج		SWIFT	2	Define the current density J as the current per unit area flowing through a conductor.	As mentioned in the textbook	119			
12 Advanced المتقدم		SWIFT	3	Apply the equation (s-pL/A) in solving problems to calculate an unknown quantity given the other quantities. Analyse the equation (R=pL/A)	As mentioned in the textbook	121-123			
SWIFT 15									
Paper Part 4		SWIFT	4	Calculate the equivalent resistance for resistors connected in series as the sum of their individual resistances. Recall and apply Ohm's Law (I=2U/R).	As mentioned in FIGURE 5.12	127- 128			
SWIFT: MCQ Paper Part: FRQ		SWIFT	5	Calculate the equivalent resistance for resistors in parallel arrangements (1/Req=1/R1+1/R2+).	As mentioned in Concept Check 5.6	130- 133			
100		SWIFT	6	Apply the equations of power (P=IdV) for any electric device and $\frac{P}{P} = l^2 R = \frac{(\Delta V)^2}{R}$ for a resistor to solve numerical problems.	As mentioned in EXAMPLE 5.5	134			
SwiftAssess & Paper-Based		SWIFT	7	State Kircholf's junction rule: "The sum of the currents entering a junction must equal the sum of the currents leaving the junction" Calculate the equivalent resistance for resistors in parallel arrangements [1/Req=1/R1+1/R2+).	As mentioned in Concept Check 6.1	146-147			
				Recall that is a statistic from donit the contrast is the rome examples in the donit					
Allowed		SWIFT	8	Analyze single loop circuits containing two sources of emil and circuit elements	As mentioned in FIGURE 6.8	148-149			
150 minutes		SWIFT	9	Recal the a animeter is a divide used to measure current and voltimeter is a divice used to measure potential difference Recal that a animeter is wered in a circuit in sarels. Recal that a animeter is wered in a circuit in sarels. Recal that a solution ter is wered in a circuit in sarely and the potential difference is to be measured facility that animeters are designed to base a low resistance as possible, so they do not here an appreciable effect on the currents they measure identify that worknetters are designed to have as high resistance as possible, so they have a negligible effect on the potential differences they measure	As mentioned in FIGURE 6.8	148-149			
	F			Apply the relationship giving the charge as a function of time for a capacitor in a charging RC circuit $q(t) = q_{max}(1 - e^{-t/T})$	As montioned in EVAMPLE 6.2				
		SWIFT	10	Apply the relationship giving the charge as a function of time for a capacitor in a discharging RC circuit $q(t)=q_{ m max}e^{-VT}$	AS MENTIONED IN EXAMPLE 6.3	155-157			
		SWIFT	11	identify that the magnetic field vector is always tangent to the magnetic field lines	As mentioned in FIGURE 7.5	170-171			
		SWIFT	12	Solve problems related to magnetic fields and magnetic forces on charged particles Apply the right-hand rule to determine the direction of the magnetic force vector which is always perpendicular to both the velocity vector and the magnetic field vector (for a negative charge the force will be in the opposite direction)	As mentioned in the textbook As mentioned in FIGURE 7.12	173			
		SWIFT	13	Solve problems related to torque on a current-carrying loop	As mentioned in the textbook	184-185			
		SWIFT	14	(Sketch a current element) in a wire and indicate the direction of the magnetic field that it sets up at a given point near the wire located by the position vector. State and explain Biot Savart's law	As mentioned in the textbook As mentioned in FIGURE 8.2	196-197			
		SWIFT	15	Recall that the 51 unit of magnetic field strength is Tesla (T) Apply the equation to determine the magnitude of the magnetic field at a perpendicular distance r⊥ from a long straight current-carrying wire.	As mentioned in the textbook	174 198			
		Important when so Drawing re line بیک سیرصد بید أفضل خط		Important note: Please pay attention to specifying the units of measurement when solving problems, as grades will be calculated based on the units. Drawing relationships between variables, identifying and drawing the best fit line connecting the points, and finding values from the graph. ملاحظة هامة: يرجى ضرورة الاهتمام بتحديد وحدات القياس عند حل المسائل، حيث سيرصد مرجات على الوحدات كما يرجى تدريب الطلبة على رسم الملاقات بين المتغيرات وتحديد أفضل خط درجات على الوحدات كما يرجى تدريب الطلبة على رسم الملاقات بين المتغيرات وتحديد أفضل خط					
		Paper part	1	Distinguish between ohmic and non-ohmic resistors and give examples. Recall and apply Ohm's Law (heXVR).	As mentioned in the textbook As mentioned in FIGURE 5.2	125-127			
		Paper part	2	Calculate currents, voltages, and resistances for circuit arrangements containing resistors in series and in garailel. Solve problems involving resistors connected in series and in parallel in a circuit.	As mentioned in the textbook As mentioned in EXAMPLE 5.4	130-132			
		Paper part	3	Recall and apply Ohm's Law (I=ΔV/R). Solve problems on multiloop circuits. Analyze multiloop circuits by applying botk Kirchhoff's jon und and Kirchhoff's junction rule. Write a system of coupled equations in several unknown variables by applying both the Kirchhoff's rules. Solve the system of coupled equations for the quantiles of interest uning struct techniquer, indig rierd substitution. Express Kirchhoff's loop rule mathematically and apply in problem solving	As mentioned in the textbook As mentioned in FIGURE6.12	125-126 150-152			
		Paper part	4	Apply the relationship between the magnetic force, charge q, velocity, and the magnetic field B. Apply Newton's second law, for a charged particle in unform circular motion due to a magnetic force, to derive an expression for the orbital radius r in terms of the magnetic field magnitude B and the particle's mass m, charge magnitude [q], and speed V Apply the equation to calculate the orbital radius r for a charged particle in a unifrom mgnetic field or other unknown physical quantites	As mentioned in the textbook	175-176			
		Paper part	5	Apply the equation to determine the magnetic force on a current-carring wire in a uniform magnetic field $\vec{F}_B = i\vec{L} \times \vec{B}$, force magnitude $F_B = iLB\sin\theta$ or other unknown physical quantities, where θ is the angle between the direction of the current flow and the direction of the magnetic field	As mentioned in EXAMPLE 7.4	182-184			

Subject المادة

Grade الصف Stream المسار

Number of Question عدد الأسئلة

Type of All Questions نوع كافة الأسئلة Maximum Overall Grat الدرجة القصوى السكنة

Mode of Implement طريقة التطبيق