
*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا
https://almanahj.com/ae

16/ae/com.almanahj//:https للحصول على أوراق عمل لجميع مواد الصف التاسع المتقدم اضغط هنا * * للحصول على جميع أوراق الصف التاسع المتقدم في مادة فيزياء ولجميع الفصول, اضغط هنا https://almanahj.com/ae/16physics

* للحصول على أوراق عمل لجميع مواد اللف التاسع المتقدم في مادة فيزياء الخاعة بـ الفصل الأول اضغط هنا https://almanahj.com/ae/16physics1
grade16/ae/com.almanahj//:https تلتحيل كتب جميع المواد في جميع الفصول للـ الصف التاسح المتقدم اضغط هنا

9Adv

Chapter (4)

Chapter 4: forces in 1 dimension PHYSICS
Prepared by:

Mr.Yazan Odetalla

Mobile: 0543347424

"Carve thoud कame on the moon!

$$
\left(x^{n}\right)^{(l n)} \quad(\ln , u)^{\prime}=\frac{u^{\prime}}{u} \quad \sqrt[5]{5-x}+3 n \quad \sin (x-y) \quad \operatorname{sof}=\frac{u^{\prime}}{u} \quad \frac{5(m+8)}{(m-4)(m)^{2}}(i \omega)^{2} \frac{T}{2} ;
$$

- Physics: a branch(فرع) of Science that involves the study of physical world (energy, matter and how are they related.
- Scientific methods: steps to explain physical problems.

Steps:

1. state the problem
2. gather information
3. form a hypothesis
4. test the hypothesis
5. analyze data
6. draw conclusions

- Hypothesis: a possible explanation for a problem using what you know and what you have observed using the scientific method.
- Model: a representation of an idea, structure or object that helps people to understand it (some times need improvement from time to time example: the atom model page 7)
***What is the difference between the scientific theory and the scientific law?
- Scientific theory : explains things based on observations and investigations, when the results always support the hypothesis we call it a theory
- theories explain why \& how things happen.
- theories may change if new information is available.
- Scientific law: describes what will happen for things in nature (usually with a Mathematical relationship)
- laws are true all the time
- example :law of gravity :things will fall to the ground (this is what will happen)
- to understand why things fall we need theories
- SI units: the results would be understood by everyone in the world if we use units that are agreed on(متفق عليها) by all the world.
- Base units(الوحدات الأساسية) :
- Length (m) meter
- mass (kg) kilogram,
- time」s) second
- temperature (K)Kelvin
- amount of substance (كمية المادة) (mol) mole
- electric current (التيار) (A) Ampere
- luminous intensity (شدة الإضاءة) (cd) candela
- Derived units (الوحدات المشتقة) :Made from the base units

Example \quad speed $=\frac{\operatorname{distance}(m)}{\text { time }(s)} \quad$ speed $\left(\frac{m}{s}\right)$

- Prefixes: used to simplify very big or very small numbers

Table 2	Prefixes Used with SI Units			
Prefix	Symbol	Multiplier	Scientific Notation	Example
femto-	f	0.000000000000001	10^{-15}	femtosecond (fs)
pico-	p	0.000000000001	10^{-12}	picometer (pm)
nano-	n	0.000000001	10^{-9}	nanometer (nm)
micro-	μ	0.000001	10^{-6}	microgram ($\mu \mathrm{g}$)
milli-	m	0.001	10^{-3}	milliamps (mA)
centi-	c	0.01	10^{-2}	centimeter (cm)
deci-	d	0.1	10^{-1}	deciliter (dL)
kilo-	k	1000	10^{3}	kilometer (km)
mega-	M	$1,000,000$	10^{6}	megagram (Mg)
giga-	G	$1,000,000,000$	10^{9}	gigameter (Gm)
tera-	T	$1,000,000,000,000$	10^{12}	terahertz (THz$)$

- Dimensional analysis: method used to convert units using a conversion factor(معامل تحويل)
- Conversion factor always equal 1

Given unit $\times \xrightarrow{\text { desired unit }}$
 given unit $=$ desired unit
 Conversion factor

- Given unit (الوحدة المعطية بالسؤ) الئر)
- Desired unit: (الوحدة الهطلوب النحويل اليها)
- Example: see page12

Significant figures:

- All numbers from 1 to 9 are significant
- Zeros:
- Zeros to the left are not significant 0.0021 has only 2 significant figures(2\&1)
- Zeros in the middle are always significant 1024.607 has 7 significant figures
- Zeros to the right with the decimal point (الفاصلة العشرية) are significant 150.0 has 4 significant figures ($1,5,0$ and 0 because there is a decimal point)
- Zeros to the right without the decimal point maybe significant or maybe not significant 1500 could have 2 significant figures or 3 significant figures or 4 significant figures
- How do we know? only if the question say
- Better way to write these numbers is the scientefic notation
- $1500=1.5 * 10^{3}$ two significant figures(because now we have a decimal point)
- $1500=1.50 * 10^{3}$ three significant figures
- $1500=1.500 * 10^{3}$ four significant figures
- Addition and subtraction with significant figures:
- We only look at the number of figures after the decimal point the answer must have number of digits after the decimal as in the least one of the original numbers
- Example: $3.21+173.1=176.31=176.3$
2 (1) 1
- Multiplication and division with significant figures:
- We look at the total number of significant figures the answer must have significant figures as in the least one of the original numbers
- Example: $3.21 * 173.1=555.651=556$

$$
\text { (3) } 4 \quad 3
$$

- measurement: is a comparison between an unknown quantity and the standard known quantity
- Precision versus accuracy :
- Precision :represents how close(مدى قرب) the measurements are to each other (لبعضها) (البعض
- Precision $=1 / 2$ of the smallest division of an instrument
- Accuracy: represents how close the measurement is to the true value
- For example measurement of 111.1 g is accurate to the nearest tenth of gram, 111 is accurate to the nearest $\underline{1}$ gram and $111.1 \underline{13}$ is accurate to the nearest hundredth.

Accurate and Precise

Not Accurate but Precise

Accurate but not Precise

Not Accurate Not Precise

Depending on the figure, what is the measurement of the rod length including the uncertainty?

$\square \quad(11.55 \mp 1.0) \mathrm{mm}$
 $(11.55 \mp 0.5) \mathrm{mm}$
 (115.5 ∓ 0.5) mm
 \square
 $(115.5 \mp 1.0) \mathrm{mm}$

- the reading is 11.55 cm , convert to mm because all options are in mm it will become 115.5 mm
- Precision $=1 / 2$ of the smallest division of an instrument $=1 / 2 * 1 \mathrm{~mm}=0.5 \mathrm{~mm}$
- So the answer is C $\mathbf{1 1 5 . 5} \pm \mathbf{0 . 5} \mathbf{~ m m}$
- Parallax is when we look at the measuring device from the wrong position or angle (page:16)
- Independent variable is the variable that we change during experiments or it doesn't depends on anything else. Example: time (x-axis)
- Dependent variable is the variable that changes automatically when we change the independent variable (y-axis)
- Independent variable is always on the x axis
- Dependent variable is always on the y axis
- Linear relationship is a graph of straight line that can be represented by $Y=m x+b$
- B is the Y Intercept it is the point where the line crosses the y axis
- M Is the slope which is equal to the Rise/ run or $m=(\Delta Y) /(\Delta X)$
- After we find the relation for y we can use it to find values that we didn't knew before by substituting the value of x into the equation.
- Nonlinear relationships

There are many types of nonlinear relationships we will mention only two of them

1. Quadratic relationship: one variable depends on the square of another

$$
y=a x^{2}+b x+c
$$

The values of $\mathrm{a} b$ and c can be found using a computer or a graphing calculator
2. inverse relationships: the value of one variable increases the value of the Other variable will decrease

$$
y \uparrow=\frac{a}{x \downarrow}
$$

The value of a is found by choosing any point at the graph and substituting the x and y values in the equation above

- The graphs of these relationships are shown in pages:21 \& 22
- Example: spring with mass (when the mass increases the spring will be longer)
Table 3 Length of a Spring for Different Masses

Mass Attached to Spring (g)	Length of Spring (cm)
0	13.7
5	14.1
10	14.5
15	14.9
20	15.3
25	15.7
30	16.0
35	16.4

Graph title \longrightarrow Length of a Spring for Different Masses

- From the graph we can see that the relationship is linear.
- The y-intercept $(b=13.7)$
- The slope $m=\frac{16 \mathrm{~cm}-14.1 \mathrm{~cm}}{30 \mathrm{~g}-5 \mathrm{~g}}=0.08 \mathrm{~cm} / \mathrm{g}$
- So $y=0.08 x+13.7$ || y is the length and x is the mass
- What will the spring length be with a mass of 23 g
- From the graph above 23 g on the x -axis corresponds with 15.5 cm length
- What will the spring length be with a mass of 49 g
- 49 g is not shown in the graph so we use the equation
- $y=0.08(49)+13.7=18 \mathrm{~cm}$

Equations and formulas summary

speed $=\frac{\text { distance }}{\text { time }}$	Precision=1/2 smallest division

