تم تحميل هذا الملف من موقع المناهج الإماراتية

الملف أوراق عمل الدرس الأول من الوحدة الرابعة Differentiation of Application

موقع المناهج ← المناهج الإماراتية ← الصف الثاني عشر المتقدم ← رياضيات ← الفصل الثاني

روابط مواقع التواصل الاجتماعي بحسب الصف الثاني عشر المتقدم

روابط مواد الصف الثاني عشر المتقدم على تلغرام

<u>الرياضيات</u>

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المزيد من الملفات بحسب الصف الثاني عشر المتقدم والمادة رياضيات في الفصل الثاني			
كل مايخص الاختبار التكويني لمادة الرياضيات للصف الثاني عشر يوم الأحد 9/2/2020	1		
تدريبات متنوعة مع الشرح على الوحدة الرابعة(النهايات والاتصال)	2		
تدريبات متنوعة على تطبيقات الاشتقاق	3		
قوانين هندسية	4		
الاختبار القياسي في الرياضيات	5		

12 Advanced Math Worksheets unit 4 : Application of Differentiation

Derivative Rules (review)

#	Function	Derivative	#	Function	Derivative
1	С		14	ln x	
2	x ⁿ almanan	j.com/ae	15	ln f	
3	$f \pm g$	<u> </u>	16	sin x	
4	<i>c</i> . <i>f</i>		17	cos x	
5	f . g		18	tan x	
6	$\frac{f}{g}$		19	$\cot x$	
7	$\frac{c}{g}$		20	sec x	
8	\sqrt{f}		21	CSC X	
9	$(f)^n$		22	$\sin^{-1} x$	
10	(fog)(x)		23	$\cos^{-1} x$	
11	a^f		24	tan ⁻¹ x	
12	e^f		25	$\csc^{-1} x$	
13	$g = f^{-1}(x)$		26	$\cot^{-1} x$	
		_	27	$sec^{-1} x$	

12 Advanced Math Worksheets unit 4 : Application of Differentiation

Lesson 1: linear Approximations and Newton's Method

One of the essential applications of differentiation is that we can approximate any differentiable function with a linear function at a given point, which is the linear approximation.

Definition

The linear (or tangent line) approximation of f(x) at $x = x_0$ is the function $L(x) = f(x_0) + f'(x_0)(x - x_0)$.

if we wanted to find an approximation for $f(x_1)$, where $f(x_1)$ is unknown, but where $f(x_0)$ is known for some x_0 "close" to x_1 , also we use linear approximation.

$$f(x_1) = y_1 = f(x_0) + f'(x_0)\Delta x$$

$$\Delta x = x_1 - x_0$$

12 Advanced Math Worksheets unit 4 : Application of Differentiation

Exercises page 236:

- a) Find the linear approximation to f(x) at $x = x_0$.
- b) Use the linear approximation to estimate the given number.

$$f(x) = \sqrt{x}$$
, $x_0 = 1$, $\sqrt{1.2}$

$$(2) f(x) = (x+1)^{1/3}, x_0 = 0, \sqrt[3]{1.2}$$

$$f(x) = \sqrt{2x+9}, x_0 = 0, \sqrt{8.8}$$

$$f(x) = \frac{2}{x}, x_0 = 1, \frac{2}{0.99}$$

$$f(x) = \sin 3x$$
, $x_0 = 0$, $\sin(0.3)$

$$f(x) = \sin x$$
, $x_0 = \pi, \sin(3.0)$

12 Advanced Math Worksheets unit 4 : Application of Differentiation

Exercises page 236: use linear approximations to estimate the quantity.

Q7a) ⁴ √16.04	Q7b) ⁴ √16.08
Q7c) ⁴ √16.16	Q8a) sin(0.1)
Q8b) sin(1)	$\frac{9}{4}$

12 Advanced Math Worksheets unit 4 : Application of Differentiation

Exercises page 236: use linear interpolation to estimate the desired quantity.

10) A vending company estimates that f(x) cans of soft drink can be sold in a day if the temperature is $x^{\circ}F$ as given in the table.

х	60	80	100
f(x)	84	120	168

Estimate the number of cans that can be sold at 72°

12) A sensor measures the position f(t) of a particle t microseconds after a collision as given in the table.

х	5	10	15
f(x)	8	14	18

Estimate the position of the particle at times t = 8

12 Advanced Math Worksheets unit 4 : Application of Differentiation

Newton's Method

It is a technique for generating numerical approximate solutions to equations of the form f(x) = 0.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $n = 0,1,2,3,...$

As n increases, x_n gets closer and closer to the zero of the function with the initial guess of x_0 .

• Newton's Method fails if $f'(x_0) = 0$ or $f'(x_1) = 0$

Exercises page 236: use Newton's method with the given x_0 to compute x_1 and x_2

Q14)
$$x^3 + 4x^2 - x - 1 = 0$$
, $x_0 = -1$ **Q16)** $x^4 - 3x^2 + 1 = 0$, $x_0 = -1$

12 Advanced Math Worksheets unit 4 : Application of Differentiation

Exercises page 236:

use Newton's method to find an approximate root (accurate to six decimal places).

$$x^4 - 4x^3 + x^2 - 1 = 0$$

$$\overline{Q20}$$

$$cos x - x = 0$$

$$\cos x^2 = x$$

$$e^{-x} = \sqrt{x}$$

12 Advanced Math Worksheets unit 4 : Application of Differentiation

Exercises page 236:use Newton's method to estimate the given number.

Exercises page 250 ase ive with a memor to estimate the given number.			
Q26)		$\sqrt{23}$	
alm			
Q28)		³ √23	
Q30)		^{4.6} √24	