شكراً لتحميلك هذا الملف من هوقع المناهج الإمار اتية

حل نموذج أسئلة وفق الهيكل الوزاري - ريفيل

هوقع المناهج ص↔ المناهج الإماراتية ص↔ اللهف السادس ص رياضيات ص↔ الفصل الثاني ص الملف

التواصل الاجتماعي بحسب الصف السادس

روابط هواد الصف السادس على تلغرام
الرياضيات
اللغة الانجليزية
اللغة العربية
اللتربية الاسلامية

المزيد من الملفات بحسب الصف السادس والمادة رياضيات في الفصل الثاني
 1

دليل تصحيح أسئلة الامتحان الورقي - بريدج 2

حـ مر احعة شـاهلة باللفنة الانحليزيـة
حل نموذج أسئلة وفق الهيكل الوزلريـ - ريفيل

Reveal Math - grade 6 - End of term2 2022/2023

Mohamed Eyad 6/1 AlGhazali

أسئلة هيكل الرياضيات الصف السادس اريفيل الفصل الثاتي عام 2023

Page 267 Exercise: 1-6

1. Write the product of $4 \times 4 \times 4$ using an exponent.
A. 3^{4}
B. 4^{3}
C. 4×3
D. 64

いmill	
subject	Mathematics/Reveal
Exal	
Grade	6
inll	
stream	General
dent	العإ

2. Write the product of $3 \times 3 \times 3 \times 3 \times 3$ using an exponent.
B. 3^{5}
B. 5^{3}
C. 3×5
D. 343
3. Write the product of $15 \times 15 \times 15 \times 15$ using an exponent.
A. 15^{4}
B. 15^{3}
C. 4×15
D. 50625
4. Write the product of $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}$ using an exponent.
A. $\frac{3^{6}}{4}$
B. $\frac{3}{4^{6}}$
C. $\left(\frac{4}{3}\right)^{6}$
D. $\left(\frac{3}{4}\right)^{6}$
5. Write the product of $\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}$ using an exponent.
A. $\frac{1^{7}}{3}$
B. $\frac{1}{7^{3}}$
C. $\left(\frac{1}{3}\right)^{7}$
D. $\frac{1}{2187}$
6. Write the product of 1.625×1.625 using an exponent.
A. $(1.652)^{2}$
B. $(625.1)^{2}$
C. $\frac{1625}{1000}$
D. $\left(\frac{1625}{1000}\right)^{2}$

Page 285 Exercise: 1-3

* Identify the terms, like terms, coefficients, and constants in each expression .

1. $4 e+7 e+5+2 e$

Terms:....4e, 7e, 5 and $2 e$ like terms:...... 4 e, , 7e and 2 en

Coefficients: \qquad $4,7,2$

Constants: \qquad 5
2. $5 a+2+7+6 a$ Terms:.... 5 a , $6 \mathrm{a} a, 4$ and 2,7 ? like terms:... 5a, , , 6a and 2 , , ... Coefficients: \qquad 5, constants: \qquad 2 and 7

3. $\mathbf{4 + 4 y + y + 3}$

 Terms:...4....4y...y.and. $3 .$. like terms: $4 \mathrm{y}, \mathrm{y}$ and 4,3, Coefficients: \qquad constants: \qquadPage 293 Exercise: 1-6

1. Evaluate the expression $8 x$ if $x=\frac{3}{4}$
A. 32
B. 24
C. 6
D. $\frac{24}{10}$
2. Evaluate the expression y^{2} if $y=2.5$
A. 0.625
B. 6.25
C. 2.5
D. 62.5
3. Evaluate the expression $\frac{10}{y}$ if $y=2.5$
A. 4
B. 25
C. 100
D. $\frac{10}{2.5}$
4. Evaluate the expression $a+b$ if $a=\frac{2}{3}$ and $b=\frac{4}{5}$
A. $\frac{22}{15}$
B. $1 \frac{7}{15}$
C. $\frac{6}{18}$
D. $\frac{3}{4}$
5. Evaluate the expression \boldsymbol{c} - \boldsymbol{b} if $b=\frac{4}{5}$ and $\boldsymbol{c}=6$
A. $5 \frac{1}{5}$
B. $5 \frac{2}{5}$
C. $\frac{26}{5}$
D. 2.5
6. Evaluate the expression $\boldsymbol{b}-\boldsymbol{a}$ when $\boldsymbol{a}=\frac{2}{3}$ and $\boldsymbol{b}=\frac{4}{5}$
A. $\quad \frac{1}{15}$
B. $\frac{2}{15}$
C. $\frac{12}{15}$
D. 4.0

Page 303 Exercise: 1-6

1. Find the GCF (Greatest Common Factor) of 12 and 30.
A. 2
B. 3
C. 6
D. 60
2. What is the Greatest Common Factor of 4 and 16.
A. 16
B. 32
C. 8
D. 4
3. What is the Greatest Common Factor of 9 and 36.
A. 3
B. 9
C. 12
D. 18
4. Find the GCF (Greatest Common Factor) of 35 and 63.
A. 7
B. 14
C. 5
D. 1
5. What is the GCF (Greatest Common Factor) of 42 and 56.
A. 112
B. 14
C. 84
D. 7
6. What is the GCF (Greatest Common Factor) of 54 and 81.
A. 9
B. 27
C. 3
D. 162

Page 313 Example: 7-12
7. Use the GCF and the Distributive Property to express the sum $\mathbf{1 6 + 4 8}$
A. $2(8+24)$
B. $16(1+3)$
C. $4(4+12)$
D. $8(2+6)$
8. Use the GCF and the Distributive Property to express the sum $\mathbf{3 5 + 6 3}$
A. $9(4+7)$
B. $5(7+13)$
C. $7(5+9)$
D. $3(5+6)$
9. Use the GCF and the Distributive Property to express the sum $\mathbf{2 6 + 3 9}$
A. $13(2+3)$
B. $2(13+18)$
C. $13(2+4)$
D. $3(8+13)$
10. Use the GCF and the Distributive Property to express the sum $\mathbf{8 x + 1 6}$
A. $2(4 x+8)$
B. $4(4 x+2)$
C. $8(2 x+1)$
D. $8(x+2)$
11. Use the GCF and the Distributive Property to express the sum $24+6 x$
A. $6(4 x+1)$
B. $6(4+x)$
C. $3(3 x+12)$
D. $2(3 x+8)$
12. Use the GCF and the Distributive Property to express the sum $42+7 \boldsymbol{x}$
A. $7(6 x+1)$
B. $7(6+x)$
C. $6(1 x+7)$
D. $6(7 x+21)$

Test practice: 14 . Which expression has the same value as $\mathbf{9 + 2 4}$?
A. $3(3+24)$
B. $3(3+8)$
C. $3(9+8)$
D. $9(1+24)$

Page 313 Example: 1-3

1. Use the Distributive Property to expand the expression $3(x+8)$
A. $3 x+8$
B. $3 x+38$
C. $3 x+24$
D. $8 x+3$
2. Use the Distributive Property to expand the expression $5(6+x)$
A. $30 x+5$
B. $5 x+30$
C. $30+5$
D. $x+30$
3. Use the Distributive Property to expand the expression $9(3+x)$
A. $27+9 x$
B. $93+9 x$
C. $27+3 x$
D. $27 x+3$

Page 339 Example: 1-4

1. Identify which of the solution satisfy the equation : $x+5.6=11.6$
A. 6
B. 5
C. 9
D. 7
2. What the value of x in the following equation : $4.2+x=11.2$
A. 7
B. 6
C. 8
D. 11
3. What the value of b in the following equation : $b-9.7=13.3$
A. 23
B. 22
C. 22.7
D. 24
4. What the value of \boldsymbol{d} in the following equation : $\boldsymbol{d}-\mathbf{8 . 4}=\mathbf{8 . 6}$
A. 10
B. 15
C. 16
D. 17

Page 357 Example: 5-10

5. What the value of x in the following equation : $24=x-5$
A. -29
B. -19
C. 29
D. 19
6. Solve the following equation. $z-7=19$
A. -12
B. -26
C. 12
D. 26
7. Solve the following equation $z-9 \frac{1}{3}=1 \frac{5}{9}$
A. $-10 \frac{8}{9}$
B. $10 \frac{8}{9}$
C. $-10 \frac{6}{12}$
D. $10 \frac{6}{12}$
8. Solve the following equation. $5 \frac{1}{2}=b-12 \frac{1}{4}$
A. $17 \frac{3}{4}$
B. $-17 \frac{3}{4}$
C. $17 \frac{6}{8}$
D. $7 \frac{3}{4}$
9. Solve the following equation $67.9=c-4.45$
A. -72.35
B. -63.45
C. 72.35
D. 63.45
10. Solve the following equation $x-7.49=87.3$
A. -94.79
B. 94.79
C. 79.81
D. -79.52

Page 389 Example: 7-10
7. Which of the following are solutions of the inequality : $t+7 \leq 12$
A. 10
B. 6
C. 5
D. 7
8. What the value of \boldsymbol{h} in the following inequality : $\boldsymbol{h}-4>9$
a. 13
B. 12
C. -90
D. 14
9. Which of the following are solutions of the inequality : $8 r \geq 1.8$
a. $\frac{1}{5}$
B. $\frac{1}{8}$
C. $\frac{1}{4}$
D. $\frac{1}{6}$
10. Which are the solutions of the inequality: $\frac{2.4}{n}>$ 6
A. 0.25
B. 0.4
C. 0.5
D. 0.6

Page 389 Example: 3-6
3. Choose the correct graph of the inequality $\quad b<\mathbf{- 1 . 5}$
a.

c.

d.

4. Choose the correct graph of the inequality $d \geq 4.75$

5. Choose the corresponding graph of the inequality $a>\frac{4}{5}$
A.

6. Choose the correct graph of the inequality $d \geq-2 \frac{1}{2}$

Page 275 Example: 4-9
4. Evaluate the expression $78-2^{4} \div(14-6) \times 2$
A. 125
B. 70
C. 74
D. 35
5. Evaluate the expression $\quad 9+7 \times(15+3) \div 3^{2}$
A. 15
B. 23
C. 32
D. 74
6. Evaluate the expression $13+\left(4^{3} \div 2\right) \times 5-17$
A. 23
B. 143
C. 660
D. 156
7. Evaluate the expression $13+\left(6^{3} \div \frac{1}{4}\right) \times 3$
A. 436
B. 432
C. 144
D. 474
8. Evaluate the expression $12+\left(2^{3} \div \frac{2}{3}\right)-2$
A. -22
B. -20
C. 22
D. 20
9. Evaluate the expression $36 \div\left(3^{2} \div \frac{3}{4}\right)-2.4$
A. $\frac{4}{5}$
B. $\frac{5}{3}$
C. 6.0
D. 0.6

Page 285 Example: 4-9

Write the phrase as an algebraic expression
4. (Three more pancakes than Hector ate)
A. $\boldsymbol{h}+3$
B. $\boldsymbol{h}-3$
C. $\boldsymbol{h}>3$
D. $\mathbf{3}>\boldsymbol{h}$

Write the phrase as an algebraic expression
5. (Twelve fewer questions than were on first test)
A. $q+12$
B. $12 q$
C. $q-12$
D. $q>12$

Write the phrase as an algebraic expression
6. (Two and one-half times the number of minutes spent exercising)
A. $m+2.5$
B. $2.5 m$
C. $m-2.5$
D. $\frac{m}{2.5}$

Write the phrase as an algebraic expression

7. (One-third the number of yards)
A. $3 y$
B. $y-3$
C. $\frac{1}{3} y$ or $\frac{1}{3}$
D. $\mathbf{3} \div \boldsymbol{y}$

Write the phrase as an algebraic expression
8. (Four less than seven times Lynn's age)
A. $4-7 a$
B. $7 a+4$
C. $4 a-7$
D. $7 a-4$

Write the phrase as an algebraic expression
8. ($\mathbf{\$ 2 . 5 0}$ more than one-fourth the cost of a pizza)
A. $\frac{1}{4} p(2.50)$
B. . $\frac{1}{4} p-2.5$
C. $\frac{1}{4} p+2.50$
D. $2.25>2.25 p$

Page 303 Example: 1-6

1. Find the LCM (Least Common Multiple) of $\mathbf{1 2}$ and $\mathbf{3 0}$
A. 120
B. 60
C. 30
D. 6
2. Find the Least Common Multiple of 4 and 16
A. 64
B. 128
C. 32
D. 16
3. Find the LCM (Least Common Multiple) of 9 and 36
A. 36
B. 144
C. 9
D. 72

Page 349 Example: 1-4

1. On Saturday and Sunday, Jarrod went running and burned a total of 647.5 Calories He burned 320 of those Calories on Saturday. Write an addition equation that could be used to find the number of Calories Jarrod burned on Sunday.
A. $320-\mathrm{c}=647.5$
B. $320+647.5=c$
C. $320+\mathrm{c}=647.5$
D. $647.5+c=320$
2. Maggie and her sister bought a gift for their mother that cost $\mathbf{\$ 5 4 . 7 5}$. Maggie contributed $\mathbf{\$ 2 6}$ to the cost of the gift. Write an addition equation that could be used to find how much money Maggie's sister contributed to the gift.
A. $54.75+26=m$
B. $54.75-26=m$
C. $26+m=54.75$
D. $26-m=54.75$
3. A piece of material measures $\mathbf{3 8 . 2 5}$ inches. Courtney cuts the piece of material into two pieces. One piece measures 19.5 inches. Write an addition equation that could be used to find the length of the other piece of material.
A. $19.5+38.25=m$
B. $19.5-\mathrm{m}=38.25$
C. $38.25+m=19.5$
D. $19.5+m=38.25$
4. On a two-day car trip, the Roberts family drove a total of 854.25 miles. On Day 1, the family drove 497.75 of those miles. Write an addition equation that could be used to find how manty miles the Roberts family drove on Day 2 on their trip.
A. $497.75+d=854.25$
B. $854.25-\mathrm{d}=497.75$
C. $854.25+497.75=\mathrm{d}$
D. $854.25+497.75=\mathrm{d}$

Page 367 Example: 5-10

5. Solve the following equation $12=6 x$
A. $12 \div 6$
B. $6 \div 12$
C. 72
D. 2
6. Solve the following equation $3 z=15$
A. $15 \div 3$
B. 5
C. $3 \div 15$
D. 45
7. Solve the following equation $\frac{3}{4} z=\frac{2}{3}$
A. $\frac{8}{12}$
B. $\frac{2}{4}$
C. $\frac{1}{2}$
D. $\frac{8}{9}$
8. Solve the following equation $\frac{1}{2}=\frac{5}{8} w$
A. 0.8
B. $\frac{10}{8}$
C. 1.52
D. $\frac{5}{4}$
9. Solve the following equation $60.536=9.2 j$
A. 0.0658
B. 0.658
C. 6.58
D. 65.82
10. Solve the following equation
A. 0.412
B. 4.12
C. 41.2
D. 412

Page 367 Example: 1 - 4

1. Maribel and some friends went to an adventure park. The total cost of their tickets was $\$ 374$ and each person paid $\mathbf{\$ 4 6 . 7 5}$. Write a multiplication equation that can be used to find how many people bought tickets to the adventure park.
A. $46.75=374 \mathrm{p}$
B. $46.75 p=374$
C. $340(46.75)=p$
D. $46.75 \div p=360$
2. It takes Samuel $\frac{1}{5}$ hour to walk a mile. Yesterday, Samuel walked for $1 \frac{1}{2}$ hours .Write a multiplication equation that can be used to find the number of miles Samuel walked.
A. $\mathbf{1} \frac{1}{2} m=\frac{1}{5}$
B. $\frac{1}{2} m=\frac{1}{5}$
C. $\frac{1}{5} m=1 \frac{1}{2}$
D. $1 \frac{1}{2} m=\frac{1}{5}$
3. The distance around a lake is $\mathbf{2 . 6}$ miles. On Saturday, Doug biked a total of $\mathbf{1 8 . 2}$ miles around the lake. Write a multiplication equation that can be used to find how many times Doug biked around the lake.
A. $2.6=18.2 t$
B. $2.6 \div \mathrm{t}=18.2$
C. $2.6(18.2)=\mathrm{t}$
D. $2.6 \mathrm{t}=18.2$
4. An express delivery company charges $\$ 3.25$ per pound to mail a package. Georgia paid $\$ 9.75$ to mail a package. Write a multiplication equation that can be used to find the weight of the package in pounds.
A. $9.75 p=3.25$
B. $3.25 p=9.75$
C. $3.25 \times 9.75=p$
D. $(9.75) p=3.25$

Page 375 Example: 5-10

5. Solve the following equation $6=\frac{j}{8}$
A. $j=6 \div 8$
B. $j=8 \div 6$
C. $j=48$
D. $j=1$
6. Solve the following equation $\frac{k}{7}=7$
A. $k=1$
B. $k=14$
C. $\mathrm{k}=47$
D. $k=49$
7. Solve the following equation $\frac{Z}{4}=\frac{2}{3}$
A. $z=3$
B. $z=8$
C. $\mathrm{z}=\frac{8}{4}$
D. $z=2 \frac{2}{3}$
8. Solve the following equation $\frac{1}{2}=\frac{w}{8}$
A. $w=4$
B. $w=2$
C. $w=8$
D. $w=\frac{4}{8}$
9. Solve the following equation $\frac{p}{9.2}=5.31$
A. $p=4.8852$
B. $p=48.852$
C. $\mathrm{p}=488.52$
D. $p=4885.2$
10. Solve the following equation $\frac{x}{1.3}=1.94$
A. $x=1.49$
B. $x=25.22$
C. $x=2.522$
D. $x=14.9$

Page 413 Example: 1-5

1. The table shows the total cost c of buying t movie tickets. Write an equation to represent the relationship between c and t.
A. $\mathrm{t}=7 \mathrm{c}$
B. $\mathrm{c}=7 t$
C. $\mathrm{c}=t+7$

Number of Tickets, t	Total Cost $(\$), c$
1	7
2	14
3	21
4	28

D. $\mathrm{c}=2 t+5$
2. The table shows the total number of pencils p in b boxes. Write an equation to represent the relationship between p and b.
A. $\mathrm{p}=b+11$
B. $b=12 p$
C. $p=b+12$
D. $\mathrm{p}=12 b$

Number of Boxes, \boldsymbol{b}	Total Number of Pencils, \boldsymbol{p}
1	12
2	24
3	36
4	48

3. The table shows the total cost of bowling any number of games and renting bowling shoes. Write a two-step equation to represent the total cost for bowling games.
A. $\mathrm{c}=4 g+1$
B. $\mathrm{c}=2 g+4$
C. $\mathrm{c}=4 g+2$
D. $\mathrm{c}=4 g-2$

Number of Games, \boldsymbol{g}	Total Cost $(\$), \boldsymbol{c}$
1	6
2	10
3	14
4	18

4. The table shows the total cost of renting a canoe based on the number of hours and a one-time rental fee. Write a two-step equation to represent the total cost c of renting a canoe for h hours.
A. $c=11 h+5$
B. $\mathrm{c}=11 h-5$
C. $\mathrm{c}=11 \mathrm{~h}$
D. $\mathrm{c}=5 h+11$

Number of Hours, \boldsymbol{h}	Total Cost $(\$), \boldsymbol{c}$
1	16
2	27
3	38
4	49

5. Open Response The table shows the total cost of belonging to a fitness center based on the number of months and a one-time registration fee. Write a two-step equation to represent the total cost c for belonging to the fitness center for m months.
A. $m=15 c+10$
B. $\mathrm{c}=15 \mathrm{~m}$
C. $\mathrm{c}=15 m-10$
D. $\mathrm{c}=15 m+10$

Number of Months, m	Total Cost $(\$), c$
1	25
2	40
3	55
4	70

Page 421 Example: 1-4

1. The equation $p=144 b$ represents the number of pencils p in b boxes. Graph the relationship on the coordinate plane.

2. The equation $c=2 b+6$ represents the total cost c of b sets of beads and one necklace string. Graph the relationship on the coordinate plane.

3. The graph shows the total cost c of buying one large bucket of popcorn and d large drinks. Write an equation from the graph that could be used to find the total cost c if you buy one large bucket of popcorn and d large drinks.
A. $d=4 c+8$
B. $\mathrm{c}=4 \mathrm{~d}-8$
C. $c=8 d+4$
D. $c=4 d+8$

Drinks
4. The graph shows the total cost C of buying one parking pass and t tickets to a concert. Write an equation from the graph that could be used to find the total cost c if you buy one parking pass and tickets to a concert.
A. $\mathrm{t}=20 \mathrm{c}+10$
B. $\mathrm{c}=20 \mathrm{t}$
C. $c=20 t-10$
D. $c=20 t+10$

Page 293 Example: 7-9

Evaluate the expression when $a=4, b=3$ and $c=\frac{1}{3}$
7. $(3 a+18 c) \div b^{2} \quad$ (Showing steps)
$.\left(3 a+1 .+\times . . \frac{1}{3}\right) . \ldots .3^{2}$
$(12+6) \div 9$
(18) $\div 9=2$

Evaluate the expression when $a=4, b=3$ and $c=\frac{1}{3}$
8. $\left(a^{2}+12 c\right) \div(7 b-1) \quad$ (Showing steps)
$\left(4^{2}+12 \times \ldots \frac{1}{3}\right) \div(7 \times 3-1)$
$(16+4) \div(7 \times 3-1$. $(20) \div(20)=1$

Evaluate the expression when $a=4, b=3$ and $c=\frac{1}{3}$
9. $(2 b+3 a)\left(c^{2}\right)$ (Showing steps)
$(2 \times 3+3 \times 4)\left(\frac{1}{3}\right)^{2}$
$\left(6+\ldots\left(\frac{1}{6}\right)\right.$
18....... $\frac{1}{9} .=2$

Page 403 Example: 2-5

2. Joshua has a coupon for $\$ 1.50$ off his purchase at the souvenir shop. The total cost C is equal to the cost of his purchase p minus $\$ 150$. The rule is $p-150$. Complete the table using the rule to find the total cost if his purchase is $\mathbf{\$ 5 6 7}$. $\mathbf{\$ 8} \mathbf{3 4}$, or $\mathbf{\$ 1 1 . 9 7}$.

Input, Cost of Purchase ($\$$) p	Rule $p-1.50$	Output, Total Cost $(\$), c$
5.67	$5.67-1,50$	4.17
8.34	$8.34-1.50$	6.84
11.97	$11.97-1.50$	10.47

3. Miranda has a coupon for $\$ 0.75$ off any salad at a restaurant. The total cost \mathbf{c} is equal to the cost of her salad s minus $\$ 0.75$. The rule is $\mathbf{s} \mathbf{0 . 7 5}$. Complete the table using the rule to find the total cost if her salad costs $\mathbf{\$ 2 . 7 9}$. $\mathbf{\$ 3 . 5 5}$, or $\mathbf{\$ 4 . 2 5}$.

Input, Cost of Salad ($(5), s$	Rule $s-0.75$	Output, Total Cost ($\$$), c
2.79	$2.79-0.75$	2.04
3.55	$3.55-0.75$	2.80
4.25	$4.25-0.75$	3.50

4. Avery is buying material by the yard to make bags. The material costs $\$ 4.98$ per yard .The total cost C of y yards is equal to 4.98 times y. Complete the table to find the number of yards Avery purchased if the total cost is $\mathbf{\$ 1 4 . 9 4} \mathbf{\$ 2 9 . 8 8}$, or $\mathbf{\$ 4 4 . 8 2}$.

Input, Number of Yards, y	Rule $4.98 y$	Output, Total Cost $(\$), c$
3	4.98×3	14.94
6	4.98×6	29.88
9	4.98×9	44.82

5. Each pie at a bakery costs $\$ 9.50$. The total cost c of p pies is equal to 9.50 times p. Complete the table to find the number of pies purchased if the total cost is $\mathbf{\$ 1 9 . 0 0} \mathbf{\$ 2 8 . 5 0}$, or \$47.50.

Input, Number of Pies, p	Rule $9.50 p$	Output, Total Cost ($\$ \mathbf{~}), \mathrm{c}$
2	9.5×2	19.00
3	9.5×3	28.50
5	9.5×5	47.50

Page 427, 428 Example: 2-4
2. Carmelo earns a weekly allowance of $\mathbf{\$} \mathbf{5}$ plus an additional $\mathbf{\$ 0 . 7 5}$ for each chore that he completes. Represent the relationship between the total earned t and the number of chores completed \mathbf{c} with an equation, a table, and a graph.
a. Represent the relationship with an equation
..................... $\mathrm{t}=0.75 \mathrm{~F}+\mathrm{F}+5$
b. Represent the relationship with a table.

Number of Chores, c	Total Earned $(\$), t$
1	5.75
2	6.50
3	$\mathbf{7 . 2 5}$
4	$\mathbf{8 . 0 0}$

c. Represent the relationship with a graph.

3. The table shows the earnings for each pie sold at the sixth grade bake sale. Represent the relationship between the number of pies sold p and the total earnings e with an equation.
A. $p=6 \mathrm{e}$
B. $\mathrm{e}=6 p$
C. $e=\frac{p}{6}$
D. $p=\frac{\mathrm{e}}{6}$

Number of Pies, \boldsymbol{p}	Total Earnings $(\$), \boldsymbol{e}$
1	6
2	12
3	18

4. Zari is comparing the costs of having cupcakes delivered from two different bakeries. Betty's Bakery offers free delivery and sells cupcakes by the dozen. The table shows the total cost c of d dozens from Betty's Bakery. The Sweet Shope charges $\mathbf{\$ 2 0}$ for delivery and $\$ 18$ per dozen. The equation $c=18 d+20$ represents the total cost c of d dozens of cupcakes and delivery from the Sweet Shop. If Zari has \$110 to spend, which bakery should she use to order the greatest number of cupcakes? Explain

Number of Dozens
of Aipcakes, d of Cupcakes, d
A. The two bakeries are the same .
B. The Sweet Shoppe Bakery.
C. The Betty's Bakery.
D. No enough information

1	24
2	48
3	72

Explain:

The equation for betty's bakery shown from the table is ($\mathrm{c}=24 \mathrm{~d}$)
C $=24 \mathrm{~d}$
$110=24 \mathrm{~d}$
$d=4.58$
The equation for sweet shoppe is ($\mathrm{c}=18 \mathrm{~d}+20$)
C = $18 \mathrm{~d}+20$
$110=18 \mathrm{~d}+20$
$110-20=18 \mathrm{~d}$
$90=18 \mathrm{~d}$
d $=5$

So Zari can order the greatest number of cupcakes from sweet shoppe.

