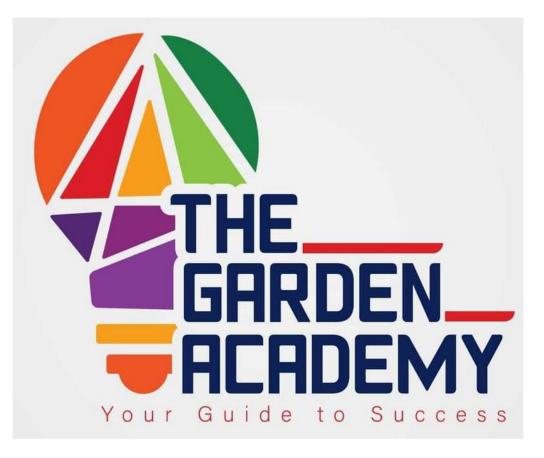


ملزمة مراجعة نهابة وفق الهيكل الوزاري منهج انسباير

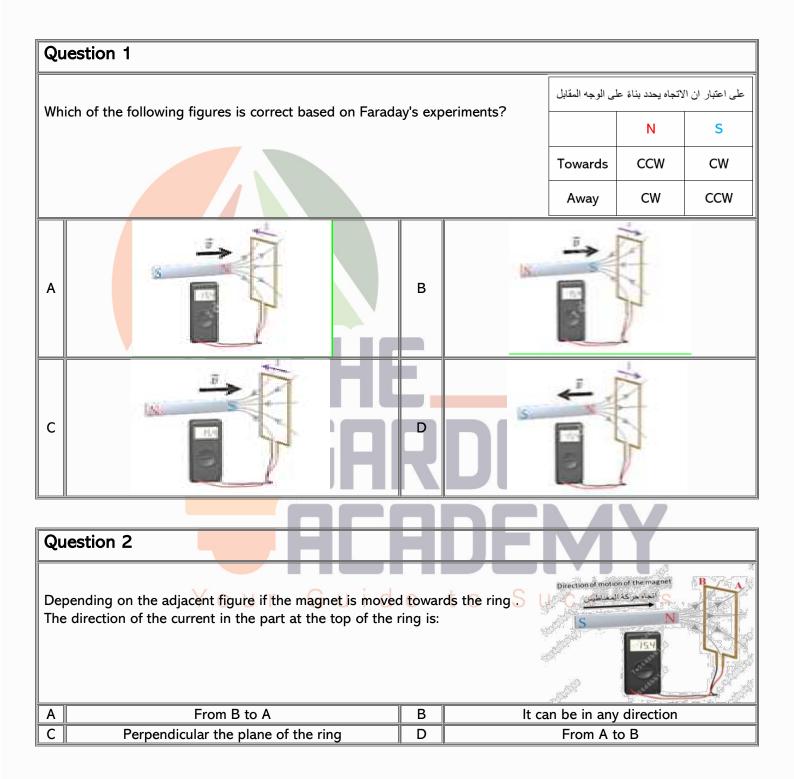

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← فيزياء ← الفصل الثالث ← الملف

تاريخ إضافة الملف على موقع المناهج: 28-05-2024 16:02:55

إعداد: أحمد التميمي

_ المتقدم	الصف الثاني عشر	الاجتماعي بحسب	التواصل	
		CULATUREL		
<u>اضغط هنا للحصول على جميع روابط "الصف الثاني عشر المتقدم"</u>				
روابط مواد الصف الثاني عشر المتقدم على تلغرام				
الرياضيات	<u>اللغة الانجليزية</u>	<u>اللغة العربية</u>	<u>التربية الاسلامية</u>	

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة فيزياء في الفصل الثالث				
<u>الهيكل الوزاري الجديد منهج بريدج المسار المتقدم</u>	1			
أسئلة الامتحان النهائي الالكتروني والورقي	2			
أسئلة اختبار دوري في الدروس الثلاثة الأولى من الوحدة التاسعة	3			
ملزمة الوحدة العاشرة دارات التيار المتناوب مع تدريبات	4			
الدروس المحذوفة من مقرر الفيزياء	5			


هيكل 12ADV

EOT Term 3 2023/2024

المادة: الفيزياء المدرس: أحمد التميمي

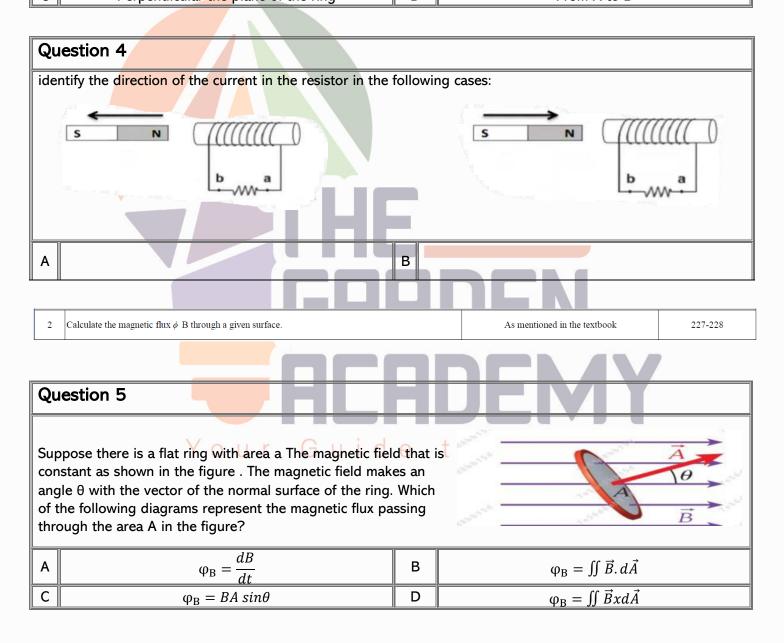
EoT Coverage-12 Advanced-Term 3

1	Describe experiments to show that changing magnetic field inside a conducting loop induces a current in the loop.	As mentioned in the textbook Q. 9.5	226 251	
---	--	--	------------	--

الف_يزياء

The garden academy

أحمد التميمي



Question 3

 Depending on the adjacent figure if the magnet is moved away from ring . The direction of the current in the part at the top of the ring is:
 Image: Constraint of the current in the part at the top of the ring is:

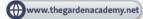
 A
 From B to A
 B
 It can be in any direction

 C
 Perpendicular the plane of the ring
 D
 From A to B

The garden academy

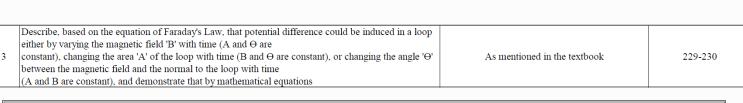
الف_يزياء

Based on the figure, at any angle θ the value of the magnetic flux will be approximately (0.8 AB)


			B
Α	15°	В	27°
С	37°	D	53°

Question 7

	0001011	•							
			at any angle 6 y (0.5 AB)) the value of th	e magr	netic flux	55550555		À H
							apported	Desiles V	B
Α			30 ⁰			В		60 ^{<i>o</i>}	
С			75 ^o			D		00	


Qu	lestion 8		
con	ppose there is a flat ring with area A. The magnetic fie stant as shown in the figure. The magnetic field make	es an	Ă.
	gle θ with the area vector. What can be done to increa gnetic flux in the loop?	se the	$\begin{array}{c} \theta \\ \overline{B} \end{array}$
Α	Rotate the loop so that the normal \vec{A} to the surface becomes parallel to the magnetic field \vec{B} .	В	Rotate the loop so that the normal \vec{A} to the surface becomes perpendicular to the magnetic field \vec{B} .
с	Decrease the intensity of the magnetic field \vec{B} .	D	Rotate the loop so that the normal \vec{A} to the surface makes an angle 45° with the magnetic field \vec{B} .

Question 9		
The loop in position (A) has its surface perpendicular to the field, and the flux passing through its surface is $\varphi_B = 2 > 1$ in position (B) where its surface makes an angle of 37° we flux through its surface is:	× 10 ⁻⁴	Wb. If the loop is placed
A $1.2 \times 10^{-4} Wb$	В	$0.8 \times 10^{-4} Wb$
C $1.6 \times 10^{-4} Wb$	D	0

В

D

Question 10

الف_يزياء

Faraday's law of electromagnetic induction states that a voltage difference is induced in the presence of a changing magnetic flux. Which of the following equations represents this law?

A C

 $w=\oint ec{F}\cdot dec{s}$

 $\phi_B = \iint ec{B} \cdot dec{A}$

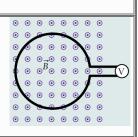
$\Delta V_{ m ind} = -rac{d\phi}{dt}$
$q=q_0e^{-rac{t}{ au}}$

You Tube

f

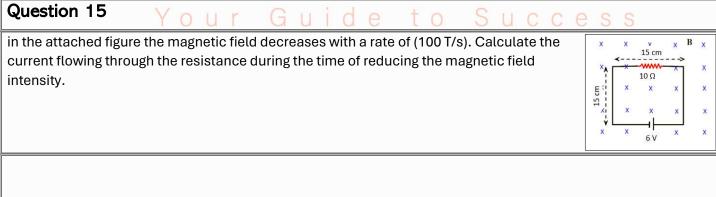
O.

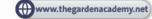
Question 11		
The magn <mark>etic flux (ϕ_B) through</mark> a wire loo	op changes over time (t) according to the equation $\phi_B=$	
$-2t^2$. What is the induced voltage ($\Delta V_{ m ind}$) in the wire loop at $t=3{ m sec}$?		
A -12 V	B18 V	
C 12 V	D 18 V	
Question 12		


W	When can we use the relationship $\Delta V_{ m ind} = wAB\sin heta$ to find the induced voltage difference?			
	Your Guid	е	to Success	
Α	When the area, magnetic field, and angle (A, B, θ) are constant	В	When the area and the magnetic field (A and B) are constant	
С	When the angle and the magnetic field (θ and B) are constant	D	When the area and the angle (A and θ) are constant	

Question 13

The plane of the circular loop shown in the figure is perpendicular to a magnetic field with magnitude B = 0.800 T. The magnetic field goes to zero at a constant rate in 0.150 s. The induced voltage in the loop is 1.5 V during that time. What is the radius of the loop?

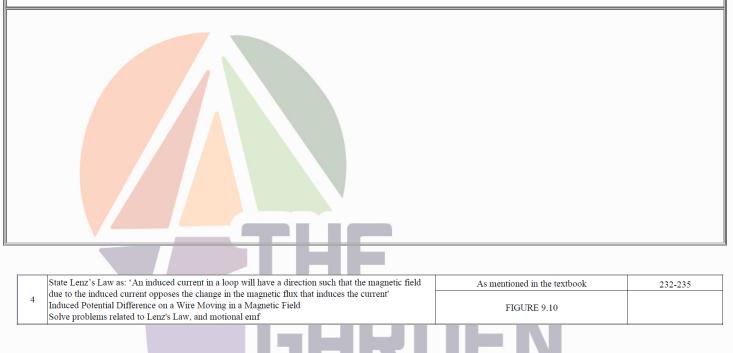


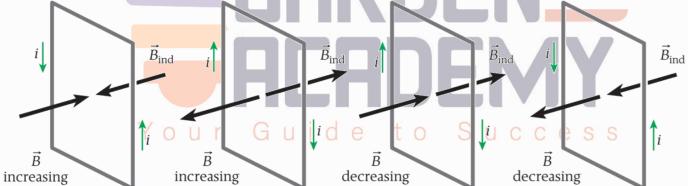

d(t)

Question 14

A rectangular wire loop of width w = 3.1 cm and depth $d_0 = 4.8$ cm is pulled out of the gap between two permanent magnets. A magnetic field of magnitude B = 0.073 T is present throughout the gap as shown in figure. If the loop is removed at a constant speed of 1.6 cm/s, what is the induced voltage in the loop as a function of time?

S


Ν

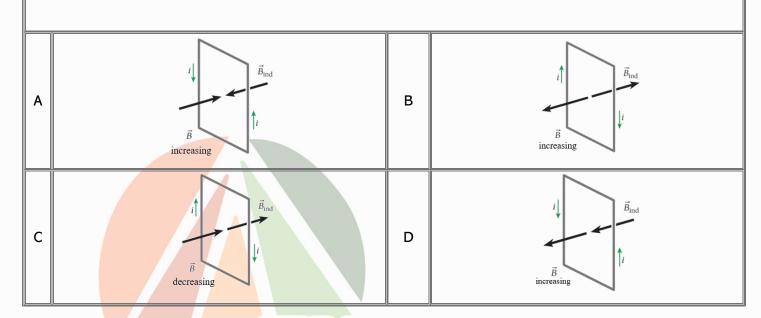

Question 16

A12-turn coil with square loops measuring 150.0 cm along a side, placed in a magnetic field that makes an angle of 30.0° with the plane of each loop. The magnitude of the magnetic field varies with time according to B(t) = 2.0 t², where t is measured in seconds and B in Tesla.

1. Calculate the induced potential difference in the loop at t = 2.00 s.

2. Determine the induced current in the coil at t = 2.00 s if the resistance in the wires is equal to 0.8 $\Omega.$

أحمد التمي


You Tube

f

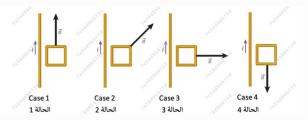
0

Question 17

Which of the following is incorrect based on Lez's law?

Question 18 A conducting ring is moving from left to right through a uniform magnetic field, as shown in the figure. In which regions is there an induced current in the ring? Image: Conducting ring is moving from left to right through a uniform magnetic field, as shown in the figure. Image: Conducting ring is moving from left to right through a uniform magnetic field, as shown in the figure. Image: Conducting ring is moving from left to right through a uniform magnetic field, as shown in the figure. Image: Conducting ring is moving from left to right through a uniform magnetic field, as shown in the figure. Image: Conducting ring is moving from left to right through a uniform magnetic field, as shown in the figure. Image: Conducting ring is moving from left to right through a uniform magnetic field, as shown in the figure. Image: Conducting ring is moving from left to right through a uniform magnetic field, as shown in the figure. Image: Conducting ring is moving from left to right through a uniform magnetic field. Image: Conducting ring is moving from left to right through a uniform magnetic field. Image: Conducting ring is moving from left to right through a uniform magnetic field. Image: Conducting ring is moving from left to right through a uniform magnetic field. Image: Conducting ring is moving from left to right through a uniform magnetic field. Image: Conducting ring is moving ring ring is moving ri

Question 19

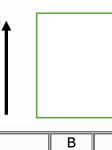

A square conducting loop with very small resistance is moved at constant speed from a region with no magnetic field through a region of constant magnetic field and then into a region with no magnetic field, as shown in the figure. As the loop enters the magnetic field, what is the direction of the induced current?

	0 0 0	<u> </u>	0 0
Α	Clockwise	В	Counterclockwise
С	Perpendicular to the plane	D	Parallel to the plane

Question 20	
A square conducting loop with very small resistance magnetic field through a region of constant magneti field, as shown in the figure. As the loop exists the r current?	ic field and then into a region with no magnetic magnetic field, what is the direction of the induced
A Clockwise	B Counterclockwise
C Perpendicular to the plane	D Parallel to the plane

Question 21

In the following figures, the straight wire carries an electric current (i) and the wire loop moves with a constant speed (v) in the same plane as the straight wire. In which of the following cases will the maximum amount of electric current be induced in the loop?



A	Case 1	В	Case 2
С	Case 3	D	Case 4

الف_يزياء

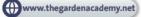
In the figure below, there is a loop adjacent to a wire. Determine the direction of the current in the loop when the current in the wire increases.

ستاذ

You Tube

f

0


1

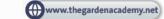
Α	No induced current will flow	В	Perpendicular to the plane of the loop
С	Clockwise	D	Counterclockwise

Question 23				
This magnet is moving into a metallic ring as shown. Choose a correct statement about what happens in the ring, using your understanding of Lenz's law.				
Α	The induced magnetic field has North pole points towards upward direction.	в	The induced magnetic field has North pole points towards downward direction.	
С	The induced current is in clockwise direction in the ring.	D	No current flows in the ring but there is an induced <i>EMF</i> .	
-	lugad Datantial Difference on a Wine Maxima in a Magnetic Field			

Induced Potential Difference on a Wire Moving in a Magnetic Field	As mentioned in the textbook	235-237	
Solve problems related to Lenz's Law, and motional emf Induced potential difference as a function of time for a generator	EXAMPLE 9.4 Q. 9.9	236 251	

Question 24 You	r Guide	to Succ	ess		
The adjacent figure shows four loops made of a conductive material entering a uniform magnetic field at the same speed. Which of the loops generates the highest value of induced electromotive force EMF?					
Aaa	B	b			
Cc	D	d			

ů


Question 25

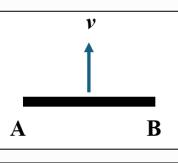
Calculate the potential difference induced between the tips of the wings of a Boeing 747-400 with a				
wingspan of 64.67 m when it is in	level flight at a speed o	f 913 km/h. Assume that the magnitude of		
the downward component of the Ea	•	•		
	a in s magnetic neid is i	5 5.00 ×10 1		
		4.2.1/		
A 0.82 V	B	1.2 V		
C 2.2 V	D	0 V		

Question 26	
constant force of magni conducting rails separat rails are connected, and the rails. A uniform mag is directed into the pag	ting rod is pulled horizontally by a itude, F = 5.00 N, along a set of ted by a distance a = 0.500 m. The two d no friction occurs between the rod and gnetic field with magnitude B = 0.500 T e. The rod moves at constant speed, v = magnitude of the induced potential difference in the loop formed by the e moving rod?
	GARDEN
	HLHUCIVI
Question 27	<u>'our Guide to Success</u>
	A metal bar is moving with constant velocity \vec{v} through a uniform magnetic field pointing into the page, as shown in the figure. \otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes
	Which of the following most accurately represents $\otimes \otimes \otimes$
	e) distribution 5 Distribution Distribution Distribution Distribution Distribution 1 2 3 4 5

@the_garden_academy

The garden academy

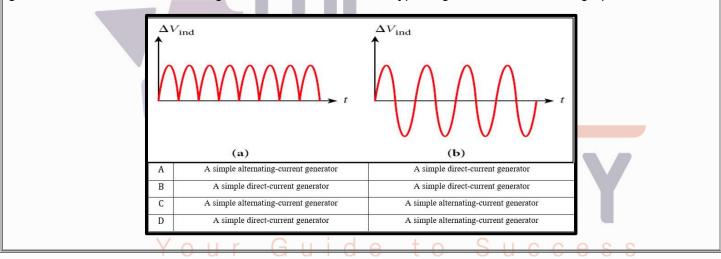
00971569174493


حمد التميمي

Question 28

الف_يزياء

The adjacent figure shows a conductor wire (AB) perpendicular to the magnetic field, being moved at a constant speed through a uniform magnetic field. Negative charges accumulate at B and positive charges accumulate at A. The direction of the magnetic field is:



Α	Outward	В	Inward
С	Upward	D	Downward

	Generators and Moto	IS	As mentioned in the textbook	239-240
	6 Identify electric generators and electric motors as everyday applications of electromagnetic induction			
	and electromagnetic	force.	FIGURE 9.20	240
-				

Question 29

The figure shows two graphs representing the induced potential difference as a function of time for two generators. Which of the following rows indicates the correct type of generator under each graph?

Qu	Question 30				
Wh	at type of generators is shown in the image?		Slip rings		
Α	Step-up Transformer	В	Step-down Transformer		
С	A simple direct-current (DC) generator/motor.	D	A simple alternating-current (AC) generator/motor		

الف_يزياء LOÏ DEN Demy You Tube 0) ď 1 Question 31 What is the name of the device shown in the image? Commutator ring Step-up Transformer Step-down Transformer А В A simple alternating-current (AC) С A simple direct-current (DC) generator/motor. D generator/motor

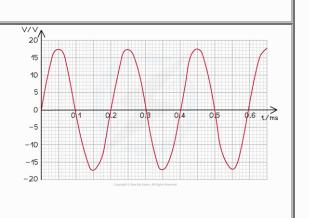
ء الأستاذ

Que	Question 32				
The image shows an armature inside a generator. At the position shown, what induced current flows in the armature?					
Α	Maximum current	В	Effective current		
С	zero	D	A value that is more than zero and less than maximum.		

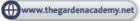
Question 33			
	the magnetic flux penetrative force (emf) in the generator		erator coil reaches its maximum value, the
A Reaches it	s maximum positive value	В	Reaches its maximum negative value
С	ls zero	D	Reaches half its maximum positive value

Qu	Question 34				
	An electric generator with 400 turns produces an alternating electromotive force (emf) according to				
	the equation $V_{emf} = 150 \sin(50\pi t)$.				
Wh	What is the frequency of the alternating emf? i d e t o Success				
Α	0 Hz	В	25 Hz		
C	50 Hz	D	100 Hz		

f

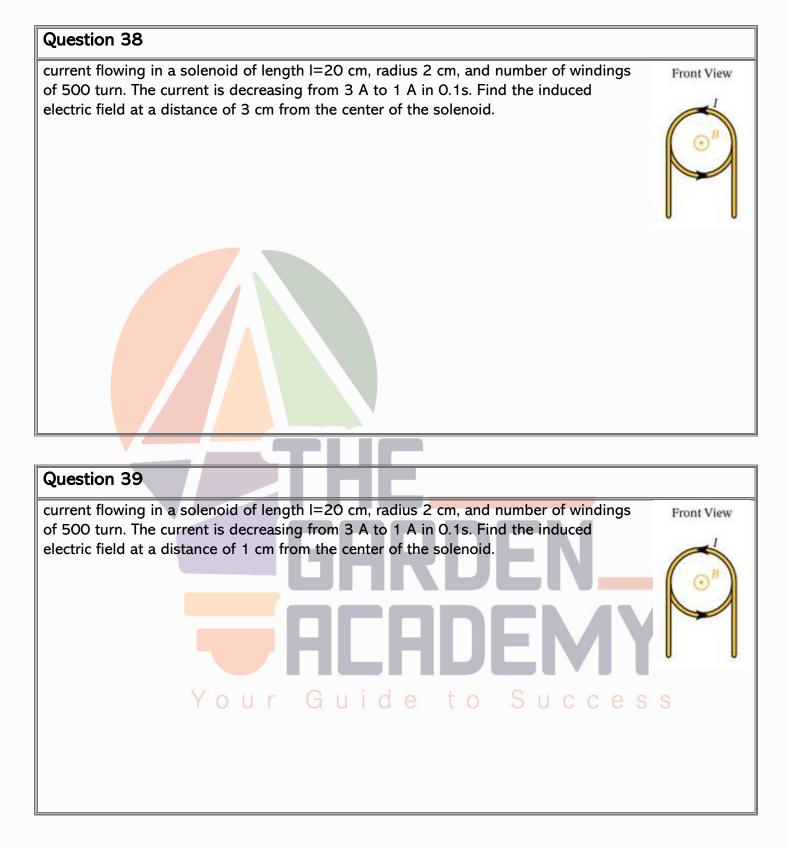


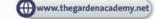
Question 35


a plot shows the relationship between induced voltage and time of a 0.1 m2 coil and number of windings is 200 winding:

• Write the equation of induced potential difference equation as a function of time.

- Calculate the magnetic field in which the coil is rotating.
- Find the induced potential difference at t = 0.05 seconds.


7	Induced Electric Field		As mentioned in the textbook 240-241				
	Solve problems related to induced electric field by changing magnetic flux.						
G	Question 36						
	the following equation $\mathbf{Y} = \mathbf{g} \mathbf{h} \mathbf{F} \mathbf{d} \mathbf{g}$ What does \mathbf{Y} re	aracant'					
Ir	the following equation: $X = q \oint E \cdot ds$. What does X re	bresent					
A	work	В	Induced voltage				
C	Energy	D	Power				
G	Question 37 Your Guid	е	to Success				
	ne of the results of Faraday's law of electromagnetic						
p	presence of a changing magnetic flux. Which of the following equations represents this effect?						
L							
		В	V = IR				
C	$\oint ec E \cdot dec s = -rac{d\phi_B}{dt}$	D	F = ma				



	Unit of inductance		240-241
8	Define the inductance of a device as a measure of its opposition to changes in current flowing through it, measured in henry (H)	As mentioned in the textbok	

الأستاذ أحمد التميمي

$$Li = N\Phi$$

$$H.A = T.m^{2} \rightarrow H = \frac{T.m^{2}}{A} = \frac{Wb}{A}$$

$$\Delta V_{ind} = -L\frac{di}{dt}$$

$$V = H \cdot \frac{A}{s} \rightarrow H = \frac{V \cdot s}{A}$$

$$\tau_{RL} = \frac{L}{R}$$

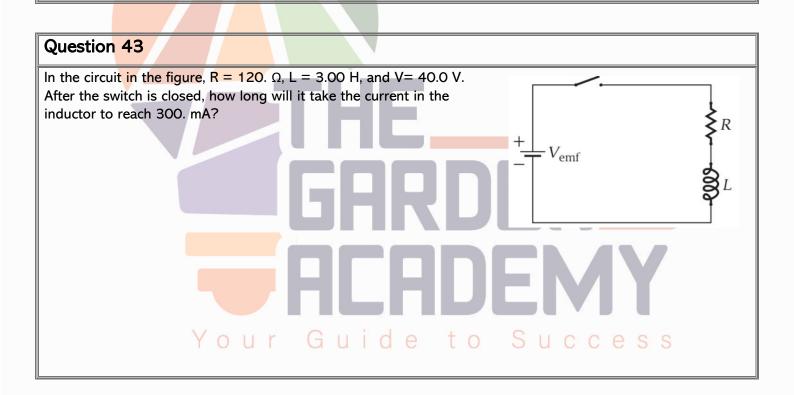
$$s = \frac{H}{\Omega} \rightarrow H = \Omega \cdot s$$

$$U_{B} = \frac{1}{2}Li^{2}$$

$$J = H.A^{2} \rightarrow H = \frac{J}{A^{2}} = \frac{N \cdot m}{A^{2}}$$

Question 40					
What is th <mark>e definition of the induc</mark> tance of a device?					
Α	A measure of its ability to store electric charge, measured in farads (F)	В	A measure of its opposition to changes in current flowing through it, measured in henry (H)		
С	A measure of its ability to conduct electric current, measured in siemens (S)	D	A measure of its resistance to the flow of electric current, measured in ohms (Ω)		

Qu	estion 41						
Wh	ich of the followir	ng is not a unit fo	or measuring th	ie indu	ctance c	oefficient?	
Α		₩b·s/C	Guid	⊸В	t 0	Suc A/Jo c c	
С		$V \cdot s/A$	ulu	D		$T.m^2/A$	



	constant (T) in RL circuit	As mentioned in the textbook	245-246
9		SOLVED PROBLEM 9.3	246
	Calculate the inductive time constant τRL for an RL circuit	Q. 9.49	254

الف_يزياء

Consider an RL circuit with resistance $R = 1.00 M\Omega$ and inductance L = 1.00 H, which is powered by a 10.0-V battery.

- a) What is the time constant of the circuit?
- b) If the switch is closed at time t = 0, what is the current just after that time? After 2.00 μ s? When a long time has passed?

Question 44

a series circuit contains a battery that supplies Vemf = 40.0 V, an inductor R with L = 2.20 H, a resistor with R = 160.0 Ω , and a switch, connected as shown in Figure. The switch is closed at time t = 0. How much work is done by the battery between t = 0 and $t = 1.6x10^{-2}$ s? gr Vemf 1.0 1.0 $\overline{\tau}_{\rm RL} = 2 \ {\rm s}$ 0.8 0.8 = 0.5 s $\tau_{\rm RL}$ $i / (V_{\text{emf}}/R)$ $/(V_{emf}/R)$ 0.6 0.6 $r_{RL} = 1 s$ = 0.5 s $\tau_{\rm RL}$ 0.4 0.4 $au_{\rm RL} = 1 \ {
m s}$ $\tau_{\rm RL} = 2 \, {\rm s}$ 0.2 0.2 0 0 5 6 0 2 3 4 2 3 0 1 $\overline{4}$ t (s) t (s) LC Circuits As mentioned in the textbook 258-260 Recall that the energy stored in the electric field of a capacitor of capacitance C, at any instant, is given by Q. 10.28 10 $U_E = \frac{1}{2} \frac{q^2}{C}$ 285 Q. 10.29 Recall that the energy stored in the magnetic field of an inductor with inductance L, at any instant, is $U_B = \frac{1}{2}Li^2$ given by Energy stored in a capacitor: $U_E = \frac{q^2}{2C} = \frac{1}{2}C\Delta V^2 = \frac{1}{2}q\Delta V$ Energy stored in an inductor: $U_B = \frac{1}{2}Li^2$

Total energy sotored in LC circuit: $U = U_E + U_B = U_{E, max} = U_{B, max}$

 $2.00-\mu$ F capacitor is fully charged by being connected to a 12.0 V battery. The fully charged capacitor is then connected to a 0.250-H inductor. Calculate the maximum current in the inductor.

Question 46

What is the amount of energy stored in an inductor with an inductance of 45mH and a current of 15A?

Question 47 What is the current flowing in a continuous current circuit with an inductor of 1.2H that stores energy of 375J? Image: Contract of the contrac

 Self-Induction

 Define self-induction and mutual induction

242

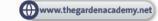
00971569174493

Question 48 The ratio between the induced electromotive force generated in a coil and the rate of change of current is: A Mutual inductance B Self-inductance C Magnetic flux D Impedance

O @the_	garden_	academy
---------	---------	---------

As mentioned in the textbook

الأستاذ أحمد التميم


Question 49

Based on the given equation: $\Delta V_{ind,1} = -MX$. What does X represent.

Α	Rate of change of the current in the first coil	В	Rate of change of the current in the second coil
C	Rate of change of flux in the first coil	D	Rate of change of flux in the second coil

Question 50				
Based on the given equation: $\Delta V_{ind,1} = -X \frac{d\varphi_2}{dt}$. What does X represent according to the image?				
A	Mutual inductance M	В	Self-inductance coefficient L	
С	Number of turns of the first coil	D	Rate of change of flux in the second coil	

Qu	Question 51						
11	According to Faraday's Law of Induction, the self-induced potential difference for any inductor is given by:						
Α	$\Delta V_{ m ind,L} = -Lrac{dI}{dt}$ B $\Delta V_{ m ind,L} = Lrac{dI}{dt}$						
С	$\Delta V_{\mathrm{ind,L}} = -N \frac{d\Phi_B}{dt}$ D $\Delta V_{\mathrm{ind,L}} = \frac{d(N\Phi_B)}{dt}$						
Qu	Jestion 52						
	Your Guide to Success						
[i(A constant current passing through a coil whose intensity changes according to the equation : [$i(t) = 5 + 3t - 4t^2$]. at the moment ($t = 2.0 s$) the induced potential difference generated in a coil ($\Delta V_L = 0.024 V$). Calculate the inductance (L) of the coil.						

242-244

12	Mutual Induction	As mentioned in the textbook
12	Solve problems related to self-induction and mutual induction	SOLVED PROBLEM 9.2

Question 53

الف_يزياء

A long solenoid with a circular cross section of radius r = 2.80 cm and n = 290 turns/cm is inside and coaxial with a short coil that has a circular cross section of radius r = 4.90 cm and N = 31 turns. The current in the solenoid is increased at a constant rate from zero to i = 2.20 A over a time interval of 48.0 ms. What is the potential difference induced in the short coil while the current is changing?

Question 54 In the following figure, the electric current i_2 in coil 2 increases from 0 to $2.0\,\mathrm{A}$ in a time period of $50\,\mathrm{ms}$. The self-inductance of coil 1 is $0.20\,\mathrm{H}$ and the self-inductance of coil 2 is $0.10\,\mathrm{H}$. The induced voltage in coil 1 is $-1.6\,\mathrm{V}.$ What is the mutual inductance between the two coils? **Question 55** Based on Lenz's law, the current in the circuit shown has to to get the depicted induced potential difference. А Stay the same В Be decreasing С Be increasing D Change direction

أحمد التميمي

Alternating current circuit As mentioned in the textbook 264-265 13 Describe the alternating sinusoidal current, induced in a circuit containing a sinusoidal time varying sour FIGURE 10.8 VR I_R Question 56 the shown equation represents the current flowing in a simple circuit that consists of a varying emf source and a resistor. In this case, \emptyset equals: $i = I\sin(\omega t - \phi)$ А 0 В 90 С 45 D 60 Question 57

Which of the following graphs represent the phasor diagram of simple AC circuit that consists of a varying EMF source and a resistance?

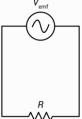
A		в	$DE^{\overline{t_c} - \overline{t_c}}$
С	\vec{v}_L \vec{v}_L $\omega t - (\pi/2)$	D	All of the above.

الفيزياء

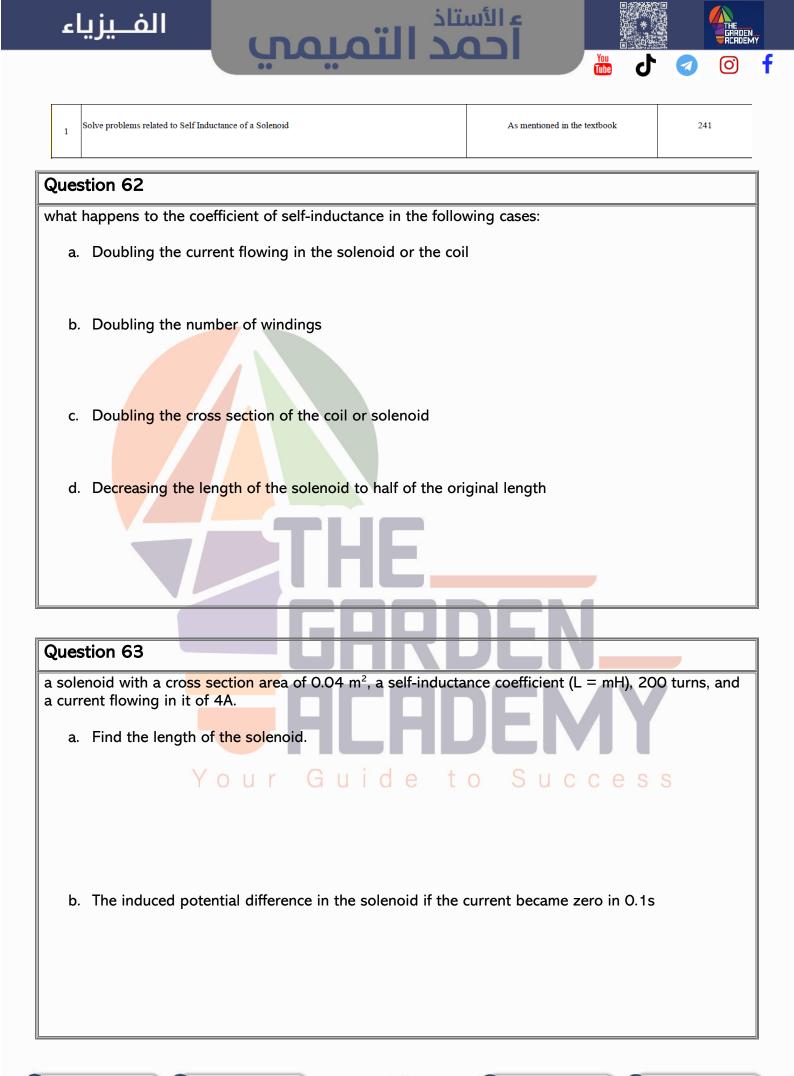
14	Single-loop circuit with a resistor and a source of time-varying emf varying voltage across the resistor, for a circuit consisting of a resistor and a source of time varying emf.	As mentioned in the textbook	264-265
	Derive an expression for the current across the resistor, in a circuit consisting of a resistor and a source of time varying emf, as $i_R = \frac{v_R}{R} = \frac{V_R}{R} \sin(\omega t) = I_R \sin(\omega t)$	As mentioned in the textbook	264-265

Qu	estion 58		
Wh	at does he image represent?		R R V _{emf}
Α	Single-loop circuit with a resistor and a source of time-varying EMF.	В	Single-loop circuit with a resistor and a source of direct EMF source.
С	Single-loop circuit with an inductor and a source of time-varying EMF.	D	Single-loop circuit with an inductor and a source of direct EMF source.

Question 59
The graph represent a voltage phasor through a resistor at some instant. $V_{max} = 10 V$
What is the potential difference across the resistor at this instant?
$\theta = 0.96 rad$
A 10 V B 5.7 V
C V82Vir Guided to Success


The garden academy

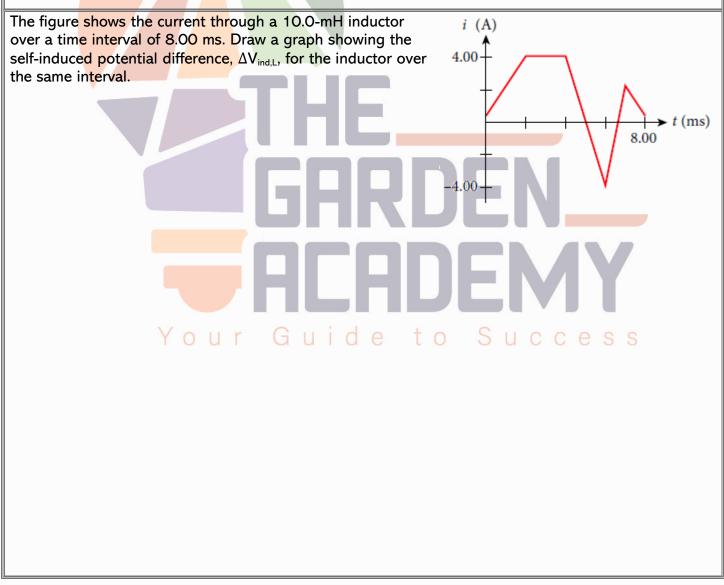
In the shown circuit, the resistance is $R = 10\Omega$, connected to an emf source that is capable of producing a maximum voltage of V_{max} = 60V at a frequency of 60 Hz. Find:


- 1- The maximum current flowing in the circuit
- 2- Write the equation of current as a funtion of time.
- 3- What happens to the resistance if the frequency is doubled ?

Qu	Question 61		
A resistor of $R = 8.0 \Omega$ is in series with an alternating emf given by $V_{ m emf} = 12 \sin \left(1000 \pi t + \frac{\pi}{2}\right)$. Determine the expression for the current in the circuit and the phase relationship between current and voltage in a resistor-only circuit.			
Α	$i = 1.5 \sin \left(1000 \pi t + rac{\pi}{2} ight)$ U r G U l Q • In a circuit with only resistors, i and $V_{ m emf}$ are in phase.	В	V $i = 0.50 \sin \left(1000 \pi t - \frac{\pi}{2} \right)$ S S • In a circuit with only resistors, i lags $V_{ m emf}$.
с	$i=12\sin\left(1000\pi t+\pi ight)$ $ullet$ In a circuit with only resistors, $V_{ m emf}$ lags $i_{ m emf}$	D	$i=12\sin{(1000\pi t)}$ • In a circuit with only resistors, i lags $V_{ m emf}$.

End of MCQ part

The garden academy



a solenoid with a length of 40 cm, 400 windings, a cross section area of 30 cm², and a flowing current of 3.0A. Calculate the magnetic flux through the cross section of the solenoid.

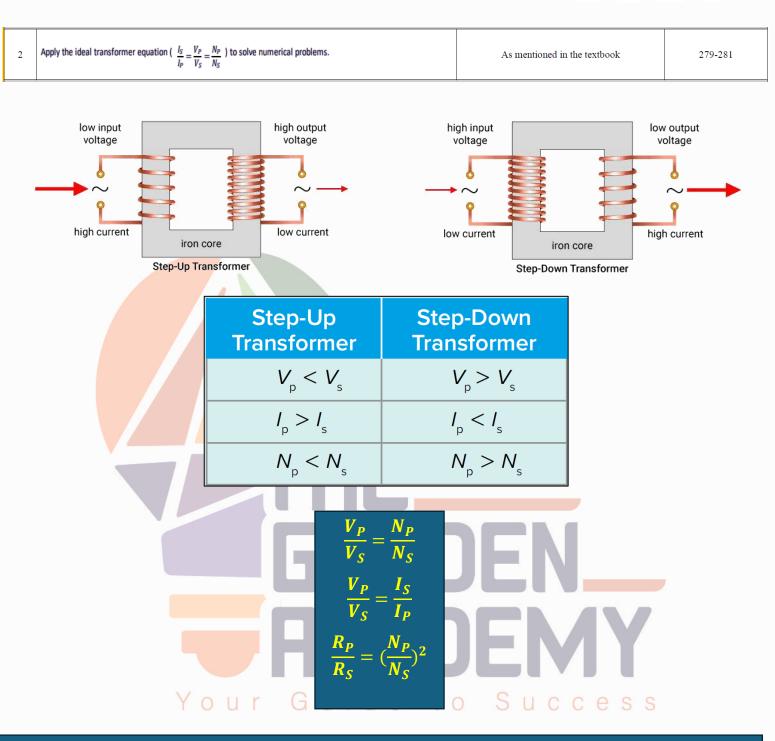
Question 65

f

Question 66

Consider a long solenoid with a circular cross section of radius (r = 8.00 cm) and (n = 2.0×10^4 turns/m). The solenoid is carrying a current of magnitude (*i* = 2.0 mA). If the stored energy in the magnetic field of the solenoid is 1.6×10^{-5} J, what is the length of the solenoid? The magnetic permeability for this application is ($\mu = 2 \times 10^{-6} H/m$)

IN



الأستاذ أحمد التميمي

You Tube

O,

In **<u>real transformers</u>**, the input power doesn't equal the output power because there is a lost power in the transformer. The <u>efficiency</u> of a real transformer can be found using the following formula:

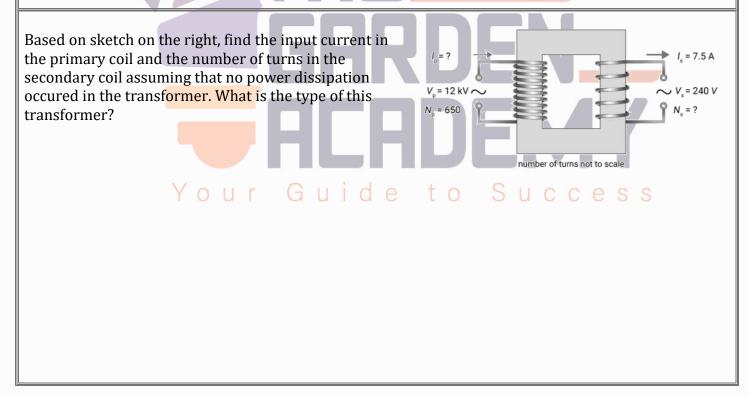
Efficiency(%) =
$$\frac{V_S I_S}{V_P I_P} \times 100$$

The **power lost** in the grid can be found using the following relationship in non-ideal transformers:

$P_{lost in grid} = I_{in grid}^2 R$

الف_يزياء

A transformer has 800 turns in the primary coil and 40 turns in the secondary coil.


a) What happens if an AC voltage of 100. V is across the primary coil?

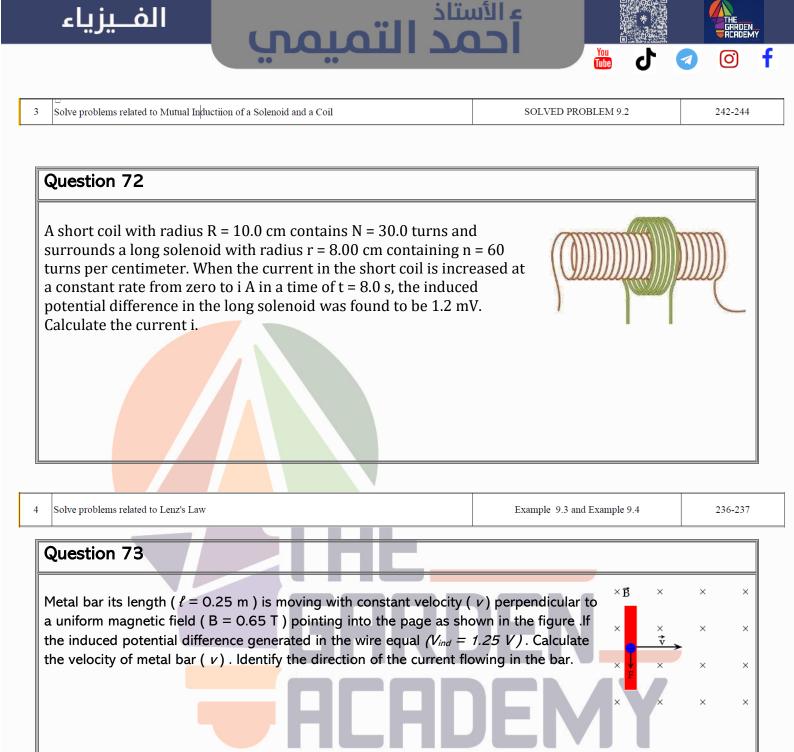
b) If the initial AC current is 5.00 A, what is the output current?

c) What happens if a DC current at 100. V flows into the primary coil?

d) If the initial DC current is 5.00 A, what is the output current?

Question 68

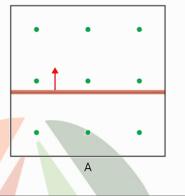
Question: A step-up transformer has a potential difference across its primary coil of 220 V and a current of 9.0 A. The induced EMF in its secondary coil is 440 V and the induced current is 4.4 A. What is the efficiency of this transformer?

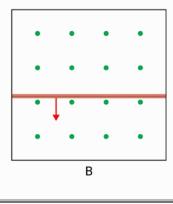

Question 70

A transformer contains a primary coil with 200 turns and a secondary coil with 120 turns. The secondary coil drives a current I through a 1.00 k Ω resistor. If an input voltage of V_{rms} = 75.0 V is applied across the primary coil, what is the power dissipated in the resistor?

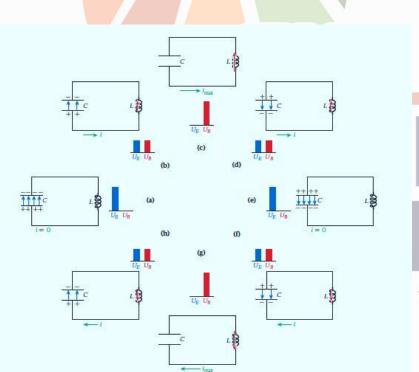
Question 71

The transmission of electric power occurs at the highest possible voltage to reduce losses. By how much could the power loss be reduced by raising the voltage by a factor of 10.0?

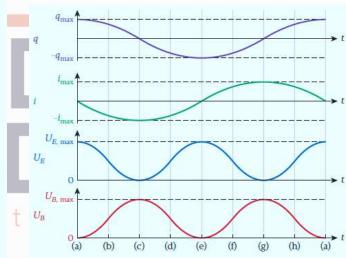

Rod A conducting rod with length I = 8.17 cm rotates around one of its ends in a uniform magnetic field that has a magnitude B = 1.53 T and is directed parallel to the rotation axis of the rod. The other end of the rod slides on a frictionless conducting ring. The rod makes 6.00 revolutions per second. A resistor, R = 1.63 m Ω , is connected between the rotating rod and the conducting ring. What is the power dissipated in the resistor due to magnetic induction?

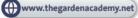

The garden academy

Question 75


5

identify the direction of the current in the wire as it crosses the magnetic field.

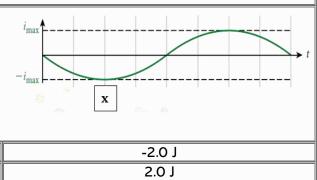



258-260

Solve problems related to LC oscillator showing the variations of charge, current, energy stored in elect

As mentioned in the textbook

00971569174493


الفــيزياء

f

Question 76

The figure shows the variation of current as a function of time for a simple, single-loop LC circuit. If the maximum value of magnetic energy is (0.02 J), what is the magnetic energy at time (x)?

You Tube

Α	-1.0 J	В	-2.0 J
С	1.0 J	D	2.0 J

nï

...

ستاذ

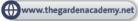
Question 77	
When the switch of the circuit in the figure is closed. the current and the voltage in the circuit oscillates over time. what is the physical quantity represented by the y-axis in the graph?	
A The charge	B The current
C The energy stored in the electric field	D The energy stored in the magnetic field

Qu	lestion 78		
and	en the switch of the c <mark>ircuit in the</mark> figure is closed. I the voltage in the circuit oscillates over time. wh vsical quantity represented by the y-axis in the gra	at is the ph?	
Α	The charge	В	The current
С	The energy stored in the electric field	D	The energy stored in the magnetic field

Question 79

An oscillating LC circuit is formed of a 3.6 μ F capacitor and a 75 mH inductor of negligible internal resistance. The maximum current in the circuit is 5.6 mA. What is the maximum charge on the capacitor?

Question 80


: In an oscillating LC circuit formed of a 100 mH inductor and a 5.0 µF capacitor, the expression of the current in terms of t is: $i = 2.0 \sin (200t + \frac{\pi}{2})$

where i is in A and t is in s. What is the maximum magnetic potential energy in the inductor?

End of FRQ part

مع تمنايتي لكم بالتوفيق والنجاح

