شكراً لتحميلك هذا الملف من موقع المناهج الإماراتية

ترجمة الهيكل الوزاري بريدج المسار المتقدم

موقع المناهج ← المناهج الإماراتية ← الصف التاسع المتقدم ← فيزياء ← الفصل الثاني ← الملف

تاريخ نشر الملف على موقع المناهج: 10-03-2024 16:07:35

التواصل الاجتماعي بحسب الصف التاسع المتقدم

روابط مواد الصف التاسع المتقدم على تلغرام

التربية الاسلامية اللغة العربية اللغة الانجليزية الرياضيات

المزيد من الملفات بحسب الصف التاسع المتقدم والمادة فيزياء في الفصل الثاني				
الهيكل الوزاري بريدج المسار المتقدم	1			
تجميعة الصفحات المهمة الأسئلة الاختيارية وفق الهيكل الوزاري انسباير باللغة الانجليزية	2			
نموذج الهيكل الوزاري انسباير المسار المتقدم	3			
ملخص ومراجعة درس Friction الاحتكاك	4			
ملخص ومراجعة درس Vectors الأشعة	5			

ترجمة هيكلة الاختبار المركزي Bridge - الفيزياء للصف التاسع المتقدم - الفصل الدراسي الثاني 2023/2024

العلامة القصوى: 100

الأسئلة الموضوعية : 15 درجة كل سؤال: 4 طريقة التقديم : Swift Assess الأسئلة المقالية : 5 درجات الأسئلة المقالية: 40 طريقة التقديم : ورقي

سؤال	ناتج التعلم	مثال	صفحة
1	تحديد مكونات المتجه في نظام الإحداثيات الديكارتية باستخدام علم المثلثات	الشكل_	126
2	حلل المتجه إلى متجهين متعامدين في نظام الإحداثيات الديكارتية	كما ورد في الكتاب	125
3	ارسم مخطط الجسم الحروطبق قانون نيوتن الثاني على جسم يتحرك على سطح أفقي يشتمل على احتكاك	الشكل 4	130
4	تعريف معاملات الاحتكاك الحركي والسكوني / يميز بين الاحتكاك الساكن والحركي	27	135
5	تذكر أن الجسم المتزن، يجب أن تكون القوة المحصلة المؤثرة عليه صفر	77و 78	145
6	وصف مسار المقذوف	41	170
7	حل المسائل المتعلقة بالاحتكاك	39	141
8	طَيِق العلاقات التي تربط القوة العمودية بأقصى احتكاك ساكن والاحتكاك الحركي لحساب المجهول مثل قوة الاحتكاك، معامل الاحتكاك أو القوة العمودية (الاحتكاك المحركي = $\mu k F_N$).	69	145
9	تطبيق قو انين نيوتن على المحورين x و y لجسم يتحرك على مستوى مائل مع وبدون احتكاك	35	139
10	اشرح حركة المقذوفات المطلقة أفقيا، ووضح بشكل تخطيطي مكونات السرعة والتسارع طوال الحركة	الشكل 3	154
11	حل مسائل على المقذوفات المطلقة أفقيا باستخدام معادلات الحركة وشروط السرعة والتسارع (v _x =constant, a _x =0).	مثال 1 وسؤال 1	-155 156
12	اشرح قانون كبلر الثاني الذي ينص على أن الخط الوهمي من الشمس إلى الكوكب يمسح مساحات متساوية في فترات زمنية متساوية.	الشكل 3	179
13	أوجد القوة المتوازنة التي لها مقدار مساوي للقوة المحصلة ولكن في اتجاه معاكس لها	57	144
14	طبّق قانون نيوتن الثاني للحركة لاشتقاق تعبير عن القوة الجاذبة المركزية بدلالة السرعة اللحظية ونصف قطر المسار الدائري	20	163
15	اشرح قانون الجاذبية العامة و اكتبه في صورة معادلة (Fg=(Gm1m2)/r²).	الشكل 5	182

الأسئلة المقالية:

16	تطبيق العلاقة بين تسارع الجاذبية المركزية والسرعة اللحظية ونصف قطر المسار الدائري	59	171
	لحساب المتغيرات غير المعروفة		
17	حل المسائل المتعلقة بالمقذوفات المطلقة بزاوية باستخدام معادلات الحركة وظروف	مثال 2	157
	السرعة والتسارع وزاوية الإطلاق		
18	حدد محصلة متجهين أو أكثر جبريًا عن طريق جمع مكونات المتجهات و إيجاد مقدارها	64	145
	(tan ⁻¹ (Ry/Rx)= 0) و اتجاهها (R ² =Rx ² + Ry ²)		
19	تطبيق العلاقة بين تسارع الجاذبية المركزية والسرعة اللحظية ونصف قطر المسار الدائري	12	162
	لحساب المتغيرات غير المعروفة		
20	اربط تسارع الجاذبية المركزية بسرعة الجسم ونصف قطر المسار الدانري	الشكل 8 و 9	160-159