تم تحميل هذا الملف من موقع المناهج الإماراتية

ملخص بدون أمثلة وفق الهيكل الوزاري منهج انسباير

موقع المناهج ← المناهج الإماراتية ← الصف التاسع العام ← علوم ← الفصل الأول ← ملخصات وتقارير ← الملف

تاريخ إضافة الملف على موقع المناهج: 10:16:11 2024-11-10

ملفات ا كتب للمعلم ا كتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس المزيد من مادة علوم:

التواصل الاجتماعي بحسب الصف التاسع العام

صفحة المناهج الإماراتية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف التاسع العام والمادة علوم في الفصل الأول

الهيكل الوزاري الجديد المسار العام منهج بريدج	1
أسئلة مراجعة نهائية منهج انسباير	2
عرض بوربوينت درس قصة مادتين كيميائيتين	3
عرض بوربوينت درس تغيرات المادة	4
أسئلة الامتحان النهائي الورقي بريدج	5

1. The scientific method

2. Base quantities and their units

Base Quantity	Base Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Temperature	kelvin	K
Amount of a substance	mole	mol
Electric current	ampere	А
Luminous intensity	candela	cd

3. Significant figures

Rule 1: Non-zero digits are always significant. 123456789

Rule 2: "sandwich zeros" – any zeros between two significant digits are significant. 1002 , 123.0048 , 2.004

Rule 3: Trailing zeros are significant if there is a decimal point.

43.000 , 23.2300 , 1000. 320.000 , 1000

Rule4: leading zeros are not significant. 0.02 , 0.22 , 0.0045

Rule 5: in scientific notation, leave the (10^) and look at the number only and apply the rules normally 2.34×10^{-9} , 1000×10^{5} , 0.005×10^{8} 0.0500×10^{7}

4. Rounding results

- Add and subtract: answers will have the least number of decimal places
 1.871 + 3.2214 = 5.002
- Multiply and divide: answers will have the least number of significant figures. $2.17 \times 1.179 = 2.56$

4. Rounding results

Accuracy: describes how close the experimental measurements are to the real value Precision: how close the experimental measurements to each other.

تلخيص المادة حسب الهيكل

Summery as per Eot

4. Rounding results

The temperature inside a fridge is 38 F

3 thermometers (A, B, C) were tested to measure the temperature
Judge the accuracy and precision of each thermometer

Temperatures gained from sensor C testing, degrees F		49.6
		49.5
		49.7
		49.9
		49.9
inaccurate	Pr	ecise 1

5. Dependent and independent variables

Independent variable: quantity **changed** by the scientist during the experiment

Dependent variable: quantity measured by the scientist. it changes with (depends on) the

independent variable

variable	Dependent variable
Mass Attached to Spring (g)	Length of Spring (cm)
0	13.7
5	14.1
10	14.5
15	14.9
20	15.3
25	15.7
30	16.0
35	16.4

6. Coordinate system, position and distance

- <u>Coordinate system</u>: a system used to describe the location of objects relative to a reference point (origin)
- origin: is the point at which all variables in a coordinate system have the value zero.(النقطة اللي بنقيس) والاتجاهات والاتجاهات

- distance (d)(m): is the entire length of an object's path, even if the object moves in many directions.
 طول المسار الكامل الذي قطعة الجسم
- Displacement: it is a vector quantity that describes the change in position of an object.

$$\Delta x = x_f - x_i$$

7. Scalars and vectors

- Scalar: a quantity that is just a number without any direction, example: distance, mass, time, temperature, speed, work, energy, pressure
- Vector: A quantity that has both magnitude and direction. Example: position, displacement, velocity Acceleration, force

8. Position time graphs

The object is at rest if the line is straight and it's displacement Δx is zero

The object is moving with constant speed to the right (or up) if the line is an incline and its displacement Δx is positive

what is the displacement of the object between 20 and 30 seconds $\Delta x = x_f - x_i$ = 160 - 100 = 60 m

The object is moving with constant speed to the left (or down) if the line is a decline, and its displacement Δx is negative.

what is the displacement of the object between 20 and 50 seconds $\Delta x = x_{1} - x_{1}$ = 0 - 110 = -110 m

The **steeper** the line in the position –time graph, the faster the object. In a position–time graph, The slope of the line is the <u>velocity</u>

$$\overline{V} = \frac{\Delta x}{\Delta t} \longrightarrow \overline{V} = \frac{x_f - x_i}{t_f - t_i}$$

what's the Velocity of the object? $\overline{V} = \frac{X_f - X_i}{\epsilon_f - \epsilon_i} = \frac{150 - 2s}{30 - c_i}$

$$V = \frac{\lambda_f - \lambda_i}{t_f - t_i} = \frac{30 - 0}{30 - 0}$$
 $V = 4.16 \text{ m/s}$

If the lines cross, the objects **meet at that point in time**

9. Motion with constantt velocity equation

Final position
$$x_f = \overline{V}t + x_i$$
 Initial position الموقع النهائي meter (m) $velocity$ time $velocity$ time $velocity$ $velocity$

10. Uniform and non uniform motion

An object's motion can be uniform or nonuniform.

Nonuniform motion means that the object is experiencing a change in its velocity

Uniform motion Object moving at constant speed

nonuniform motion **Object accelerating**

nonuniform motion **Object decelerating**

11. Average acceleration

Average Acceleration (a) (m/s^2) :the rate of change of an object's velocity.

$$\overline{a} = \frac{\Delta v}{\Delta t}$$
 \rightarrow $\overline{a} = \frac{v_f - v_i}{t_f - t_i}$ v_f : the final velocity

 $oldsymbol{v_f}$: the final velocity

Acceleration is equal to the slope in the velocity -time graph

Incline → Positive acceleration

decline → negative acceleration

More slope → more acceleration

اذا كان الخط فوق محور الزمن السرعة موجبة الحركة لليمين (او الأعلى) اذا كان الخط تحُت محور الزمن السرعة سالبة واتجاه الحركة لليسار (او الاسفل)

اذا كان الخط يبتعد عن الصفر , فأن الجسم يتسارع اذا كان الخط يقترب للصفر فأن الجسم يتباطئ

A: moving at a constant velocity to the right.

B: accelerating (speeding up) to the right

C: decelerating (slowing down) to the right

D: decelerating to the left, stopping, then accelerating to the right.

E: moving at constant velocity to the left

12. Direction of acceleration

Accelerating $\rightarrow v$ and a same direction Decelerating $\rightarrow v$ and a opposite directions

DON'T forget!: Direction of motion always same as direction of velocity.

Motion with constant acceleration 13.

- Motion with constant acceleration: a type of motion where the object experiences a constant increase or decrease in its velocity
- For an object moving with a constant acceleration to the right, the position time graph looks like a curve, while the velocity time graph is an incline

14. displacement from velocity-time graph

To find the displacement from a velocity time graph, we find the area under the curve

 $area = \frac{1}{2} \times base \times height$

 $area = length \times width$

13. Motion with constant acceleration equation

$$V_f = V_i + a\Delta t$$

$$V_f^2 = V_i^2 + 2a\Delta x$$

$$\Delta x = V_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$\Delta x = x_f - x_i$$

quantity	اسم الكمية	الرمز Symbol	وحدة القياس Unit
Final velocity	السرعة النهائية	V_f	m/s, km/h
Initial velocity	السرعة الابتدائية	V_i	m/s, km/h
acceleration	التسارع	а	m/s^2
Time interval	الفترة الزمنية	Δt	s, min
displacement	الازاحة	Δx	cm, m , km
Initial position	الموقع الابتدائي	x_i	cm, m , km
Final position	الموقع النهائي	x_f	cm, m, km

To solve problems:

- 1. Write the knowns and unknowns in symbols, sketch the problem.
- 2. Make sure the units are unified. (one unit for distance and one unit for time)
- 3. Choose the suitable equation
 - The equation must have the unknown
 - > The other quantities in the equation must be known.
- 4. <u>Substitute</u> and solve for the unknown.

Key words and their meanings:

"slows" → acceleration opposite sign of velocity

"at rest", "stops", "stationery" → v = 0 m/s

most important conversions اهم التحويلات

$$Km \times 1000 \longrightarrow m$$
 $cm \div 100 \longrightarrow m$
 $km/h \times 0.28 \longrightarrow m/s$
 $m/s \times 3.6 \longrightarrow km/h$
 $min \times 60 \longrightarrow s$
 $hr \times 3600 \longrightarrow s$
 $mm \div 1000 \longrightarrow m$

Most important formulas

You may use the following equations		
$\Delta x = x_f - x_i$	$\overline{\boldsymbol{v}} \equiv \frac{\Delta \boldsymbol{x}}{\Delta t} = \frac{\boldsymbol{x}_{f} - \boldsymbol{x}_{i}}{t_{f} - t_{i}}$	
$\mathbf{x} = \overline{\mathbf{v}}t + \mathbf{x}_{i}$	$\overline{\boldsymbol{a}} \equiv \frac{\Delta \boldsymbol{v}}{\Delta t} = \frac{\boldsymbol{v}_{f} - \boldsymbol{v}_{i}}{t_{f} - t_{i}}$	
$\mathbf{v}_{f} = \mathbf{v}_{i} + \overline{\boldsymbol{\sigma}} \Delta t$	$\mathbf{x}_{f} = \mathbf{x}_{i} + \mathbf{v}_{i}t_{f} + \frac{1}{2}\overline{\mathbf{a}}t_{f}^{2}$	
$v_f^2 = v_i^2 + 2\overline{a}(x_f - x_i)$	$g = -9.8 \text{ m/s}^2$	