تم تحميل هذا الملف من موقع المناهج الإماراتية # ملخص بدون أمثلة وفق الهيكل الوزاري منهج انسباير موقع المناهج ← المناهج الإماراتية ← الصف التاسع العام ← علوم ← الفصل الأول ← ملخصات وتقارير ← الملف تاريخ إضافة الملف على موقع المناهج: 10:16:11 2024-11-10 ملفات ا كتب للمعلم ا كتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس المزيد من مادة علوم: ## التواصل الاجتماعي بحسب الصف التاسع العام صفحة المناهج الإماراتية على فيسببوك الرياضيات اللغة الانجليزية اللغة العربية التربية الاسلامية المواد على تلغرام ## المزيد من الملفات بحسب الصف التاسع العام والمادة علوم في الفصل الأول | الهيكل الوزاري الجديد المسار العام منهج بريدج | 1 | |---|---| | أسئلة مراجعة نهائية منهج انسباير | 2 | | عرض بوربوينت درس قصة مادتين كيميائيتين | 3 | | عرض بوربوينت درس تغيرات المادة | 4 | | أسئلة الامتحان النهائي الورقي بريدج | 5 | #### 1. The scientific method #### 2. Base quantities and their units | Base Quantity | Base Unit | Symbol | |-----------------------|-----------|--------| | Length | meter | m | | Mass | kilogram | kg | | Time | second | S | | Temperature | kelvin | K | | Amount of a substance | mole | mol | | Electric current | ampere | А | | Luminous intensity | candela | cd | #### 3. Significant figures Rule 1: Non-zero digits are always significant. 123456789 Rule 2: "sandwich zeros" – any zeros between two significant digits are significant. 1002 , 123.0048 , 2.004 Rule 3: Trailing zeros are significant if there is a decimal point. 43.000 , 23.2300 , 1000. 320.000 , 1000 Rule4: leading zeros are not significant. 0.02 , 0.22 , 0.0045 Rule 5: in scientific notation, leave the (10^) and look at the number only and apply the rules normally 2.34×10^{-9} , 1000×10^{5} , 0.005×10^{8} 0.0500×10^{7} #### 4. Rounding results - Add and subtract: answers will have the least number of decimal places 1.871 + 3.2214 = 5.002 - Multiply and divide: answers will have the least number of significant figures. $2.17 \times 1.179 = 2.56$ #### 4. Rounding results Accuracy: describes how close the experimental measurements are to the real value Precision: how close the experimental measurements to each other. ## تلخيص المادة حسب الهيكل ### Summery as per Eot #### 4. Rounding results The temperature inside a fridge is 38 F 3 thermometers (A, B, C) were tested to measure the temperature Judge the accuracy and precision of each thermometer | Temperatures gained
from sensor C
testing, degrees F | | 49.6 | |--|----|---------| | | | 49.5 | | | | 49.7 | | | | 49.9 | | | | 49.9 | | inaccurate | Pr | ecise 1 | #### 5. Dependent and independent variables **Independent variable:** quantity **changed** by the scientist during the experiment Dependent variable: quantity measured by the scientist. it changes with (depends on) the independent variable | variable | Dependent
variable | |--------------------------------|--------------------------| | Mass Attached
to Spring (g) | Length of
Spring (cm) | | 0 | 13.7 | | 5 | 14.1 | | 10 | 14.5 | | 15 | 14.9 | | 20 | 15.3 | | 25 | 15.7 | | 30 | 16.0 | | 35 | 16.4 | | | | ### 6. Coordinate system, position and distance - <u>Coordinate system</u>: a system used to describe the location of objects relative to a reference point (origin) - origin: is the point at which all variables in a coordinate system have the value zero.(النقطة اللي بنقيس) والاتجاهات والاتجاهات - distance (d)(m): is the entire length of an object's path, even if the object moves in many directions. طول المسار الكامل الذي قطعة الجسم - Displacement: it is a vector quantity that describes the change in position of an object. $$\Delta x = x_f - x_i$$ #### 7. Scalars and vectors - Scalar: a quantity that is just a number without any direction, example: distance, mass, time, temperature, speed, work, energy, pressure - Vector: A quantity that has both magnitude and direction. Example: position, displacement, velocity Acceleration, force #### 8. Position time graphs The object is at rest if the line is straight and it's displacement Δx is zero The object is moving with constant speed to the right (or up) if the line is an incline and its displacement Δx is positive what is the displacement of the object between 20 and 30 seconds $\Delta x = x_f - x_i$ = 160 - 100 = 60 m The object is moving with constant speed to the left (or down) if the line is a decline, and its displacement Δx is negative. what is the displacement of the object between 20 and 50 seconds $\Delta x = x_{1} - x_{1}$ = 0 - 110 = -110 m The **steeper** the line in the position –time graph, the faster the object. In a position–time graph, The slope of the line is the <u>velocity</u> $$\overline{V} = \frac{\Delta x}{\Delta t} \longrightarrow \overline{V} = \frac{x_f - x_i}{t_f - t_i}$$ what's the Velocity of the object? $\overline{V} = \frac{X_f - X_i}{\epsilon_f - \epsilon_i} = \frac{150 - 2s}{30 - c_i}$ $$V = \frac{\lambda_f - \lambda_i}{t_f - t_i} = \frac{30 - 0}{30 - 0}$$ $V = 4.16 \text{ m/s}$ If the lines cross, the objects **meet at that point in time** #### 9. Motion with constantt velocity equation Final position $$x_f = \overline{V}t + x_i$$ Initial position الموقع النهائي meter (m) $velocity$ time $velocity$ time $velocity$ #### 10. Uniform and non uniform motion An object's motion can be uniform or nonuniform. Nonuniform motion means that the object is experiencing a change in its velocity **Uniform motion** Object moving at constant speed nonuniform motion **Object accelerating** nonuniform motion **Object decelerating** #### 11. Average acceleration Average Acceleration (a) (m/s^2) :the rate of change of an object's velocity. $$\overline{a} = \frac{\Delta v}{\Delta t}$$ \rightarrow $\overline{a} = \frac{v_f - v_i}{t_f - t_i}$ v_f : the final velocity $oldsymbol{v_f}$: the final velocity Acceleration is equal to the slope in the velocity -time graph Incline → Positive acceleration decline → negative acceleration More slope → more acceleration اذا كان الخط فوق محور الزمن السرعة موجبة الحركة لليمين (او الأعلى) اذا كان الخط تحُت محور الزمن السرعة سالبة واتجاه الحركة لليسار (او الاسفل) ## اذا كان الخط يبتعد عن الصفر , فأن الجسم يتسارع اذا كان الخط يقترب للصفر فأن الجسم يتباطئ A: moving at a constant velocity to the right. B: accelerating (speeding up) to the right C: decelerating (slowing down) to the right D: decelerating to the left, stopping, then accelerating to the right. E: moving at constant velocity to the left #### 12. Direction of acceleration Accelerating $\rightarrow v$ and a same direction Decelerating $\rightarrow v$ and a opposite directions DON'T forget!: Direction of motion always same as direction of velocity. #### Motion with constant acceleration 13. - Motion with constant acceleration: a type of motion where the object experiences a constant increase or decrease in its velocity - For an object moving with a constant acceleration to the right, the position time graph looks like a curve, while the velocity time graph is an incline #### 14. displacement from velocity-time graph To find the displacement from a velocity time graph, we find the area under the curve $area = \frac{1}{2} \times base \times height$ $area = length \times width$ #### 13. Motion with constant acceleration equation $$V_f = V_i + a\Delta t$$ $$V_f^2 = V_i^2 + 2a\Delta x$$ $$\Delta x = V_i \Delta t + \frac{1}{2} a \Delta t^2$$ $$\Delta x = x_f - x_i$$ | quantity | اسم الكمية | الرمز Symbol | وحدة القياس Unit | |------------------|-------------------|--------------|------------------| | Final velocity | السرعة النهائية | V_f | m/s, km/h | | Initial velocity | السرعة الابتدائية | V_i | m/s, km/h | | acceleration | التسارع | а | m/s^2 | | Time interval | الفترة الزمنية | Δt | s, min | | displacement | الازاحة | Δx | cm, m , km | | Initial position | الموقع الابتدائي | x_i | cm, m , km | | Final position | الموقع النهائي | x_f | cm, m, km | #### To solve problems: - 1. Write the knowns and unknowns in symbols, sketch the problem. - 2. Make sure the units are unified. (one unit for distance and one unit for time) - 3. Choose the suitable equation - The equation must have the unknown - > The other quantities in the equation must be known. - 4. <u>Substitute</u> and solve for the unknown. #### Key words and their meanings: "slows" → acceleration opposite sign of velocity "at rest", "stops", "stationery" → v = 0 m/s #### most important conversions اهم التحويلات $$Km \times 1000 \longrightarrow m$$ $cm \div 100 \longrightarrow m$ $km/h \times 0.28 \longrightarrow m/s$ $m/s \times 3.6 \longrightarrow km/h$ $min \times 60 \longrightarrow s$ $hr \times 3600 \longrightarrow s$ $mm \div 1000 \longrightarrow m$ #### Most important formulas | You may use the following equations | | | |--|---|--| | $\Delta x = x_f - x_i$ | $\overline{\boldsymbol{v}} \equiv \frac{\Delta \boldsymbol{x}}{\Delta t} = \frac{\boldsymbol{x}_{f} - \boldsymbol{x}_{i}}{t_{f} - t_{i}}$ | | | $\mathbf{x} = \overline{\mathbf{v}}t + \mathbf{x}_{i}$ | $\overline{\boldsymbol{a}} \equiv \frac{\Delta \boldsymbol{v}}{\Delta t} = \frac{\boldsymbol{v}_{f} - \boldsymbol{v}_{i}}{t_{f} - t_{i}}$ | | | $\mathbf{v}_{f} = \mathbf{v}_{i} + \overline{\boldsymbol{\sigma}} \Delta t$ | $\mathbf{x}_{f} = \mathbf{x}_{i} + \mathbf{v}_{i}t_{f} + \frac{1}{2}\overline{\mathbf{a}}t_{f}^{2}$ | | | $v_f^2 = v_i^2 + 2\overline{a}(x_f - x_i)$ | $g = -9.8 \text{ m/s}^2$ | |