

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/ae

* للحصول على أوراق عمل لجميع مواد الصف التاسع المتقدم اضغط هنا

https://almanahj.com/ae/16

* للحصول على جميع أوراق الصف التاسع المتقدم في مادة فيزياء ولجميع الفصول, اضغط هنا

https://almanahj.com/ae/16

* للحصول على أوراق عمل لجميع مواد الصف التاسع المتقدم في مادة فيزياء الخاصة بالغط هنا

https://almanahj.com/ae/16

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف التاسع المتقدم اضغط هنا

https://almanahj.com/ae/grade16

للتحدث إلى بوت المناهج على تلغرام: اضغط هنا

https://t.me/almanahj_bot

Chapter 5: Forces in Two Dimensions

	Force	es in Two Dimen	sions		
$R = \sqrt{A^2 + B^2}$	$\theta = \tan^{-1}\left(\frac{Ry}{Rx}\right)$	$R = \sqrt{A^2 + B^2}$	$R = \sqrt{A^2 + B^2 - 2AB(\cos\theta)}$		
$\frac{R}{\sin\theta} = \frac{1}{s}$	$\frac{A}{\ln a} = \frac{B}{\sin b}$	F f, static = $\mu_s F$	Ff .kinetic = $\mu_k h$	F _N	
1 - What are the compo	onents of a vector of ma	gnitude 28.5 km at	an angle of 42.0° from t	he positive x-axis?	
A) 604 km, 544 km	B) 21.2 km, -1	.9.1 km	C) 112 km, 91 km	D) 21.2 km, 19.	
2 - Which of the follow	ing equations represent	s the Pythagorean t	heorem?		
A) R2 = A2 - B2	B) R2 = A2 + B2 + 2AB	cos Ə C) R	2 = A2 + B2 - 2AB cos Θ	D) R2 = A2 + B	
3 - Find the magnitude	of the sum of a 10-m dis	splacement and a 5	-m displacement when t	the angle between the	
A) 11 m	B) 9 m	C) 7 m	D) 14 m		
4 - A car is driven 724.0) km due north, then 895	5.0 km due west. W	hat is the magnitude of	its displacement?	
A) 171 km	B) 1151 km	C) 805	km D) 1619 km	
5 - A(n) is	a vector that is equal to	the sum of two or r	nore vectors.		
A) resultant	B) graphical represe	entation C)	displacement	D) addition vector	
6 - To find the magnitu	de of the resultant vecto	or for two vectors th	nat are at some angle ot	her than 90°, use	
A) the Pythagorean the	eorem B) R2	= A2 + B2	C) R2 = A2 - B2	D) the Law of Cos	
7 - The process of brea	king a vector into its con	nponents is called _	·		
A) trigonometry	B) graphical repres	entation	C) vector resolution	D) reductio	
8 - Find the magnitude	of the sum of a 27-m dis	splacement and a 3	4-m displacement when	the angle between th	
A) 52 m	B) 43 m	C) 32 m	D)) 16 m	
9 - What is the magnitu m east?	ide of your displacemen	t when you follow o	lirections that tell you to	o walk 150.0 m north,	
A) 150 m C) 175 m	B) 152 m D) 127 m				
10 - When there is no r 	elative motion between	two surfaces, the f	orce exerted by one sur	face on the other is ca	
1			MR	: ABDELKHA	

Physics G9 adva	nced		Revision Sem 2 & 3 2019				
A) resistance	B) the kinetic force	C) kinetic friction force	D) the static friction force				
11 - A sled of mass 40.0 kg is pulled along flat, snow-covered ground. The static friction coefficient is 0.28, and the kinetic friction coefficient is 0.080. What force is needed to keep the sled moving at a constant velocity?							
A) 310 N	B) 3.2 N	C) 31 N	D) 3900 N				
12 - The is	the force exerted on one su	irface by another when the surfa	ces are in relative motion.				
A) apparent weight	B) kinetic friction	force C) kinetic coeffic	ient D) static friction force				
) kg is pulled along flat, snov 08. What force will be neede	_	tion coefficient is 0.28, and the kinetic				
A) 110 N	B) 31 N	C) 147 N	D) 392 N				
14 - In the diagram belo	ow, if A's magnitude is 16 N	and B's is 25 N, what is the magr	itude of C?				
A) 30 N	B) 19 N	C) 16 N	D) 41 N				
	skis is going down a hill slop is the skier going 10.0 s afte		netic friction between the skis and the				
A) 78 m/s C) 36 m/s2	B) 78 m/s2 D) 36 m/s						
16 - A 475-N trunk is re parallel and perpendicu		0° above the horizontal. Find the	e components of the weight force				
A) Fgx = -364 N, Fgy = -3	305 N	B) Fgx = 364 N, Fgy =	305 N				
C) Fgx = 305 N, Fgy = 36	54 N	D) Fgx = -305 N, Fgy =	-364 N				
17 - A force that produ	ces equilibrium is a(n)						
A) net force		0					
B) constant		AB					
C) equilibrant							
D) resultant		С					
18 - Two ropes pull on the ring?	a ring. One exerts a 50.0-N f	orce at 42.0°, the other an 87.0-1	N force at 70.0°. What is the net force on				
A) 133 N at 60.0°	B) 100 N at 60.0	0° C) 133 N at 30.0°	D) 100 N at 56.0°				
19 - If in the diagram be skier?	elow, the skier has mass 45	kg and the slope is at 35°, what is	s the normal force of the hill on the				
A) cannot be determine	ed with the given informatio	n	+y / System				
B) 440 N			Contact with				
C) 250 N			outside world				
			0				
2			$MR: \qquad +x^{*}$				

D) 360 N

20 - Two forces are exerted on an object. A 43-N force acts exactly at 240° and a 67-N force acts at 300°. What are the magnitude and direction of the equilibrant?

A) 98 N at 7°

C) 84 N at 97°

D) 98 N at 97°

21 - In the diagram below, if B's magnitude is 50 N and C's is 30 N, what is the magnitude of A?

B) 20 N

D) 58 N

B) 98 N at 277°

A) 80 N

C) 40 N

22 - A 175-N sign is supported in a motionless position by two ropes that each make 53.0° angles with the horizontal. What is the tension in the ropes?

A) 146 N		B) 310 N		C) 175 N		D) 110 N
رقم السؤال	الإجابة	رقم السؤال	الإجابة	رقم السؤال	الإجابة	
1	D	11	С	21	D	
2	D	12	В	22	D	
3	С	13	Α			
4	В	14	В			
5	Α	15	D			
6	D	16	D			
7	С	17	С			
8	Α	18	Α			
9	В	19	D			
10	D	20	D			

Chapter 6: Motion in Two Dimensions

الحركة في بعدين MOTION IN TWO DIMENSION						
$\Delta x = v_x t$	$v_{yf} = gt$	$\Delta \mathbf{y} = \frac{1}{2} \mathbf{g} \mathbf{t}^2$	v _y f² = 2g∆y			
$\Delta \mathbf{x} = \mathbf{V}_{\mathbf{x}} \mathbf{t} = \mathbf{V} \mathbf{i}_{\mathbf{x}} \mathbf{cos} \boldsymbol{\theta} \mathbf{t}$	$v_{yf} = vi (sin\theta) + a_y t$	$V^{2}_{yf} = v_{i}^{2} (sin\theta)^{2} + 2 a_{y} \Delta y$	Δ y= v _i (sin θ) t + $\frac{1}{2}a_{y}t^{2}$			
$a_c = \frac{v2}{r}$	$a_c = \frac{4\pi 2r}{T^2}$		$F_c = ma_c = \frac{mv^2}{r}$			
$v_{a/c} = v_{a/b} + v_{b/c}$	$\nu_{a/c} = \nu_{a/b} - \nu_{b/c}$	$Vp/e = \sqrt{vi/e^2 + vp/i^2}$	$\theta = \tan^{-1} \frac{\mathrm{vp/i}}{\mathrm{vi/e}}$			

Physics G9 a	Idvanced		Revision Sem 2 & 3 2019
1 - In the photograp	oh below, if the baseballs fell a vertio	cal distance of 1.6 m from the first	
to the last image, he	ow long did it take them to fall?		. · · .
A) 0.16 s	B) 0.32 s		6 6 6 6
C) 0.40 s	D) 0.57 s		• •
2 - A stone is throw	n horizontally at 20 m/s from the to	op of a cliff 63 m high. How fast is it	
moving the instant	before it hits the ground?		
A) 29 m/s	B) 35 m/s	C) 40 m/s	D) 38 m/s
3 - You accidentally	throw your car keys horizontally a	t 5.0 m/s from a cliff 45 m high. How	far from the base of the cliff should
you look for your k	eys?		
A) 135 m	B) 225 m	C) 15 m	D) 45 m
4 - The time a proje	ectile is in the air is the		
A) trajectory	B) range	C) flight time	D) centripetal acceleratio
5 - A stone is throw	n horizontally at 20.0 m/s from the	top of a cliff 63 m high. How far fron	n the base of the cliff does the stone hit
the ground?			
A) 66 m	B) 42 m	C) 72 m	D) 13 m
6 - Any moving obj	ect that moves only under the force	of gravity (after initial thrust) is a(n)	·
A) projectile	B) satellite	C) free floater	D) vector
7 - A projectile's pat	th through space is called its	·	
A) period	B) flight plan	C) trajectory	D) range
8 - The i	is the height of the projectile when t	he vertical velocity is zero.	
A) torque	B) maximum height	C) range	D) trajectory
9 - The horizontal d	listance a projectile travels is the		
A) torque	B) trajectory	C) range	D) maximum height
4		M'	R : ABDELKHALEK

Physics G9 advanced Revision Sem 2 & 3 2019 10 - In the picture below, if the baseballs fell a vertical distance of 1.6 m from the first to the last image, what is the time interval between frames? A) 0.23 s B) 0.082 s C) 0.095 s D) 0.071 s 11 - The acceleration of an object in uniform circular motion is called A) equilibrium B) torque C) range D) centripetal acceleration 12 - A carnival ride has a 3.0-m radius and rotates once every 1.7 s. What is the speed of the rider? A) 9.4 m/s B) 3.4 m/s C) 5 m/s D) 11 m/s 13 - A carnival ride has a 3.0-m radius and rotates once every 1.7 s. Find the centripetal acceleration of a rider. A) 41 m/s² outwards B) 41 m/s² inwards C) 11 m/s² inwards D) 11 m/s² outwards 14 - Picture an athlete preforming a hammer throw, if the mass of the hammer is 7.26 kg, its center is 0.50 m from the thrower, and it is moving at a speed of 1.5 m/s, what is its centripetal acceleration? A) 33 m/s² B) 22 m/s² C) 4.5 m/s^2 D) 3.0 m/s^2 15 - Picture an athlete preforming a hammer throw, if the mass of the hammer is 7.26 kg, its center is 0.50 m from the thrower, and it is moving at a speed of 1.5 m/s, what is the tension in the chain? A) 22 N C) 3.0 N D) 33 N B) 4.5 N 16 - If an object moves in a circle at steady speed it is in ____ A) uniform circular motion B) projectile motion C) torque D) equilibrium 17 - Which of the following situations is physically the most like that depicted in the diagram below? A) You slide to the right on the seat of a forward-moving bus. V bus relative to street B) You walk toward the rear of a forward-moving bus. Vyou relative to bus C) You walk forwards on a forward moving bus. Vyou relative to street D) You step upwards onto a bus as you board it. 5 MR : ABDELKHALEK

18 - You are riding in a boat that is traveling 15.0 m/s forward in still water. You move from the front to the back of the boat at 3.0 m/s. What is your speed relative to the water?

A) 18.0 m/s relative to the water

B) 15.3 m/s relative to the water

C) 12.0 m/s relative to the water

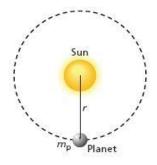
D) 9.0 m/s relative to the water

رقم السؤال	الإجابة	رقم السؤال	الإجابة	رقم السؤال	الإجابة
1	D	7	С	13	В
2	С	8	В	14	С
3	С	9	С	15	D
4	С	10	В	16	Α
5	С	11	D	17	С
6	Α	12	D	18	С

Chapter 7: Gravitation

	Gravitation	الجاذبية	
$\left(\frac{T_{A}}{T_{B}}\right)^{2} = \left(\frac{r_{A}}{r_{B}}\right)^{3}$	$F = G \; \frac{m_1 \; m_2}{r^2}$	$T = 2\pi \sqrt{\frac{r^3}{G m_s}}$	$v = \sqrt{\frac{Gm_E}{r}}$
$g = \frac{Gm}{r^2}$	$m_{Inertial} = rac{F_{net}}{a}$	$m_{grav} = \frac{r^2 F_{grav}}{Gm}$	

1- If the mass of the Sun in the diagram below were doubled, what effect would it have on the planet's period of orbit?


A) The new period would be one divided by the square root of two times the original period.

B) The new period would be one-half of the original period.

C) It would have no effect.

D) The new period would be twice the original period.

2 - If the radius of the planet's orbit were doubled in the diagram below, what effect would it have on its period of orbit?

Physics G9 advance	d		R	Revision Sem 2 & 3 2019
A) More information is need	ed to determine the ansv	ver. B) lt wou	uld decrease.	
C) It would increase.		D) lt woi	uld have no effect.	Sun
3 - According to Kepler's law	s, the paths of the planet	s are		
A) parabolas	B) ellipses	C) Earth-centered	D) cire	clesP_Planet
4 - The attractive force that e	xists between all masses	is known as the		
A) gravitational force	B) centripetal force	C) torqı	ue	D) normal force
5 - If the mass of the planet w the period of its period of ort	0	am below, what effec	t would it have on	
A) The new period would be	twice the original period			Sun
B) There would be no signific	cant change in the period	l of the orbit.		
C) The new period would be	one-half the original per	iod.		
D) The new period would be	one-quarter the original	perio		mp Planet
6 - If the mass of a planet nea	ar the Sun were doubled,	the force of attraction	ı would	
A) remain constant	B) be squared	C) be one half as	strong	D) be doubled
7 - Two balls have their cente force between them? Assume	-	_	The other has a mass	s of 4.5 kg. What is the gravitational
A) 1.3×10⁻¹¹ N	B) 9.0×10⁻¹⁰ N	C) 2.7×10) ⁻¹⁰ N	D) 9.0×10 ⁻¹¹ N
8 - In Newton's equation for	the law of universal grav	itation, $F = Gm1m2/r^2$	² , r is	
A) the distance between the	centers of the masses	B) univers	sal constant	
C) the distance between a pl	anet and the Sun	D) the diffe	erence in the two ma	35565
9 - In 1798, devis	ed an apparatus to meas	ure the gravitational fo	orce.	
A) Henry Cavendish	B) Johannes Keple	er C) Isa	ac Newton	D) Tycho Brahe
10 - According to Kepler's lav	ws, an imaginary line from	n the Sun to a planet _	·	
A) sweeps out equal areas in	equal time periods			
7			MR	: ABDELKHALEK

Physics G9 advanc	ed	Re	evision Sem 2 & 3 2019				
B) remains a constant lengt	B) remains a constant length through the entire orbit of that planet						
C) sweeps out larger areas t the Sun	he greater the planet's distance fro	m the Sun than it would in the sam	ne time interval when closest to				
D) sweeps out larger areas Sun	when the planet is closest to the Su	in than it would in the same time ir	nterval when farthest from the				
Ŭ	law of universal gravitation in the tive force to be quadrupled?	case of a planet near the Sun, whic	h of the following would				
A) square the mass of the p	lanet B) quadruple the d	istance from the Sun					
C) halve the distance from t	he Sun D) double the m	nass of the planet					
	12 - Assume that you have a mass of 45.0 kg and Earth has a mass of 5.97×10 ²⁴ kg. The radius of Earth is 6.38×10 ⁶ m. What is the force of gravitational attraction between you and Earth? Use G = 6.67×10 ⁻¹¹ N·m2/kg2.						
A) 6.60×10 ² N	B) 2.80× ¹⁰² N	C) 9.80 N	D) 4.40×10 ² N				
13 - Which of the following	equations describes one of Kepler	's laws?					
A) $(TA/rA)^2 = (TB/rB)^3$	B) $(TB/TA)^2 = (rA/rB)^3$	C) $(TA/TB)^2 = (rA/rB)^3$	D) $(TA/TB)^3 = (rA/rB)^2$				
14 - Which of the following	equations represents Newton's la	w of universal gravitation?					
A) $F = Gm1m^2/r^2$	B) G = Fm1m ² /r ²	C) $T^3 = (4?2/Gms)r^2$	D) T = $(4?2/Gms)r^3$				
	n have a mass of 6.3 kg. They are lo exert on each other? Assume G = 6.		centers 16.5 cm apart. What				
A) 9.7×10 ⁻⁷ N	B) 1.6×10 ⁻⁸ N	C) 9.7×10 ⁻⁸ N	D) 3.1×10 ⁻⁷ N				
16 - Two 1.00-kg masses ha	16 - Two 1.00-kg masses have their centers 1.00 m apart. What is the force of attraction between them?						
A) 6.67×10 ⁻¹¹ N	B) 1.33×10 ⁻¹⁰ N	C) 9.7×10 ⁻⁸ N	D) 6.67×10 ¹¹ N				
17 - According to Kepler's laws, which of the following statements is true?							
A) All points on the path of the planet's orbit are equidistant from the Sun.							
B) Planets move faster when they are closer to the Sun and slower when they are farther away.							
8		MR :	ABDELKHALEK				

Physics (59 adva	anced						Revision Sem 2 & 3 2019
C) Planets orbit at constant velocity.								
D) Planets mo	ove slowe	r when the	ey are closer to	the Sun a	nd faster	when they are	farther av	way.
18 - The time	it takes a	comet to c	omplete one re	evolution	is called t	he		
A) focus		B) orbi	t		C) peric	od		D) ellipse
19 - If you we	igh 440.0	N on Eartl	h's surface, hov	v much w	ould you	weigh on the	planet Ma	urs? Mars has a mass of 6.42×10 ²³ kg
and a radius c	of 3.40×10) ⁶ m.						
A) 557 N			B) 235 N		C) 1.4×1	10 ³ N		D) 166 N
20 - A satellite	e orbits Ea	rth 5.00×1	02 km above i	ts surface	. What is i	ts period?		
A) 94.6 h		B) 1.	43 h	C) 1	.58 h		D) 15.7	h
21 - What is tl	ne orbital	period for	Landsat 7, whi	ch orbits	the Earth	at an altitude	of 705 km	?
A) 1.65 h		B) 3.1	4 h	(C) 0.0520	h	D) 172	h
22 - The	of a	an object is	s measured by a	applying a	a force to	the object and	l measurir	ng its acceleration.
A) inertial ma	55	В	s) weight		C) grav	vitational mass	5	D) resistance
23 - A satellite	e orbits Ea	urth 5.00×1	102 km above i	ts surface	. What is i	ts orbital spee	ed?	
A) 7.61×10 ³ n	n/s	B)	7.90×10 ³ m/s		C) 5	5.92×10 ³ m/s		D) 7.76×10 ³ m/s
		·	d, why didn't N	ewton's la	·		tly predict	
			known at the ti		U		5	e applied over such great distances.
C)Newton's law of gravitation applies only to objects on Earth. D)Uranus was being attracted by the planet Neptune.								
25 - If Earth began to shrink but its mass remained the same, what would happen to the value of g on Earth's surface?								
A) It would re	main con	stant.	B) lt w	ould dec	rease.	C) It would	l increase.	D) It would be halved.
رقم السؤال	الإجابة		رقم السؤال	الإجابة		رقم السؤال	الإجابة	
1 2	A C		10 11	A C		19 20	D C	
3	B		12	D		20	A	
				I	<u> </u>	1	<u> </u>	
9 MR: ABDELKHALEK								

Revision Sem 2 & 3 2019

4	Α	13	С	22	Α
5	В	14	Α	23	Α
6	D	15	С	24	D
7	D	16	Α	25	С
8	Α	17	В		
9	Α	18	С		

Chapter 9: Energy, Work, and Simple Machines

	Work, Energy and Machines	الشغل والطاقة والألات	
W = F d cosθ	$w = kF_f - KE_i$ $= \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$	$P = \frac{\Delta E}{t}$	$P = \frac{W}{t} = \frac{Fd}{t} = Fv$

1 - An electric motor lifts an elevator 14.0 m in 22.5 s by exerting an upward force of 1.75×10⁴ N. What power does the motor produce in kilowatts?

A) 10.9 kW

10.9 kW

C) 2.45×10⁴ kW

D) 245 kW

2 - In the figure below, if the force exerted on the backpack is $20.0\,N$ and the distance it acts

over is 0.25 m, what is the change in kinetic energy of the backpack?

B) 1.09×10⁴ kW

A) 2.5 J B) 5.0 J C) 4.0×10^{1} J D) 8.0×10^{1}

3 - If you exert a force on an object in the direction opposite to its motion, the kinetic energy of the object ______.

A) is zero B) decreases C) increases D) remains constant

4 - How much work does the force of gravity do when a 50.0-N object falls a distance of 10.0 m?

A) 5.00×10² J B) 51.0 J C) 125 J D) 98.0 J

5 - One ______ is one joule of energy transferred in one second.

B) newton

A) calorie

C) volt

falls a distance of 10

D) watt

MR : ABDELKHALEK

Physics G9 a	dvanced				Revision Sem 2 & 3 2019		
6 - An airplane passenger carries a 300.0-N suitcase up the stairs, a displacement of 5.50 m vertically and 3.75 m horizontally.							
How much work does the passenger do?							
A)1.13×10 ³ J	B)1.65×10 ² J C)2.78×10 ³ J			<10 ³ J	D)1.65×10 ³ J		
7 - A 1200.0-kg car speeds up from 16.0 m/s to 20.0 m/s. How much work was done on the car to increase its speed?							
A) 8.6×10 ⁵ J	8.6×10 ⁵ J B) 9.6×10 ³ J		C) 8.6×10 ⁴ J		D) 3.1×10 ⁵ J		
8 - In the figure below, if the force exerted on a 3.0-kg backpack that is initally at rest is 20.0 N and the distance it acts over is 0.25 m, what is the final speed of the backpack?							
A) 1.8 m/s	B) 2.8 m/s	C) 5.0 m/s	D) 3.3	m/s			
9 - How much work does the force of gravity do on a 5.45-kg bowling ball that falls a distance of 0.755 m?							
A) 40.3 J	B) 71.2 J	C) 4.11 J	D) 2	62 J			
10 - The equation fo	or calculating work	when there is an	angle between for	ce and displaceme	ent is		
A) W = Fd $\cos \Delta$	B) W = I	-/m C) V	v = Fd	D) W = F Δ KE			
11 - The energy of a	ın object resulting f	rom motion is	energy.				
A) potential	B)	kinetic	C) mec	hanical	D) thermal		
12 - A 16.8-kg boy i distance of 3.50 m.				vagon and exerts a	a constant force of 2.60 N over a		
A) 9.10 J	B) 12	7 J	C) 0.26 J		D) 66.4 J		
13 - A student lifts a	t box of books that	weighs 215 N. Tl	he box is lifted 1.75	5 m. How much w	ork does the student do on the box?		
A) 38.4 J	B) 217 J	C) 1	123 J	D) 376 J			
14 - Energy is define	ed as						
A) power	В) the ability of an	object to produce	change in the env	ironment or itself		
C) motion	C) the effort requi	red to perform wo	ſk			
15 - A student lifts a	15 - A student lifts a box of books that weighs 215 N. The box is lifted 1.75 m. What is the change in energy of the box?						
11				M	R : ABDELKHALEK		

Physics G9 advanc	ed	F	Revision Sem 2 & 3 2019				
A) 38.4 J	B) 376 J	C) 225 J	D) 123 J				
16 - The work-energy theorem states that							
A) when a machine works a	at 100 percent efficiency, the	e energy of the system remains constant					
B) when work is done at a r	rate of one joule per second,	the power produced is one watt					
C) when work is done on a	n object, a change in kinetic	energy results.					
D) effort is required to resis	st a change in the energy of a	system					
17 - A joule is							
A)1 N·s	B) 1 N·m/s	C) 1 N·m	D) 1 Fr/Fe				
18 - The unit for kinetic energy is the							
A) ampere	B) volt	C) joule	D) watt				
19 - A steel ball with mass 5	5.0 kg is at rest on a smooth,	level surface. A constant force acts on it	through a distance of 10.0 m				
causing it to roll at 25 m/s.	What is the magnitude of th	e force?					
A) 1.6×10 ² N	B) 1.6×10 ³ N	C) 4.9 N	D) 6.3 N				
20 - A rope is used to pull a	metal box 12.0 m across the	e floor with a force of 456 N. The rope is	held at an angle of 52.0° with the				
floor. How much work doe	s the puller do?						
A) 5.47×10 ³ J	B) 4.31×10 ³ J	C) 3.37×10 ³ J	D) 3.37×10 ² J				
21 - A sailor pulls a boat 15	.0 m along a dock using a ro	pe that makes a 45.0° angle with the ho	rizontal. How much work does the				
sailor do on the boat if he e	exerts a force of 185 N on the	e rope?					
A) 1.96×10 ³ J	B) 1.59×10 ³ J	C) 1.96×10 ² J	D) 2.78×10 ³ J				
22 - A 1200.0-kg car speeds up from 16.0 m/s to 20.0 m/s. What were its initial and final energies?							
A) initial 4.80×10 ⁵ J, final 3.07×10 ⁵ J B) initial 2.40×10 ⁵ J, final 1.54×10 ⁵ J							
C) initial 1.54×10 ⁵ J, final 2	2.40×10 ⁵ J	D) initial 3.07×10^5 J, final 4.80×10^5	I				
23 - A forklift raises a box 2	2.5 m doing 8.7 kJ of work on	it. What is the mass of the box?					
A) 3.6×10 ³ kg	B) 3.5×10 ³ kg	C) 7.2×10 ² kg	D) 3.6×10 ² kg				
12		MR	: ABDELKHALEK				

Physics G9 adv	vanced		Revision Sem 2 & 3 2019
24 - The equation for	work is		
A) W = Fd	B) W = F Δ KE	C) W = ma	D) W = F/m
25 - A rifle can shoot a	a 4.20-g bullet at a speed of 965 m/s.	What is the kinetic energy of the l	oullet as it leaves the rifle?
A) 1.96×10 ⁶ J	B) 2.03 J	C) 1.96×10 ³ J	D) 2.03×10 ³ J
26 - Which of the follo	owing has the greatest kinetic energy	, a 35.0-g bullet traveling at 1.20×	10 ³ m/s, a 35.0-kg cheetah running a
30 m/s, an 875-kg car	traveling at 5 m/s, or a 148-g pitched	d baseball moving at 45 m/s?	
A) bullet	B) cheetah	C) car	D) baseball
27 - A 16.8-kg boy is r	iding in a 4.50-kg wagon. A 14.0-kg g	girl pushes the wagon and exerts a	a constant force of 2.60 N over a
distance of 3.50 m. W	hat is the change in energy of the boy	y and the wagon?	
A) 9.10 J	B) 12.8 J	C) 25.5 J	D) 47.6 J
28 - A hydrolic lift rais	es a 1.14×10³-kg car a distance of 2.4	4 m. If the car is lifted in 47 s, how	much power does the lift produce?
A) 570 kW	B) 290 W	C) 570 W	D) 58.2 W
29 is the	rate of doing work.		
A) Energy	B) Force	C) Power	D) Effort
30 - The ratio of resist	ance force to effort force is called the	·	
A) torque	B) mechanical advantage	C) power	D) efficiency
31 - If the machine be	low is ideal and an effort force of 7.0	N just lifts a	
14.0 N box situated 0.	.75 m from the pivot, what is the dist	ance from the	
pivot point to where t	he effort force is exerted?	50	Fe
A) 2.0 m	B) 0.38 m	The second se	
C) 1.5 m	D) 65 m		
32 - If the efficiency of	f the pulley system bellow is 95 perce	ent, what effort	THE PARTY
force must be exerted	to lift a 20.0 N box at constant veloc	ity?	
A) 20 N			
B) 19 N			
C) 22 N			F. F.
D) 21 N			
13			R : AB

33 - Th	ie	of a r	machine is (defined as the i	ratio of ou	itput worl	c to input wor	k.			
A) IMA B) mechanical advantage C) efficiency D) reliability											
34 - The rear wheel of a bicycle has a radius of 38.5 cm and has a gear with a radius of 4.75 cm. When the chain is pulled with a											
force of 175 N, the wheel rim moves 18.0 cm. The efficiency of this part of the bike is 95.0 percent. How far was the chain pulled											
		that amo)			·			
A) 1.45	5×10 ² cm			B) 1.45 cm		(C) 2.12 cm		D) 2.1	21 cm	
35 - The force exerted by a machine is called the											
A) mec	hanical a	Idvantage		B) effo	rt force		C) mechar	ical force		D) resistanc	e force
ؤال	رقم الس	الإجابة		رقم السؤال	الإجابة		رقم السؤال	الإجابة		رقم السؤال	الإجابة
	1	Α		11	В		21	Α		31	С
	2	В		12	Α		22	С		32	D
	3	В		13	D		23	D		33	С
	4	Α		14	В		24	Α		34	D
	5	D		15	В		25	С		35	D
	6	D		16	С		26	Α			
	7	С		17	С		27	Α			
	8	Α		18	С		28	С			
	9	Α		19	Α		29	С			
	10	Α		20	С		30	В			

	Thermal Energy 💈	الطاقة الحراريا			
$T_{\rm K} = T_{\rm C} + 273$	$T_f = \frac{m_A C_A T_A + 1}{2}$		$Q = mH_f$ $Q = mH_n$		
$Q = m C \Delta T$	$m_A C_A + m_A $	$m_A C_A + m_B C_B$			
$\Delta U = Q - W$	$e = \frac{W}{O_{H}}$	$\Delta S = \frac{Q}{T}$			

1-If the final temperature of a system is greater than the initial temperature, Δt is ______.

A) positive

B) eliminated

C) negative

D) reduced

______ is the amount of energy that must be added to a material to raise one unit of mass by one temperature unit.

1

2-

Physics G9 advan	iced		Revision Sem 2 & 3 2019			
A) Temperature	B) Specific Heat	C) Radiation	D) Hotness			
3- In the figure below, if you doubled the amount of zinc put into the beaker, which of the following effects would it have on the						
final equilibrium tempera	ature?					
A) This question can not b	be answered without knowing	the size of the container.				
B) The final equilibrium t	emperature of the water and z	zinc would be greater.	20.0 kg			
C) It would have no effec	t; the final equilibrium temper	rature would be the same as before.	10.0°C			
D) The final equilibrium	temperature of the water and	zinc would be lower.				
4 - Thermodynamics is th	e study of					
A) heat	B) light	C) stars	D) sound			
5 - What does a calorimet	ter measure?					
A) change in radiation	B) change in thermal e	nergy C) change in kinetic ener	gy D) change in temperature			
6 - Looking at the situatio	n in the figure below, and usir	ng the same color scheme as in the fig	gure, how would the block in part b be			
shaded after a really long	time? Assume the two blocks	have the same mass.	2			
A) The left half would be	yellow and the right half wou	ld be blue.				
B) The whole block woul	d be red.					
C) The left half would be	blue and the right half would	be yellow.				
D) The whole block wou	ld be green.					
7 - In which direction doe	es heat flow?					
A) from hot to cold	B) from left to right	C) from light to dark	D) from cold to hot			
8 - Absolute zero is	·					
A) 273 K	B) -273°F	С) -273 К	D) -273°C			
9 - You have equal masse	s of four of the substances list	ed in Table 12-1. All are at the same	initial temperature, and then you			
place them in a hotter roc	om. Which of the objects' temp	peratures will increase the most rapic	lly?			
A) Iron E	B) Aluminum	C) Lead	D) Zinc			
15		M	IR : ABDELKHALEK			

Physics G9 advanced			Re	evision Sem 2	2 & 3 2019			
10 - The Sun warms us by								
A) conduction	B) convection	C) induction			D) radiation			
11 - You have equal masses of four of the substances listed in Table 12-1. All are								
at the same initial temperature	e, and then you place them in a	hotter room. Which	Heats of Fusio Material	Heat of Fusion	of Common Substances Heat of Vaporization			
of the objects' temperatures w	ill increase the most slowly?		Copper	H _f (J/kg) 2.05×10 ⁵	H _v (J/kg) 5.07×10 ⁶			
A) Brass	B) Glass		Mercury Gold Methanol	1.15×10^{4} 6.30×10^{4} 1.09×10^{5}	2.72×10^{5} 1.64×10^{6} 8.78×10^{5}			
C) Zinc	D) Aluminum		Iron Silver Lead	2.66×10^{5} 1.04×10^{5} 2.04×10^{4}	6.29×10 ⁶ 2.36×10 ⁶ 8.64×10 ⁵			
12 - Heat is transferred by	when objects touch.		Water (ice)	3.34×10 ⁵	2.26×10 ⁶			
A) convection	B) radiation	C) thermoduction		D) c	onduction			
13 - Water boils at 100° on the	e temperature scale.							
A) Celsius	B) Molecular	C) Kelvin		D) Fa	hrenheit			
14 - Which of the following is	ordered from the least thermal	energy to the most?						
A) ice to steam to water	B) water to ice to stean	n C) ice to wa	ater to steam	D) steam	to water to ice			
15 - The thermal energy neede	ed to boil a liquid is the heat of	·						
A) condensation	B) specific	C) fusio	on	D) v	aporization			
16 - When disorder increases,	entropy							
A) decreases	B) fluctuates	C) reaches	zero	D)	increases			
17 - The average kinetic energ	y of ice particles as i	ce melts.						
A) decreases	B) increases	C) reduces to zero		D) rema	ins constant			
18 - An increase in heat in a sy	stem							
A) less kinetic energy	B) decreases entropy	C) increases en	ntropy	D) redu	ices temperatur			
19 - Which of the following pr	ocesses is NOT like the dye spr	eading through the bea	ıker in the fig	ure below?				
A) Shortly after your mother p	uts cookies in the oven to bake	you can smell them in	your bedrooi	m.	-			
16			MR	: AE				

Physics G9 ac	lvanced			Revision Se	m 2 & 3 2019			
B) Dandilion seeds spread from one yard into several others.								
C) At a restaurant, yo	C) At a restaurant, you notice smoke in the air from the cigarette of a person several tables away.							
D) You use the vacu	um cleaner to suck the dirt out of th	ne carpet.						
20 - Which has the h	ighest entropy?							
A) a diamond	B) a fire	C) an ice cube		D) a stack	of books			
21 - Using informatio	on from the table below, determine	e which of the						
following processes	will require the most energy be add	led.						
			Material	Heat of Fusion	of Common Substances Heat of Vaporization			
A)1 kg of iron is char	nged from liquid to gas.		Copper	H _f (J/kg) 2.05×10 ⁵	H _v (J/kg) 5.07×10 ⁶			
B)2 kg of water is eva)2 kg of water is evaporated.				2.72×10^{5} 1.64×10^{6} 8.78×10^{5} 6.29×10^{6}			
C)1 kg of liquid merc	Iron Silver Lead Water (ice)	$\begin{array}{c} 2.66 \times 10^{5} \\ 1.04 \times 10^{5} \\ 2.04 \times 10^{4} \\ 3.34 \times 10^{5} \end{array}$	2.36×10^{6} 8.64×10^{5} 2.26×10^{6}					
D)1 kg of copper is converted from solid to liquid.								
22 - Heat spontaneo	usly flowing from a cold body to a	hot body violates the	·					
A) law of conservation	on of energy E	3) kinetic-molecular lav	N					
C) first law of therm	odynamics D) second law of thermo	odynamics					
23 - The first law of t	hermodynamics is a restatement o	f which law?						
A) gravity	B) second law of thermodynam	ics C) conser	vation of ene	rgy D) k	inetic-molecular law			
24 - Friction that you	ı feel when you rub your hands tog	ether was changed fror	n	to heat.				
A) sound energy	B) thermal energy	C) nucle	ear energy	D) kinetic energy			
25 - A perpetual mot	25 - A perpetual motion machine violates which law?							
A) third law of conse	A) third law of conservation B)first law of thermodynamics							
C) third law of thermodynamics D) first law of gravity								
26 - Which is an exar	mple of a heat engine?							
A) windmill	B) automobile engine	C) solar pane	ls	D) volcan	0			
17			N	IR : ABDI	ELKHALEK			

Revision Sem 2 & 3 2019

		• / •/		• • •	
رقم السؤال	الإجابة	رقم السؤال	الإجابة	رقم السؤال	الإجابة
1	D	10	D	19	D
2	D	11	D	20	В
3	В	12	D	21	Α
4	Α	13	Α	22	D
5	В	14	С	23	С
6	D	15	D	24	D
7	Α	16	D	25	В
8	D	17	D	26	В
9	С	18	С		

Chapter 13: States of Matter

حالات المادةStates Of Matter						
$P = \frac{F}{A}$	$P_1V_1 = P_2V_2$	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$			
PV = nRT	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$	$P = \rho g h$	$F_{Buoyant} = \rho_{flouid} V g$			
$F_{net} = F_g - F_{buoyant}$	$F_g = mg = \rho_{solid} V g$	$\alpha = \frac{\Delta L}{L_1 \Delta T}$ $= \frac{L_2 - L_1}{L_1 (T_2 - T_1)}$	$\beta = \frac{\Delta V}{V_1 \Delta T} = \frac{V_2 - V_1}{V_1 (T_2 - T_1)}$			

1 - Which state of matter is t	he most common in the universe?
--------------------------------	---------------------------------

A) solid	B) gas		C) liquid	D) plasma		
2 - As water cools below 4°C, wh	at happens?					
A) it changes to an amorphous s	olid B)	it contracts	C) it melts	D) it expands		
3 - What causes air pressure?						
A) air particles vaporize B) air particles flow through an object						
C) air particles hit an object		D) air part	ticles suck away from an object			
4 - What are the four stages of m	atter in order from l	east kinetic er	nergy to most kinetic energy?			
A) plasma, gas, liquid, solid B) plasma, solid, gas, liquid C) solid, liquid, gas, plasma D) solid, liquid, pla						
5 - What are the particles in plasi	na?					
A) free nuclear particles of proto	ns, neutrons, and el	ectrons E	B) positively charged ions and negatively charged electrons			
C) negatively charged ions and p	positively charged p	otons [D) free neutrons			
18			MR :	ABDELKHALEK		

Physics G9 advance	Revision Sem 2 & 3 2019					
6 have no defin	ite shape and flow.					
A) Crystals	B) Solids	C) Metals	D) Fluids			
7 - Pressure is measured as _	·					
A) FA	B) F/A	C) A/F	D) F + A			
8 - A particle is moving so fa	st in a liquid that it escap	bes the liquid's cohesive force. This is ar	n example of			
A) condensation	B) sublimation	C) evaporation	D) melting			
9 - Surface tension is a result	t of in a fluid.					
A) nuclear forces	B) adhesive for	ces C) cohesive forces	D) kinetic force			
10 is the force t	hat acts between particle	es of different substances.				
A) Rehesion	B) Cohesion	C) Elasticity	D) Adhesion			
11 - Which of the following	does pressure in water n	ot depend on?				
A) depth	B) density	C) shape	D) gravity			
12 - The buoyant force is in v	which direction?					
A) toward higher pressures	B) upward	C) circular	D) downward			
13 - In the figure below, if th	e chunk of steel were cu	t in half and one of the pieces were plac	ced in the			
same liquid, how would it be	ehave?		Fbuoyant			
A) It would float mostly sub	merged. B) It	would sink to the bottom of the contain				
C) There is insufficient infor	mation to answer the qu	estion. D) It would float alm	ost entirely			
above the surfac			↓ Fg			
14 - If you wanted to use a s	etup like the one in the fi	igure below to create an upward force t	triple that of			
the downward force you exe	ert, which of the followin	ng combination of piston radii could acc	complish this?			
A) $r_1, 3 m; r_2, 1 m$ B) $r_1, 0.577 m; r_2, 1 m$						
C) r_1 , 0.333 m; r_2 , 1 m D) r_1 , 1.73 m; r_2 , 1 m						
15 - To rise in water, a fish u						
A) displace more water	e more water B) increase water pressure					
C) increase air pressure		lisplace less water				
		oplied to any point on a confined fluid is				
transmitted undiminished th	0		Piston 1 Piston 2			
A) Boyle's law		iscal's principle	F2			
C) Galileo's law		alton's law	1 ⁵¹			
		igure bellow to create an upward force				
	you exert, which of the f	ollowing combination of piston areas c	ould			
accomplish this?						
A) A_1 , 6 m ² ; A_2 , 10 m ²		B) A_1 , 6 m ² ; A_2 , 18 m ²				
19		N	1R: APPULNIALUN			

Physics (59 adva	nced						Revision Sem 2 & 3 2019
C) A ₁ , 6 m ² ; A ₂	₂ , 2 m ²			D) A ₁	₁ , 6 m ² ; A ₂	, 8 m ²		
18 - What type	e of buoya	ncy results i	n a feeling o	of weightle	essness?			
A) positive	-	B) neut	B) neutral C) changing				D) negative	
19 - Why does	ice float?							
A) It is an amo	orphous sc	olid.		В	s) It has st	rong cohesive	e propertie	25.
C) It has a low	ver density	than water		D) It has a	higher density	y than wa	ter.
20 - Which is a	an exampl	e of Pascal's	principle?					
A) a straw		B) hydi	oplaning wł	neels		C) hydraulio	: brakes	D) a sipho
21 - According	g to Archin	nedes' princ	iple, an obje	ct immers	ed in fluic	l has an upwa	rd force o	n it equal to
A) the weight	of the flui	d displaced				B) th	ne weight	of all the fluid in the container
C) the weight	of the flui	d displaced	minus the w	eight of t	ne object	D) th	ne weight	of the object
22 - What hap	pens to a	bimetallic st	rip when it i	s heated?				
A) it becomes	elastic				B) its co	hesive proper	ties decre	ase
C) it bends					D) it cor	itracts		
23 - Why is it i	mportant	to take ther	mal expansio	on into ac	count wh	en building br	idges?	
A) so the brid	ge will not	move at all						
B) so the brid	ge materia	ls expand a	nd contract v	with the c	hanges in	weather		
C) so the brid	ge materia	lls can chang	ge state as th	ne weathe	r changes			
D) so the brid	ge materia	als don't det	eriorate					
24 - Amorpho	us solids h	iave no	·					
A) volume		B) liqu	iid phase	ase C) crystalline pattern			D) shape	
25 - In terms o	of the kine	tic-molecula	ır theory, wh	ıy do subs	tances ex	pand when he	eated?	
A) The particl	es vibrate	less and pus	sh other part	icles away	у.			
B) The particle	es on the s	urface vibra	te faster.					
C) The particl	es vibrate	more, causii	ng air pressu	ire to com	press the	substance.		
D) The particl	es vibrate	more and p	ush other pa	articles aw	yay.			
26 - Which ex	ample den	nonstrates e	lasticity?					
A) a snapping	rubber ba	ınd	B) a ber	nt iron bar		C) a broken s	tick	D) a melted stick of butter
27 - If an iron	bar expan	ds 0.1 cm w	hen heated 2	20°С, һом	much wo	ould it expand	if it were	heated 40°C?
A) 1 cm		B)	0.1 cm			C) 0.05 cm		D) 0.2 cm
· · · · · · · · · · · · · · · · · · ·								1
رقم السؤال	الإجابة		رقم السؤال	الإجابة		رقم السؤال	الإجابة	

Revision Sem 2 & 3 2019

2	D	11	С	20	С
3	C	12	В	21	Α
4	C	13	В	22	С
5	В	14	В	23	В
6	D	15	Α	24	С
7	В	16	В	25	D
8	C	17	В	26	Α
9	C	18	В	27	D