تم تحميل هذا الملف من موقع المناهج البحرينية

الملف نموذج إجابة أسئلة امتحان نهاية الفصّل الأوّل مقرر ريض 151 من الملف الموذج إجابة أسئلة المتحان نهاية الفصّل الأوّل مقرر ريض 151 من

موقع المناهج ← ← الصف الأول الثانوي ← رياضيات ← الفصل الأول ← الملف

روابط مواقع التواصل الاجتماعي بحسب الصف الأول الثانوي

روابط مواد الصف الأول الثانوي على تلغرام

التربية الاسلامية اللغة العربية العربية الانجليزية الرياضيات

المزيد من الملفات بحسب الصف الأول الثانوي والمادة رياضيات في الفصل الأول العام نموذج أسئلة امتحان نهاية الفصّل الأوّل مقرر ريض 151 من العام الدراسي 2018/2019 و نموذج إحابة أسئلة امتحان نهاية الفصّل الأوّل مقرر ريض 151 من العام الدراسي 2018/2017 و نموذج إجابة أسئلة امتحان نهاية الفصّل الأوّل مقرر ريض 151 من العام الدراسي 2018/2017 من العام الدراسي 151 من العام الدراسي 151 من العام الدراسي 2018/2017 من العام الدراس 2018/2017 من العام الدراس 2018/2017 من العام العام كليدراس 2018/2017 من العام كليدراس 201

, 10	الفصل الأ	باضبات في	الثانوي والمادة	الصف الأول	الملفات بحسب	المزيد من
7	-, O	يةيايا	/ · /			

أسئلة امتحان نهاية الفصّل الأوّل مقرر ريض 151 من العام الدراسي 2015 / 2016

5

لاحظ أن إجابة الامتحان في 5 صفحات

صفحة (1)

ريض151 المسار: توحيد المسارات والديني

50

مملكة البحرين

وزارة التربية والتعليم

نمسوذج الإجابسة

إدارة الامتحانات / قسم الامتحانات المركزبة

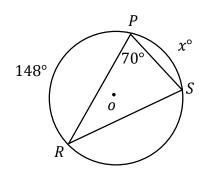
امتحان نهاية الفصل الدراسي الأول للتعليم الثانوي للعام الدراسي 2019/2018 م

اسم المقرر: الرياضيات 1 المسار: توحيد المسارات والديني

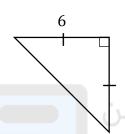
> الزمن: ساعتان رمز المقرر: ريض 151

ملاحظات:

- 1) أجب عن جميع أسئلة هذا الامتحان وعددها (4)، مبينًا خطوات حلَّك في جميع الأسئلة ما عدا السؤال الأول.
 - 2) القياسات الموضحة على الرسومات والأشكال تقريبية؛ لذا يجب التعامل معها كما وردت.

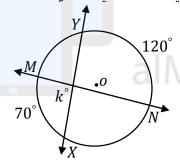

السؤال الأول: (9) درجات ﴿ دِرجَة لَكُلُّ فَقَرْهُ ﴾

حوّط رمز الإجابة الصحيحة في كلِّ مما يأتي، علمًا بأنه لا توجد سوى إجابة صحيحة واحدة لكل فقرة:

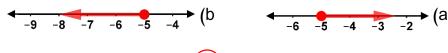

يمة x في الدائرة O المجاورة هي: x في الدائرة y0 المجاورة هي: y0° (a

- 120° ((d)
- 150° (c
- (2) إذا كانت القيمة الفعلية لمحيط دائرة تساوي 6π cm ؛ فإن طول قطر هذه الدائرة يساوي: $3\pi~cm$ (b 6 cm ((c) $6\pi cm$ (d 3 cm (a
- (3) إذا كان طول الوتر في المثلث ($90^\circ 60^\circ 30^\circ$) هو $\sqrt{3}$ ؛ فإن طول الضلع الأقصر في هذا المثلث يساوى:
 - $\sqrt{3}$ (d

- 8 (c $8\sqrt{3}$ (b $4\sqrt{3}$ (a)
 - (4) مجموعة الحل للمعادلة |x + 8| = -4 هي:
- $\{-8,8\}$ (c $\{-12,12\}$ (b $\{-4,4\}$ (a { }(d)

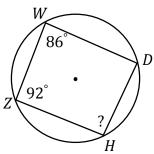


- في الدائرة O المجاورة، \widehat{PS} يساوي:
- 72° (b)
- 142° (a
- 20° (d
- 36° (c




- (6) طول الوتر في المثلث المجاور يساوي:
- 12 (b $6\sqrt{2}$ (a)
- $3\sqrt{2}$ (d $6\sqrt{3}$ (c

اذا تقاطع \overline{MN} ، \overline{XY} داخل الدائرة O ؛ فإن قيمة k في الشكل الآتي تساوي:



تمثیل حل المتباینة 2x > 10 علی خط الأعداد هو: (8)

(9) إذا كان WDHZ رباعي دائري ؛ فإن $m \angle H$ في الشكل الآتي يساوي:

- 94° ((b)
- 88° (a
- 92° (d
- 86° (c

ريض 151 المسار: توحيد المسارات والديني صفحة (3) لاحظ أن إجابة السؤال الثانى: (5، 5، 3،3) در جات (1) أو جد مجموعة حل المتباينة $6 \le |2x + 34|$ ، ثم مثلها على خط الأعداد.

1)
$$2x + 34 \ge 6$$
 $0 \le 2x + 34 \le -6$

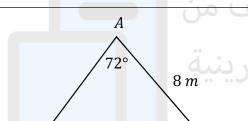
أو
$$2x + 34 \le -6$$

1
$$2x \ge 6 - 34$$
 $2x \le -6 - 34$
1/2 $2x \ge -28$ $2x \le -40$

$$2x \le -6 - 34$$

$$\cancel{1/2} \ 2x \ge -28$$

$$2x < -40$$


$$(\frac{1}{2}) x \ge -\frac{28}{2}$$
 $x \le -\frac{40}{2}$

$$x \le -\frac{40}{2}$$

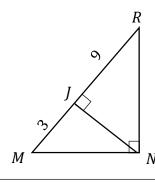
$$(1/2) x \ge -14$$

$$x \le -20$$

مجموعة الحل هي
$$\{x | x \le -20 \ \text{ig} \ x \ge -14 \ \}$$
 مجموعة الحل هي $\{x | x \le -20 \ \text{ig} \ x \ge -14 \ \text{ig} \ x \ge -14 \ \text{ig} \ \text{ig}$

15 m

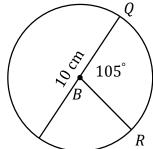
(2)أوجد *m∠B في المثلث المجاور، <u>لأقرب درجة</u>.*


$$\frac{\sin A}{a} = \frac{\sin B}{h}$$

$$\frac{\sin 72^{\circ}}{15} = \frac{\sin B}{8}$$

$$\sin B = \frac{8 \sin 72^{\circ}}{15}$$

$$m \angle B = \sin^{-1}\left(\frac{8\sin72^{\circ}}{15}\right) \approx 30^{\circ}$$



(3) أوجد MN في الشكل المجاور.

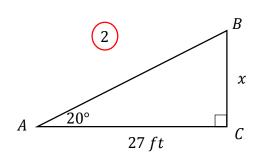
$$1 = \sqrt{(3)(3+9)}$$

$$(1) = \sqrt{36} = 6$$

(4) أوجد طول \widehat{QR} في الدائرة المجاورة التي مركزها B ، مُقرّبًا الى أقرب منزلة عشرية.

$$1 l = \frac{x^{\circ}}{360} \cdot 2\pi r$$

$$\begin{array}{c}
\boxed{1} \quad l = \frac{x^{\circ}}{360} \cdot 2\pi r \\
\boxed{1} = \frac{105^{\circ}}{360} \cdot 2\pi (5)
\end{array}$$


$$(1)$$
 $l \approx 9.2 cm$

ر ريد المسارات والديني صفحة (4) السؤال الثالث: (5، 4، 2،2) در جات

سطح مائل يُستعمل للقفز بالدراجات الهوائية يستند بأحد طرفيه على جدار قائم فيما يستند طرفه الآخر الذي يبعد عن قاعدة الجدار 27ft على سطح الأرض ليصنع معه زاوية قياسها 20°

أوجد ارتفاع الجدار عن سطح الأرض إلى أقرب قدم. (مثّل الموقف برسم توضيحي)

$$1 \tan A = \frac{BC}{AC_{\Upsilon}}$$

$$1 \tan 20^\circ = \frac{x}{27}$$

$$(\frac{1}{2}) x = 27 \tan 20^{\circ}$$

$$(1/2)$$
 $x \approx 10 ft$

$$|3x - 10| + 8 = 13$$
 كل المعادلة $|3x - 10| + 8 = 13$ $|3x - 10| = 13 - 8$ $(1/2)$ $|3x - 10| = 5$

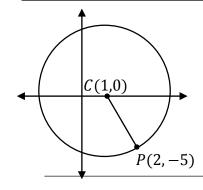
$$\boxed{1} \ 3x - 10 = 5$$

$$3x - 10 = -5$$

$$3x = 5 + 10 3x = -5 + 10$$

$$3x = -5 + 10$$

$$\frac{1}{2}$$
 3 $x = 15$


$$3x = 5$$

$$\sqrt{\frac{1}{2}}$$
 $x = \frac{15}{3}$

$$x=\frac{5}{2}$$

$$(\frac{1}{2})$$
 $x = 5$

$$x=5$$
 أو $x=\frac{5}{3}$ الحلان هما

(3) أوجد طول نصف القطر الدائرة C المجاورة ($P \cdot C$ نحيه: نصف قطر الدائرة C هو المسافة بين النقطتين C

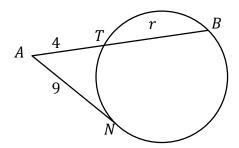
$$PC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$1 = \sqrt{(1 - 2)^2 + (0 + 5)^2}$$

$$\frac{1}{\sqrt{2}} = \sqrt{26}$$

6 cm وطول نصف قطر ها (2,0) ، وطول نصف قطر ها (4)

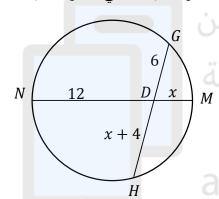
$$(x-h)^{2} + (y-k)^{2} = r^{2}$$


$$(x-2)^{2} + (y-0)^{2} = 6^{2}$$

$$(x-2)^{2} + y^{2} = 36$$

ريض 151 المسار: توحيد المسارات والديني السوال الرابع: (4، 4، 4) در جات

r مماسًا للدائرة كما في الشكل المجاور؛ فأوجد قيمة \overline{AN}



$$1$$
 81 = 16 + 4 r

$$\overbrace{\cancel{1/2}} 65 = 4r$$

$$r = \frac{65}{4} = 16.25$$

فأوجد قيمة x في الدائرة الآتية: HD=x+4 ، GD=6 ، DM=x ، ND=12 فأوجد قيمة x

$$\frac{1}{2}ND \cdot DM = HD \cdot DG$$

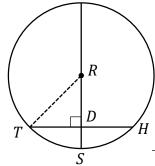
$$(1) 12(x) = 6(x+4)$$

$$12x = 6x + 24$$

$$\underbrace{1}_{1/2} 12x - 6x = 24$$

$$6x = 24$$

$$6x = 24$$


$$4x = 24$$

$$4x = 24$$

$$6x = 24$$

$$6x = 4$$

 $SD=4~in~^{\circ}RD=6~in~^{\circ}m~\widehat{TSH}=88^{\circ}~^{\circ}~^{\circ}R$ استعمل الدائرة المجاورة التي مركزها (3) للإجابة عما يأتى:

$$\widehat{mTS}$$
 (a

القطر \overline{RS} عمودي على الوتر \overline{TH} ، لذا ينصفه وينصف قوسه \overline{RS} الطالب \overline{RS}

$$1 m TS = \frac{88^{\circ}}{2} = 44^{\circ}$$

إذا لم يكتبها الطالب وحل بشكل صحيح لا يخسر شيء

TH

$$(1/2)$$
 $r = 4 + 6 = 10$ in (نصف قطر الدائرة)

$$(1/2)(TD)^2 = (TR)^2 - (RD)^2$$

$$1/2$$
 $TD = \sqrt{(10)^2 - (6)^2} = 8 \text{ in}$

$$(\frac{1}{2})$$
 $TH = 8 + 8 = 16$ in

﴿انتهت الإجابـــة تُراعى طرائق الحل الأخرى إن وجدت