تم تحميل هذا الملف من موقع المناهج الإمار اتية
الملف أوراق عمل للفصلين الثاني والثالث متبوعة بالإجابات
موقع المناهج ص المناهج الإمار اتية ص الهف التتاسع المتقدم ص فيزياء ص الفصل الثاني.

روابط هواقح التواصل الاجتماعي بحسب الصف التاسع المتقدم			
روابط مواد الصف التاسح المتقدم على تلغر			
الرياضيات	الللغة الانحليزية	الللغة العربية	للتربية الاسلامية

المزيد من الملفات بحسب الصف التاسح المتقدم والمادة فيزياء في الفهل الثاني	
كل مايخص الاختبار التكويني لمادة الفيزياء للصف التاسع يوم	1
أسئلة محلولة في بحثي الحركة في بحدين والحاذبية	2
اسئلة اختبار	3
ملخص.	4
مراحعة ممتازة	5

Chapter 5: Forces in Two Dimensions

Forces in Two Dimensions			
$R=\sqrt{A^{2}+B^{2}} \quad \theta=\tan ^{-1}\left(\frac{R y}{R x}\right)$	$R=\sqrt{A^{2}+B^{2}-2 A B(\cos \theta)}$	$\boldsymbol{R} \boldsymbol{x}=\boldsymbol{R} \cos \theta$	
$\frac{R}{\sin \theta}=\frac{A}{\sin a}=\frac{B}{\sin b}$	$\boldsymbol{F f}$, static $=\mu_{\boldsymbol{s}} \boldsymbol{F}_{\mathrm{N}}$	$\boldsymbol{F f}$. kinetic $=\mu_{k} F_{N}$	

1 - What are the components of a vector of magnitude 28.5 km at an angle of 42.0° from the positive x -axis?
A) $604 \mathrm{~km}, 544 \mathrm{~km}$
B) $21.2 \mathrm{~km},-19.1 \mathrm{~km}$
C) $112 \mathrm{~km}, 91 \mathrm{~km}$
D) $21.2 \mathrm{~km}, 19.1 \mathrm{~km}$

2 - Which of the following equations represents the Pythagorean theorem?
A) $R 2=A 2-B 2$
B) $\mathrm{R} 2=\mathrm{A} 2+\mathrm{B} 2+2 \mathrm{AB} \cos \theta$
C) $\mathrm{R} 2=\mathrm{A} 2+\mathrm{B} 2-2 \mathrm{AB} \cos \theta$
D) $R 2=A 2+B 2$

3 - Find the magnitude of the sum of a $10-\mathrm{m}$ displacement and a $5-\mathrm{m}$ displacement when the angle between them is 45°.
A) 11 m
B) 9 m
C) 7 m
D) 14 m

4 - A car is driven 724.0 km due north, then 895.0 km due west. What is the magnitude of its displacement?
A) 171 km
B) 1151 km
C) 805 km
D) 1619 km

5-A(n) \qquad is a vector that is equal to the sum of two or more vectors.
A) resultant
B) graphical representation
C) displacement
D) addition vector

6 - To find the magnitude of the resultant vector for two vectors that are at some angle other than 90°, use \qquad -.
A) the Pythagorean theorem
B) $R 2=A 2+B 2$
C) $R 2=A 2-B 2$
D) the Law of Cosines

7 - The process of breaking a vector into its components is called \qquad .
A) trigonometry
B) graphical representation
C) vector resolution
D) reduction

8 - Find the magnitude of the sum of a $27-\mathrm{m}$ displacement and a $34-\mathrm{m}$ displacement when the angle between them is 118°.
A) 52 m
B) 43 m
C) 32 m
D) 16 m

9 - What is the magnitude of your displacement when you follow directions that tell you to walk 150.0 m north, then 25.0 m east?
A) 150 m
B) 152 m
C) 175 m
D) 127 m
10 - When there is no relative motion between two surfaces, the force exerted by one surface on the other is called
\qquad .

D) 360 N

20 - Two forces are exerted on an object. A 43-N force acts exactly at 240° and a $67-\mathrm{N}$ force acts at 300°. What are the magnitude and direction of the equilibrant?
A) 98 N at 7°
B) 98 N at 277°
C) 84 N at 97°
D) 98 N at 97°

21 - In the diagram below, if B's magnitude is 50 N and C 's is 30 N , what is the magnitude of A ?
A) 80 N
B) 20 N
C) 40 N
D) 58 N

22 - A $175-\mathrm{N}$ sign is supported in a motionless position by two ropes that each make 53.0° angles with the horizontal. What is the tension in the ropes?
A) 146 N
B) 310 N
C) 175 N
D) 110 N

Chapter 6: Motion in Two Dimensions

MOTION IN TWO DIMENSION الحركة في بعدين

$\Delta x=v_{x} t$	$v_{y f}=g t$	$\Delta y=\frac{1}{2}{g t^{2}}^{2} v_{y} f^{2}=2 g \Delta y$	
$\Delta x=V_{x} t=V_{i x} \cos \theta t$	$v_{y f}=v i(\sin \theta)+a_{y} t$	$V^{2} y=v_{i}{ }^{2}(\sin \theta)^{2}+2 a_{y} \Delta y$	$\Delta y=v_{i}(\sin \theta) t+\frac{1}{2} a_{y} t^{2}$
$a_{c}=\frac{v 2}{r}$	$a_{c}=\frac{4 \pi 2 r}{T^{2}}$		$F_{c}=m a_{c}=\frac{m v^{2}}{r}$
$v_{a / c}=v_{a / b}+v_{b / c}$	$v_{a / c}=v_{a / b}-v_{b / c}$	$V_{p} / e=\sqrt{v i / e^{2}+v p / i^{2}}$	$\theta=\tan -\frac{v p / i}{v i / e}$

1 - In the photograph below, if the baseballs fell a vertical distance of 1.6 m from the first to the last image, how long did it take them to fall?
A) 0.16 s
B) 0.32 s
C) 0.40 s
D) 0.57 s

2 - A stone is thrown horizontally at $20 \mathrm{~m} / \mathrm{s}$ from the top of a cliff 63 m high. How fast is it moving the instant before it hits the ground?
A) $29 \mathrm{~m} / \mathrm{s}$
B) $35 \mathrm{~m} / \mathrm{s}$
C) $40 \mathrm{~m} / \mathrm{s}$
D) $38 \mathrm{~m} / \mathrm{s}$

3 - You accidentally throw your car keys horizontally at $5.0 \mathrm{~m} / \mathrm{s}$ from a cliff 45 m high. How far from the base of the cliff should i you look for your keys?
A) 135 m
B) 225 m
C) 15 m
D) 45 m

4 - The time a projectile is in the air is the \qquad .
A) trajectory
B) range
C) flight time
D) centripetal acceleratio

5 - A stone is thrown horizontally at $20.0 \mathrm{~m} / \mathrm{s}$ from the top of a cliff 63 m high. How far from the base of the cliff does the stone hit: the ground?
A) 66 m
B) 42 m
C) 72 m
D) 13 m

6 - Any moving object that moves only under the force of gravity (after initial thrust) is a(n) \qquad .
A) projectile
B) satellite
C) free floater
D) vector

7 - A projectile's path through space is called its \qquad .
A) period
B) flight plan
C) trajectory
D) range

8 - The \qquad is the height of the projectile when the vertical velocity is zero.
A) torque
B) maximum height
C) range
D) trajectory

9 - The horizontal distance a projectile travels is the \qquad .
A) torque
B) trajectory
C) range
D) maximum height

Physics G9 advanced

18 - You are riding in a boat that is traveling $15.0 \mathrm{~m} / \mathrm{s}$ forward in still water. You move from the front to the back of the boat at 3.0 m / s. What is your speed relative to the water?

A) $18.0 \mathrm{~m} / \mathrm{s}$ relative to the water			B) $15.3 \mathrm{~m} / \mathrm{s}$ relative to the water		
C) $12.0 \mathrm{~m} / \mathrm{s}$ relative to the water			D) $9.0 \mathrm{~m} / \mathrm{s}$ relative to the water		
رقم السؤال	الإجابة	رقم السؤال	الإجابة	رقم السؤال	الإجابة
1	D	7	C	13	B
2	C	8	B	14	C
3	C	9	C	15	D
4	C	10	B	16	A
5	C	11	D	17	C
6	A	12	D	18	C

Chapter 7: Gravitation

Gravitation الجاذبية			
$\underbrace{\left(\frac{T_{\mathrm{A}}}{T_{\mathrm{B}}}\right)^{2}=\left(\frac{r_{\mathrm{A}}}{r_{\mathrm{B}}}\right)^{3}}$	$F=G \frac{m_{1} m_{2}}{r^{2}}$	$T=2 \pi \sqrt{\frac{r^{3}}{G m_{s}}}$	$v=\sqrt{\frac{G m_{E}}{r}}$
$g=\frac{G m}{r^{2}}$	$m_{\text {Inertial }}=\frac{F_{n e t}}{a}$	$m_{\text {grav }}=\frac{r^{2} F_{\text {grav }}}{G m}$	

1- If the mass of the Sun in the diagram below were doubled, what effect would it have on the planet's period of orbit?
A) The new period would be one divided by the square root of two times the original period.
B) The new period would be one-half of the original period.
C) It would have no effect.

D) The new period would be twice the original period.

2 - If the radius of the planet's orbit were doubled in the diagram below, what effect would it have on its period of orbit?

Chapter 9: Energy, Work, and Simple Machines

Work, Energy and Machines الشغل والطاقة والآلا			
$\mathrm{W}=\mathrm{Fd} \cos \theta$	$\begin{gathered} w=k F_{f}-K E_{i} \\ =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \end{gathered}$	$P=\frac{\Delta E}{t}$	$P=\frac{W}{t}=\frac{F d}{t}=F v$

1 - An electric motor lifts an elevator 14.0 m in 22.5 s by exerting an upward force of $1.75 \times 10^{4} \mathrm{~N}$. What power does the motor produce in kilowatts?
A) 10.9 kW
B) $1.09 \times 10^{4} \mathrm{~kW}$
C) $2.45 \times 10^{4} \mathrm{~kW}$
D) 245 kW
$2-\ln$ the figure below, if the force exerted on the backpack is 20.0 N and the distance it acts over is 0.25 m , what is the change in kinetic energy of the backpack?
A) 2.5 J
B) 5.0 J
C) $4.0 \times 10^{1} \mathrm{~J}$
D) 8.0×10^{1}

3 - If you exert a force on an object in the direction opposite to its motion, the kinetic energy
 of the object \qquad .
A) is zero
B) decreases
C) increases
D) remains constant

4 - How much work does the force of gravity do when a $50.0-\mathrm{N}$ object falls a distance of 10.0 m ?
A) 5.00×10^{2} J
B) 51.0 J
C) 125 J
D) 98.0 J

5 - One \qquad is one joule of energy transferred in one second.
A) calorie
B) newton
C) volt
D) watt

6 - An airplane passenger carries a $300.0-\mathrm{N}$ suitcase up the stairs, a displacement of 5.50 m vertically and 3.75 m horizontally. How much work does the passenger do?
A) 1.13×10^{3} J
B) 1.65×10^{2} J
C) 2.78×10^{3} J
D) 1.65×10^{3} J

7 - A 1200.0-kg car speeds up from $16.0 \mathrm{~m} / \mathrm{s}$ to $20.0 \mathrm{~m} / \mathrm{s}$. How much work was done on the car to increase its speed?
A) 8.6×10^{5} J
B) 9.6×10^{3} J
C) $8.6 \times 10^{4} \mathrm{~J}$
D) 3.1×10^{5} J

8 - In the figure below, if the force exerted on a 3.0-kg backpack that is initally at rest is 20.0 N and the distance it acts over is 0.25 m , what is the final speed of the backpack?
A) $1.8 \mathrm{~m} / \mathrm{s}$
B) $2.8 \mathrm{~m} / \mathrm{s}$
C) $5.0 \mathrm{~m} / \mathrm{s}$
D) $3.3 \mathrm{~m} / \mathrm{s}$

9 - How much work does the force of gravity do on a $5.45-\mathrm{kg}$ bowling ball that falls a distance of 0.755 m ?

A) 40.3 J
B) 71.2 J
C) 4.11 J
D) 2621

10 - The equation for calculating work when there is an angle between force and displacement is \qquad .
A) $\mathrm{W}=\mathrm{Fd} \cos \Delta$
B) $\mathrm{W}=\mathrm{F} / \mathrm{m}$
C) $W=F d$
D) $W=F \Delta K E$

11 - The energy of an object resulting from motion is \qquad energy.
A) potential
B) kinetic
C) mechanical
D) thermal

12 - A 16.8-kg boy is riding in a $4.50-\mathrm{kg}$ wagon. A 14.0-kg girl pushes the wagon and exerts a constant force of 2.60 N over a distance of 3.50 m . How much work does the girl do pushing the wagon?
A) 9.10 J
B) 127 J
C) 0.26 J
D) 66.4 l

13 - A student lifts a box of books that weighs 215 N . The box is lifted 1.75 m . How much work does the student do on the box?
A) 38.4 J
B) 217 J
C) 123 J
D) 376 J

14 - Energy is defined as \qquad -
A) power
B) the ability of an object to produce change in the environment or itself
C) motion
D) the effort required to perform work

15 - A student lifts a box of books that weighs 215 N . The box is lifted 1.75 m . What is the change in energy of the box?

24 - The equation for work is \qquad -
A) $\mathrm{W}=\mathrm{Fd}$
B) $W=F \Delta K E$
C) $W=m a$
D) $\mathrm{W}=\mathrm{F} / \mathrm{m}$

25 - A rifle can shoot a $4.20-\mathrm{g}$ bullet at a speed of $965 \mathrm{~m} / \mathrm{s}$. What is the kinetic energy of the bullet as it leaves the rifle?
A) 1.96×10^{6} J
B) 2.03 J
C) $1.96 \times 10^{3} \mathrm{~J}$
D) 2.03×10^{3} J

26 - Which of the following has the greatest kinetic energy, a $35.0-\mathrm{g}$ bullet traveling at $1.20 \times 10^{3} \mathrm{~m} / \mathrm{s}$, a $35.0-\mathrm{kg}$ cheetah running at $30 \mathrm{~m} / \mathrm{s}$, an $875-\mathrm{kg}$ car traveling at $5 \mathrm{~m} / \mathrm{s}$, or a $148-\mathrm{g}$ pitched baseball moving at $45 \mathrm{~m} / \mathrm{s}$?
A) bullet
B) cheetah
C) car
D) baseball
27 - A 16.8-kg boy is riding in a $4.50-\mathrm{kg}$ wagon. A $14.0-\mathrm{kg}$ girl pushes the wagon and exerts a constant force of 2.60 N over a distance of 3.50 m . What is the change in energy of the boy and the wagon?
A) 9.10 J
B) 12.8 J
C) 25.5 J
D) 47.6 J

28 - A hydrolic lift raises a $1.14 \times 10^{3}-\mathrm{kg}$ car a distance of 2.4 m . If the car is lifted in 47 s , how much power does the lift produce?
A) 570 kW
B) 290 W
C) 570 W
D) 58.2 W
$29-$ \qquad is the rate of doing work.
A) Energy
B) Force
C) Power
D) Effort

30 - The ratio of resistance force to effort force is called the \qquad .
A) torque
B) mechanical advantage
C) power
D) efficiency

31 - If the machine below is ideal and an effort force of 7.0 N just lifts a 14.0 N box situated 0.75 m from the pivot, what is the distance from the pivot point to where the effort force is exerted?
A) 2.0 m
B) 0.38 m
C) 1.5 m
D) 65 m

32 - If the efficiency of the pulley system bellow is 95 percent, what effort force must be exerted to lift a 20.0 N box at constant velocity?
A) 20 N
B) 19 N
C) 22 N
D) 21 N

Physics G9 advanced

33 - The \qquad of a machine is defined as the ratio of output work to input work.
A) IMA
B) mechanical advantage
C) efficiency
D) reliability

34 - The rear wheel of a bicycle has a radius of 38.5 cm and has a gear with a radius of 4.75 cm . When the chain is pulled with a force of 175 N , the wheel rim moves 18.0 cm . The efficiency of this part of the bike is 95.0 percent. How far was the chain pulled to move the rim that amount?
A) $1.45 \times 10^{2} \mathrm{~cm}$
B) 1.45 cm
C) 2.12 cm
D) 2.21 cm

35 - The force exerted by a machine is called the \qquad .
A) mechanical advantage
B) effort force
C) mechanical force
D) resistance force

رقم السؤال	الإجابة	رقم السـؤال	الإجابة	رقم السـؤال	الإجابة	رقم السؤال	الإجابة
1	A	11	B	21	A	31	C
2	B	12	A	22	C	32	D
3	B	13	D	23	D	33	C
4	A	14	B	24	A	34	D
5	D	15	B	25	C	35	D
6	D	16	C	26	A		
7	C	17	C	27	A		
8	A	18	C	28	C		
9	A	19	A	29	C		
10	A	20	C	30	B		

Chapter 12: Thermal Energy

Thermal Energy \quad الطاقة الحرارية			
$T_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273$ $\mathrm{Q}=\mathrm{m} \mathrm{C} \Delta \mathrm{T}$	$T_{f}=\frac{m_{A} C_{A} T_{A}+m_{B} C_{B} T_{B}}{m_{A} C_{A}+m_{B} C_{B}}$		$Q=m H_{f}$ $Q=m H_{v}$
$\Delta U=Q-W$	$e=\frac{W}{Q_{H}}$	$\Delta S=\frac{Q}{T}$	

1-If the final temperature of a system is greater than the initial temperature, Δt is \qquad .
A) positive
B) eliminated
C) negative
D) reduced

2- \qquad is the amount of energy that must be added to a material to raise one unit of mass by one temperature unit.

رقم السؤال	الإجابة	رقم السؤال	الإجابة	رقم السؤل	الإجابة
1	D	10	D	19	D
2	D	11	D	20	B
3	B	12	D	21	A
4	A	13	A	22	D
5	B	14	C	23	C
6	D	15	D	24	D
7	A	16	D	25	B
8	D	17	D	26	B
9	C	18	C		

Chapter 13: States of Matter

حالات المادة2ates Of Matter			
$P=\frac{F}{A}$	$P_{1} V_{1}=P_{2} V_{2}$	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$	$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
$P V=n R T$	$\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}$	$P=\rho g h$	$\boldsymbol{F}_{\text {Buoyant }}=\rho_{\text {flouid }} \boldsymbol{V} \boldsymbol{g}$
$\boldsymbol{F}_{\text {net }}=\boldsymbol{F}_{g}-\boldsymbol{F}_{\text {buoyant }}$	$F_{g}=m g=\rho_{\text {solid }} V \boldsymbol{l}$	$\begin{aligned} & \alpha=\frac{\Delta L}{L_{1} \Delta T} \\ & =\frac{L_{2}-L_{1}}{L_{1}\left(T_{2}-T_{1}\right)} \end{aligned}$	$\beta=\frac{\Delta V}{V_{1} \Delta T}=\frac{V_{2}-V_{1}}{V_{1}\left(T_{2}-T_{1}\right)}$

1 - Which state of matter is the most common in the universe?
A) solid
B) gas
C) liquid
D) plasma

2 - As water cools below $4^{\circ} \mathrm{C}$, what happens?
A) it changes to an amorphous solid
B) it contracts
C) it melts
D) it expands

3 - What causes air pressure?
A) air particles vaporize
B) air particles flow through an object
C) air particles hit an object
D) air particles suck away from an object

4 - What are the four stages of matter in order from least kinetic energy to most kinetic energy?
A) plasma, gas, liquid, solid
B) plasma, solid, gas, liquid
C) solid, liquid, gas, plasma
D) solid, liquid, plasma, gas
5 - What are the particles in plasma?
A) free nuclear particles of protons, neutrons, and electrons
B) positively charged ions and negatively charged electrons
C) negatively charged ions and positively charged protons
D) free neutrons

C) $A_{1}, 6 \mathrm{~m}^{2} ; \mathrm{A}_{2}, 2 \mathrm{~m}^{2}$
D) $A_{1}, 6 \mathrm{~m}^{2} ; \mathrm{A}_{2}, 8 \mathrm{~m}^{2}$

18 - What type of buoyancy results in a feeling of weightlessness?
A) positive
B) neutral
C) changing
D) negative

19 - Why does ice float?
A) It is an amorphous solid.
B) It has strong cohesive properties.
C) It has a lower density than water.
D) It has a higher density than water.

20 - Which is an example of Pascal's principle?
A) a straw
B) hydroplaning wheels
C) hydraulic brakes
D) a sipho

21 - According to Archimedes' principle, an object immersed in fluid has an upward force on it equal to \qquad .
A) the weight of the fluid displaced
B) the weight of all the fluid in the container
C) the weight of the fluid displaced minus the weight of the object
D) the weight of the object

22 - What happens to a bimetallic strip when it is heated?
A) it becomes elastic
B) its cohesive properties decrease
C) it bends
D) it contracts

23 - Why is it important to take thermal expansion into account when building bridges?
A) so the bridge will not move at all
B) so the bridge materials expand and contract with the changes in weather
C) so the bridge materials can change state as the weather changes
D) so the bridge materials don't deteriorate

24 - Amorphous solids have no \qquad _.
A) volume
B) liquid phase
C) crystalline pattern
D) shape

25 - In terms of the kinetic-molecular theory, why do substances expand when heated?
A) The particles vibrate less and push other particles away.
B) The particles on the surface vibrate faster.
C) The particles vibrate more, causing air pressure to compress the substance.
D) The particles vibrate more and push other particles away.

26 - Which example demonstrates elasticity?
A) a snapping rubber band
B) a bent iron bar
C) a broken stick
D) a melted stick of butter

27 - If an iron bar expands 0.1 cm when heated $20^{\circ} \mathrm{C}$, how much would it expand if it were heated $40^{\circ} \mathrm{C}$?
A) 1 cm
B) 0.1 cm
C) 0.05 cm
D) 0.2 cm

رقم السؤل	الإجابة	رقم السؤال	الإجابة	رقم السؤل	الإجابة
1	D	10	D	19	C

Physics G9 advanced					
2	D	11	C	20	C
3	C	12	B	21	A
4	C	13	B	22	C
5	B	14	B	23	B
6	D	15	A	24	C
7	B	16	B	25	D
8	C	17	B	26	A
9	C	18	B	27	D

