تم تحميل هذا الملف من موقع المناهج البحرينية

ورقه عمل المتطابقات نصف زاويه

موقع المناهج ← المناهج البحرينية ← الصف الثالث الثانوي ← رياضيات ← الفصل الأول ← أوراق عمل ← الملف

تاريخ إضافة الملف على موقع المناهج: 21-12-2024 11:58:10

ملفات اكتب للمعلم اكتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة رياضيات:

التواصل الاجتماعي بحسب الصف الثالث الثانوي

صفحة المناهج البحرينية على فيسببوك

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الثالث الثانوي والمادة رياضيات في الفصل الأول

من الملقات بحسب الصف الثالث الثانوي والمادة رياضيات في الفضل الأول	المريد
ملخص دین 301	1
ملخص قوانين ريض 362	2
حل مذكرة ريض 261	3
بطاقة المراجعة الثانية	4
مذكرة الأنشطة الصّفية في الفصّل الرابع المتتابعات والمتسلسلات مقرر ريض 362	5

مملكة البحرين - وزارة التربية والتعليم _ مدرسة الرفاع الشرقي الثانوية للبنين - قسم الرياضيات

كراسة التدريبات (الرياضيات ٥)

ربعنی (۱۹۴)

عزيزي الطالب: كراسة التدريبات لا تغني عن الكتاب المدرسي وانماهي داعمة ومساندة للتعليم والتعلم

جزى الله خيرا الطالب

اسم الطالب

الشعبة

العتطابقات العثلثية لضعف الزاوية مفهوم أساسي العتطابقات الآتية صعيمة لقيم المجتلطانية $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $\cos 2\theta = 2\cos^2\theta - 1$ $\cos 2\theta = 1 - 2\sin^2\theta$ $\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$

تصویر وتجهیز/

ا.إبراهيم الخلاقي

الرفاع الشرقي الثانوية للبنين - ريض -٢٦٤ - العام الدراسي ١٩ -٢-٢-٢م

 $\sin 2\theta = 2 \sin \theta \cos \theta$

مملكة البحرين — وزارة التربية والتعليم ـ مدرسة الرفاع الشرقي الثانوية للبنين - قسم الرياضيات

***************************************	الشعة /	***************************************	 اسم الطالب / _
, لكون/	طموحي ال	· · · · · · · · · · · · · · · · · · ·	 هوايتي /
شعة	، اكاديمي /		أنا الطالب /

- ♦ الالتزام بموعد الحصة والتواجد داخل الصف قبل دخول المعلم، وعدم التأخر.
 - الالتزام بالهدوء وحسن الانصات أثناء الدرس.
 - 🍲 الالتزام بالنظافة والنظام وحسن الترتيب
 - أن أوفر جميع متطلبات الحصة من أدوات.
 - الدخول المتأخر للحصة سيكون ببطاقة من المشرف.
 - عدم الخروج أثناء الحصة إلا للضرورة، والرجوع بسرعة.
 - الاحترام المتبادل بيني وبين المعلم
 - الماء الواجبات والمهمات والاستعداد الجيد للمهمات المطلوبة
- الالتزام بمواعيد تسليم للهمات في الوقت المحدد لها، وفي حال عدم التسليم في الوقت تخصم من الدرجة.
 - العصة عدم استعمال الهاتف أثناء الحصة

أتعهد أنا معلم الرياضيات بالالتزام بالتالي:

- تعريف الطالب بالمقرر من اليوم الأول.
- تعريف الطالب بنظام توزيع الدرجات الخاصة بالمقرر ومواعيد تسليم التطلبات.
 - التقويم العادل للطلاب ومعاملتهم بالمثل.
 - التنويع في طرق التدريس بما يحقق فهم الطالب للمقرر واستيعابه الجيد له.
 - شرح وتوضيح المقرر للطلاب والانتهاء منه قبل موعد الامتحان النهائي.

		مواعيد - الأنشطة					اليوم والتاريخ	مواعيد
النهائي	المنتصف	اللاصفية	(£)	(*)	(*)	(b)	الامتحان	الامتحانات
		*					الدرجة	

وه ملاحظات عامة:

- ① لن يعاد الامتحان للطالب المتغيب إلا بعذر يسلم بعد يومين كحد أقصى.
- يعيد المعلم الامتحان للطالب المتغيب خلال أسبوع واحد من تقديمه كحد أقصى أو وفق ما يتفق عليه.
 - یمکنك عزیزي الطالب التواصل مع المعلم لأي سبب كان وسنسعى لأن نكون عند حسن الظن.

الطرف الثالث (ولي الأمر)

🗾 Bo.omar90

Telegram

Boomar90

الطرف الثاني (المعلم)

الطرف الأول (الطالب)

عزيزنا ولي الأمريمكنك التواصل مع المعلم ولقاءه وزيارة المدرسة خلال الساعات المدرسية المحددة من قبل الإدارة. يشكر قسم الرياضيات تعاونكم ويرحب بكم دوما ويتمنى لكم ولأبنائكم النجاح والتوفيق

> مديرالمدرسة أ. سامي فارس

المعلم الأول أ. محمود عاشور

الرفاع الشرقي الثانوية للبنين - ريض ١٥٢ - اعداد وتجميع أ/محمود عاشور العام الدراسي ١٥٠٠-٢٠١٩م

محتوى مساق الرياضيات للمستوى الثالث (توحيد المسارات / العلمي)

سنة الطبعة	عدد الساعات	رمز المساق	القصل المدراسي	اسم المساق
الطبعة الأولى 1434 هـ - 2013 م		261		
الطبعة الثانية 1436 هـ - 2015 م	4	ريض 364	الخامس	الرياضيات 5

فترة التدريس	التمارين المطلوبة	الامثلة المطلوبة	رمز الدرس	القصل
	جميع التمارين ماعدا 32 - 35	جميع الأمثلة	1-1	
قبل امتحان	جميع التمارين ما عدا 51	جميع الأمثلة	1 - 2	
منتصف القصل والتي	جميع التمارين ما عدا 17، 32، 37	جميع الأمثلة	1-3	لقصل (1)
	جميع التمارين ما عدا 9، 28 - 30	جميع الأمثلة	1-4	
سيشملها	جميع التمارين ما عدا 49 - 57	جميع الأمثلة	1-5	
جميغا	جميع التمارين ما عدا 28، 29، 38-50	جميع الأمثلة ما عدا تأكد 5B	2 - 1	لقصل (2)
	جميع التمارين ما عدا 28، 29، 32-38، 48-41	جميع الأمثلة	2-2	

			3-5	
	جميع التمارين ما عدا 5، 40 -44	جميع الأمثلة	***3 - 4	
		Ble Harris Sala	3435	لفصل (3)
	جميع التمارين ما عدا 13، 30-35، 99-49	جميع الأمثلة ما عدا 7	3 - 2	
القصل	جميع التمارين ماعدا 35-37	جميع الأمثلة ما عدا 7	**3 - 1	
بعد امتحان				
			2-5	لفصل (2)
1.00	جميع التمارين ما عدا 3-5، 14-20، 20-42	جميع الأمثلة ما عدا 4	2 - 4	(2) 1 11
	- جميع التمارين ما عدا 21-27، 31، 42-34	جميع الأمثلة ما عدا 7	*2 - 3	

^{* :} يُدرس درسا 1-3 و 3-3 قبل درس 3-2 ويتم حل أمثلته وتمارينه بدون التعزيز العددي.

^{** :} عند تقدير النهايات بيانيًا يُعطى التمثيل البياني للدالة، وفي تمارين الدرس يمكن الاستعانة بالآلة الحاسبة البيانية أو أي برمجية لتمثيل الدوال بيانيًا.

^{*** :} يُعطى مثال 1، ومثال 2 من درس 3 - 3 قبل مثال 4 في درس 4 - 3 ويكون تمثيل الدوال أو مشتقات الدوال غير مطلوب في التمارين.

المتطابقات المثلثية Trigonometric Identities

 $cos heta=rac{5}{13}$ اوجد القيمة الفعلية لـ sin heta إذا كان (١) اوجد القيمة الفعلية المعلية الم $cos heta=360^\circ$

5'm10 + cos20 = 1

$$5'in^{2} 6 + \left(\frac{5}{13}\right)^{2} = 1$$

$$5in^{2} 6 = 1 - \left(\frac{5}{13}\right)^{2}$$

$$5in^{2} 6 = \sqrt{\frac{5}{13}}$$

$$5in^{2} 6 = \sqrt{\frac{5}{13}}$$

$$5in^{2} 6 = \sqrt{\frac{5}{13}}$$

$$5in^{2} 6 = \sqrt{\frac{5}{13}}$$

. $180^{\circ}< heta<270^{\circ}$ ، $sin heta=-rac{2}{7}$ إذا كان sec heta=1 اوجد القيمة الفطية لـ sec heta=1 إذا كان (٢)

$$51x^{2} + 6 + col^{2} = 1$$
 $(-\frac{2}{7})^{2} + cos^{2} = 1$
 $5cc = \frac{7}{cos}$
 $5cc = \frac{7}{3\sqrt{5}}$
 $5cc = \frac{7}{3\sqrt{5}}$

 $.90^{\circ} < heta < 180^{\circ}$ ، $sin heta = rac{1}{2}$ اوجد القيمة الفعلية لـ tan heta إذا كان (٣)

$$\cot^{2}\theta + 1 = \csc^{2}\theta$$

 $\cot^{2}\theta + 1 = (2)^{2}$
 $\int \cot^{2}\theta + 1 = (2)^{2}$
 $\int \cot^{2}\theta + 1 = (2)^{2}$
 $\cot^{2}\theta + 1 = (2)^{2}$
 $\int \cot^{2}\theta + 1 = (2)^{2}$
 $\cot^{2}\theta + 1 = (2)^{2}$

$$.180^{\circ} < \theta < 270^{\circ} \quad cot\theta = \frac{1}{4} \text{ is in } csc\theta$$

$$1 + cot^{2}\theta = csc^{2}\theta$$

$$1 + (-t_{0})^{2} = csc^{2}\theta$$

$$2 + (-t_{0})^{2} = csc^{2}\theta$$

$$2 + (-t_{0})^{2} = csc^{2}\theta$$

$$3 + (-t_{0})^{2} = csc^{2}\theta$$

$$4 + (-t_{0})^{2} = csc^{2}\theta$$

$$.~180^{\circ} < heta < 270^{\circ}$$
 ، $sec heta = -3$ إذا كان $tan heta$ أوجد القيمة الفعلية لـ $tan heta$

ن في تقع في المرم ولالالث

. 270°
$$< heta$$
 ج 360° ، $\sec \theta=rac{5}{3}$ إذا كان $\cos \theta=\frac{5}{3}$ أوجد القيمة الفطية لـ $\cos \theta$

$$cos = \frac{1}{sec}$$

$$cos = \frac{3}{5}$$

بسط التعابير المثلثية الآتية:

1)
$$\frac{\cos\theta\sec\theta}{\cos\theta}$$

1)
$$\frac{\cos\theta \sec\theta}{\cot\theta}$$

2)
$$\sec^2 \theta - \tan^2 \theta$$

3) $tan\theta(1-\sin^2\theta)$

4) $(1 + \cot^2 \theta)(1 - \cos^2 \theta)$

$5) (\csc^2 \theta - 1)(\sec^2 \theta - 1)$

6)
$$\cos\left(\frac{\pi}{2} - \theta\right) \cot\theta$$

Sind - coto 5 × B = 608B 1.0056 = 0058

7)
$$\sin\left(\frac{\pi}{2} - \theta\right) \sec\theta$$

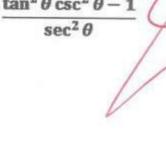
8) $(1-\sin\theta)(1+\sin\theta)$

= C0526

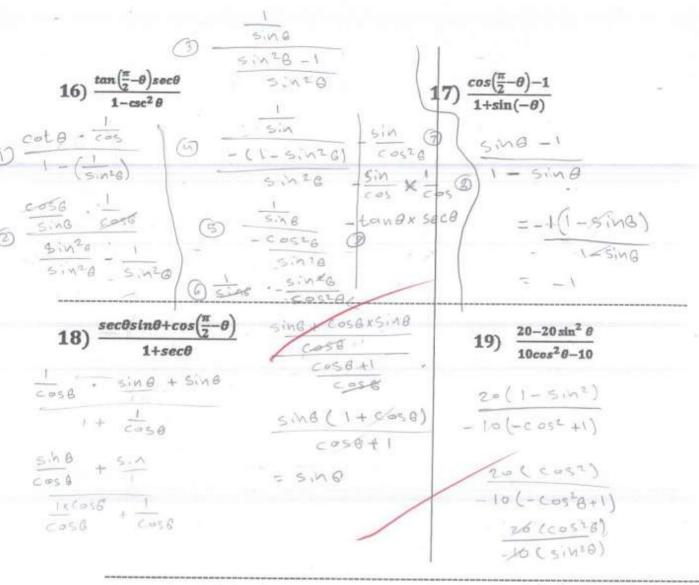
9)
$$\frac{1-\sin^2\theta}{\sin^2\theta}$$

$$\frac{\cos^2\theta}{\sin^2\theta} = \cot^2\theta$$

$$10) \quad \frac{1}{\cos^2\theta} - \frac{\sin^2\theta}{\cos^2\theta}$$


11)
$$5-5\sin^2\theta$$

12)
$$\frac{\sec\theta \tan^2\theta + \sec\theta}{\cos\theta}$$


13)
$$\frac{\cos(-\theta)}{\sin(-\theta)}$$

14)
$$\frac{\sec\theta}{\sin\theta} (1 - \cos^2\theta)$$

15)
$$\frac{\tan^2\theta\csc^2\theta-1}{\cos^2\theta}$$

$$\frac{5ec^2\theta}{5ec^2\theta} = \frac{1}{5ec^2\theta} = 1 - \cos^2\theta$$
$$= \sin^2\theta$$

(۱) يمكن حساب شدة الضوء المار من عدستين متلاصقتين في نظارة شمسية باستعمال الصيغة $I_o = I_o - \frac{I_o}{\csc^2 \theta}$

 $\theta = 30^{\circ}$ الزاوية بين محوري المحسكين θ الزاوية بين محوري المحسكين θ الزاوية بين محوري المحسكين (۱) أوجد شدة الضوء بدلالة θ أو حد شدة الضوء بدلالة θ أو حد شدة الضوء بدلالة θ أو المحسكين ا

ومنوف

(۲) يتزلج شخص كتلته m باتجاه أسفل هضبة ثلجية بزاوية قياسها θ وبسرعة ثابتة، عند تطبيق قانون نيوتن يتم استعمال نظام المعادلتين : $F_n - mgcos\theta = 0$, $mgsin\theta - \mu_k F_n = 0$ حيث g تسارع الجاذبية الأرضية، و F_n القوة العمودية المؤثرة في المتزلج، و μ_k معامل الاحتكاك . استعمل النظام لتعريف μ_k بدلالة θ .

🗾 Bo.omar90 🤰

 $\cot^2 \theta - \tan^2 \theta$ اعد کتابة (۳)

(052B) X 5 M2

 $\frac{28+5.10^{2}8}{-5.10^{2}-5.10^{2}}$

نام د کان $0^{\circ} < x < 90^{\circ}$, sinx = m نام (٤) اذا

المحوض بـ ١٧ = ١١

inte

SXX

الرفاع الش

 $cos^{2} \times \left(\frac{60 S^{2}}{5.112}\right) - \left(\frac{1}{5.112}\right)$ $= \frac{(05^{2}8 - 5.1128)}{(05^{2}8 - 5.1128)} = \frac{(05^{2}$

(cos2 - 5.M2)

tanx = si

tanx = sinx

ق الثانوية للبنين - ريض ٢٦٤٠ - العام الدراسي ١٨ -٢ - ٢٠ ١م

Υ

2) $.sec\theta sin\theta cot\theta = 1$

1) $\sin^2\theta = (1 - \cos\theta)(1 + \cos\theta)$

R.H.S=S(nP= COSB) (1+ COSB) = 1 - COSZ JOSI COIDL SM2B = SIM2B = L.H.S 2000 - 2 16-21 151.

(١) أثبت صحة المتطابقات الآتية:

L.H.S = 1 sing coss sing

3)
$$1 + \csc^2\theta \cos^2\theta = \csc^2\theta$$

 $L.H.S = 1 + \frac{1}{\sin^2 \theta} \cdot \frac{\cos \theta}{1}$ $= 1 + \frac{\cos^2 \theta}{\sin^2 \theta}$ $= 1 + \cot^2 \theta$ $= \cos^2 \theta - R.H.S$

4) $tan\theta = \frac{sec\theta}{csc\theta}$

A.H.Stand = (Toso) = Sind L.H.S

Coso L.H.S

5) $\sin^2 \theta + \tan^2 \theta \sin^2 \theta = \tan^2 \theta$

2.11.5 = Sin 26 (1+ tays)

Sin 2 (sec 2)

Sin 2 (cos 2)

Sin 2 (cos 2)

Sin 2 (cos 2)

6) $\cos^2 \theta + \tan^2 \theta \cos^2 \theta = 1$

C.W.S.C. OS2 + S.M.2 COS2 = 1

7) $\cos\theta\cos(-\theta) - \sin\theta\sin(-\theta) = 1$

 $LH \cdot S = COSB \cdot COSB - SIN \cdot (-SIN) + SIN \cdot (-SIN$

8)
$$csc\theta + cot\theta = \frac{1 + cos\theta}{sin\theta}$$

1 + cos 5 in + cos 1 + cos 5 in = 1 + cos 5 in = 1 + cos

9) $tan\theta(tan\theta + cot\theta) = sec^2 \theta$

Litis tan2 + tanocoto

$$\frac{1}{4} \cos^2 + \frac{1}{2} \cos^2 + \frac{1}$$

11)
$$\frac{\tan\theta + \cot\theta}{\tan\theta \cot\theta} = \tan\theta + \cot\theta$$

13)
$$\sec^2 \theta + \csc^2 \theta = \sec^2 \theta \csc^2 \theta$$

10)
$$\cot\theta + \tan\theta = \frac{\sec^2\theta}{\tan\theta}$$

L. H.S = $\frac{1}{\tan\theta} + \tan\theta$
 $= 1 + \tan^2\theta$
 $= \sec^2\theta$
 $= 1 + \tan\theta$
 $= 1 + \tan\theta$
 $= 1 + \tan\theta$
 $= 1 + \tan\theta$
 $= 1 + \tan\theta$

12)
$$sec\theta csc\theta = tan\theta + cot\theta$$

14) $csc\theta - sin\theta = cot\theta cos\theta$

15)
$$\frac{\cos\theta}{1-\sin\theta} = \frac{1+\sin\theta}{\cos\theta}$$

L.H.S = $\cos\theta$

1 + $\sin\theta$

1 + $\sin\theta$

1 + $\sin\theta$

1 + $\cos\theta$

2 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

2 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

6 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

6 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

6 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

6 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

6 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

3 + $\cos\theta$

3 + $\cos\theta$

4 + $\cos\theta$

5 + $\cos\theta$

6 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

1 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

1 + $\cos\theta$

2 + $\cos\theta$

2 + $\cos\theta$

الرفاع الشرق الثانوية للبنين- ريض ١٦٦٠ - العام النواسي ٢٠١٩ - ٢٠٢٠م

$$\frac{\sin^4\theta - \cos^4\theta}{\cos^2\theta - \sin^2\theta} = -1$$

$$\frac{\sin^4\theta - \cos^4\theta}{\cos^2\theta - \sin^2\theta} = -1$$

$$\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta - \sin^2\theta} = -1$$

$$\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta - \sin^2\theta} = -1$$

$$\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta - \sin^2\theta} = -1$$

$$\frac{\cos^2\theta - \cos^2\theta}{\cos^2\theta - \cos^2\theta} = -1$$

$$\frac{\cos^2\theta - \cos^2\theta}{\cos^2\theta - \cos^2\theta} = -1$$

$$\frac{1 - \sin\theta}{\sin\theta + \cos\theta} = \sec\theta$$

$$\frac{\sin\theta}{\cos^2\theta - \cos^2\theta} = -1$$

$$\frac{\cos^2\theta - \sin^2\theta}{\sin\theta + \cos\theta} = -1$$

$$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\cos\theta} = -1$$

$$\frac{\cos^2\theta - \cos^2\theta}{\sin\theta} = -1$$

$$\frac{\cos^2\theta - \cos^2\theta}{\sin\theta} = -1$$

$$\frac{\sin^2\theta}{\cos^2\theta} = -1$$

$$\frac{\cos^2\theta - \cos^2\theta}{\sin^2\theta} = -1$$

$$\frac{\cos^2\theta - \cos^2\theta}{\cos^2\theta + \sin^2\theta} = -1$$

$$\frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta} = -1$$

$$\frac{\sin^2\theta}{\cos^2\theta} = -\cos^2\theta$$

$$\frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta} = -1$$

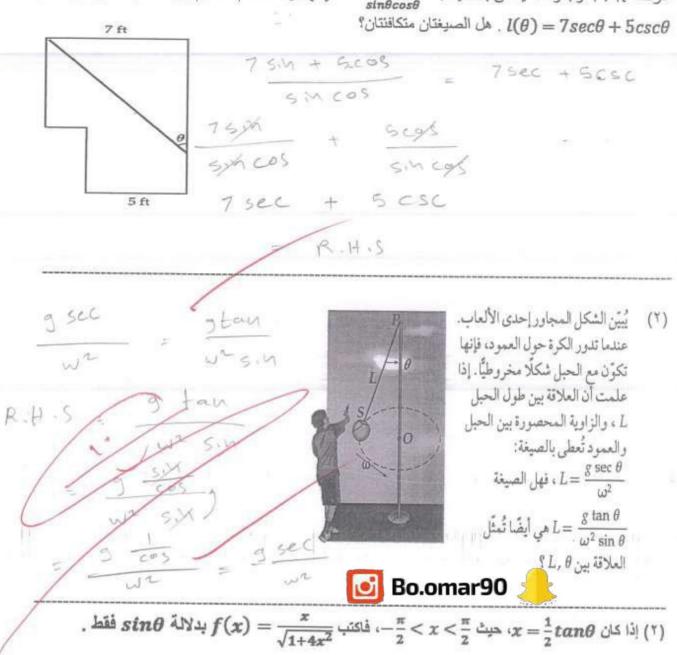
$$\frac{\sin^2\theta}{\cos^2\theta} = -\cos^2\theta$$

$$\frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta} = -1$$

$$\frac{\sin^2\theta}{\cos^2\theta} = -\cos^2\theta$$

$$\frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta} = -1$$

$$\frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta} = -1$$


$$\frac{\sin^2\theta}{\cos^2\theta} = -\cos^2\theta$$

$$\frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta} = -1$$

 $\frac{1-\sin^2\theta}{\cos\theta}$ B

 $\tan \theta \csc \theta$ D

(۱) اشتق بعض الطلبة صيغة لمعرفة اطول سلم يمكن أن يحمل أفقياً ليتلائم مع زاوية ممر عرضه 5 ft الى ممر آخر عرضه 7 ft عرضه 7 ft وعندما قام معلمهم بإيجاد صيغة أخرى وجد أن $10 \text{ sinBcos}\theta$ وعندما قام معلمهم بإيجاد صيغة أخرى وجد أن $10 \text{ sinBcos}\theta$ وعندما قام معلمهم بإيجاد صيغة أخرى وجد أن $10 \text{ sinBcos}\theta$ وعندما قام معلمهم بإيجاد صيغة أخرى وجد أن $10 \text{ sinBcos}\theta$ وعندما قام معلمهم بإيجاد صيغة أخرى وجد أن $10 \text{ sinBcos}\theta$ وعندما قام معلمهم بإيجاد صيغة أخرى وجد أن $10 \text{ sinBcos}\theta$

التيا الحياد

المتطابقات المثلثية لمجموع زاويتين والفرق بينهما Sum and Difference of Angles Trigonometric Identities

(١) مستعملاً متطابقات المجموع والفرق أوجد القيمة الفطية لما يأتى:

1) sin75° 101195

SM (45+30)

= (=) (=) + (=) (=) (=) (=) (=) (=)

= J6 + J2 = J6 + J2

3) sin(-195) 6) cilul do sin (-195) - 195 + (360) acces

2) sec(105)

(05 (105) = COS (60+45)

(SIN 45) (COS30)+ (COS45) (SIN30) COS60) (COS45) - (SIN60) (SIN45)

J2 - 56

= 52-56

Sec 105 - 14 = -16-12 8) tan(345)

5 M 165 = 5 M (120+45)

tan (300 + 45)

(SIM120) (COS45) + (COS120)(SI445) = (Lan 300)+ (tan 45)

 $\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{-1}{2}\right)\left(\frac{\sqrt{2}}{2}\right)$

1 - (tan 300) tan 45)

-(-13)(1)

cost

COS 105

 $csc(\frac{\pi}{12})^{N=180}$ csc(15)

5AN (60-45)

(81460) (cos 45) - (cos 60)(sin 45)

 $\left(\frac{\sqrt{3}}{3}\right)\left(\frac{\sqrt{2}}{3}\right)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{3}\right)$

الرقاع الشرق الثانوية للبنين - ريض ١٦٦٠ - العام السراسي ٢٠١٠-١٠١٩م

SIMIS - 18 = 18+12

في ندجي السؤال

cos37°cos7°+sin3	7°sin7°
3 7	
(11 11 1	

$$\cos 30 = \frac{\sqrt{3}}{7}$$

$$cos\left(\frac{\pi}{4}-\theta\right)cos\theta-sin\left(\frac{\pi}{4}-\theta\right)sin\theta$$

sin18cos12 + cos18sin12

$$\sin 30 = \frac{1}{2}$$

cos20cos10-cos70cos80

tan40°-tan10°

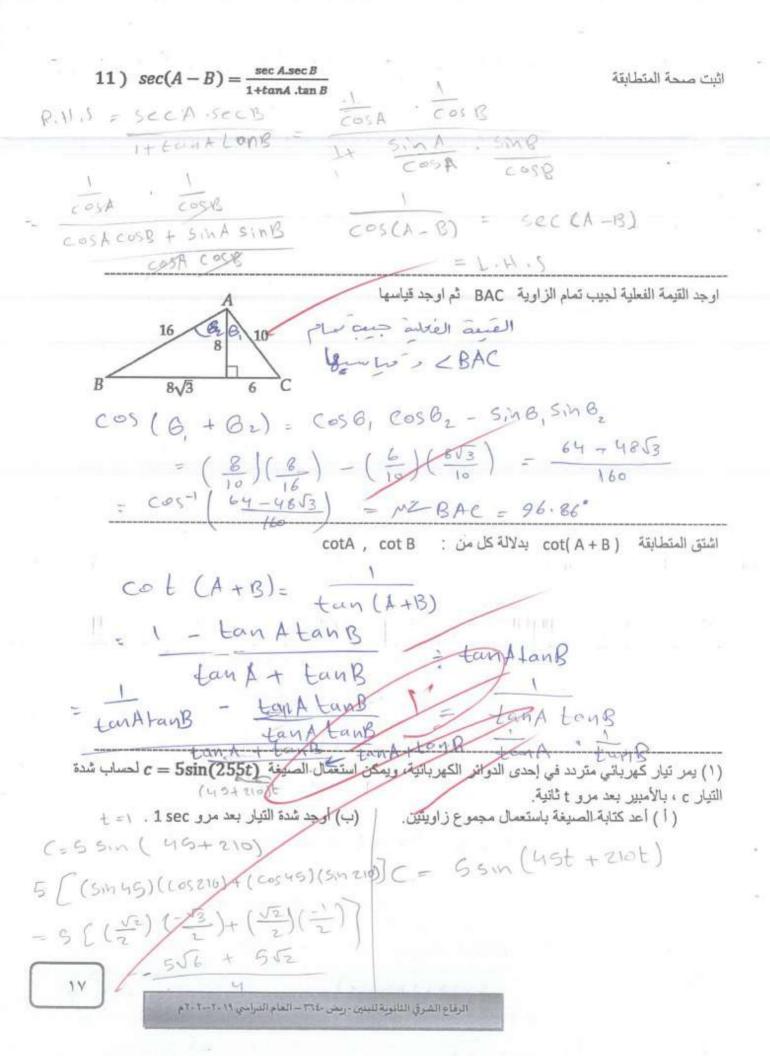
٢١ ـ أوجد بدون الالت الحاسبة القيمة الفعلية : 1) $\sin(364^\circ) \times \cos(364^\circ) \times \tan(364^\circ) \times \cot(364^\circ) \times \csc(364^\circ) \times \sec(364^\circ) = 1$

(1) Is where waters will on (1)

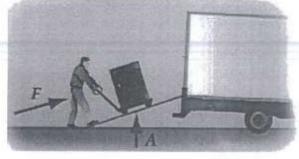
3)
$$\cos(\theta + 40)\cos(\theta - 50) + \sin(\theta + 40)\sin(\theta - 50)$$

```
(٢) أثبت صحة ما يلي:
       1) \cos(\theta + 60^{\circ}) = \sin(30^{\circ} - \theta)
       LIH.S = COS (B+60)
                 = cos B cos 60 = sin B sin 60
                  = (\cos\theta)(\frac{1}{2}) - (\sin\theta)(\frac{\sqrt{3}}{2})
        R.H.S = sin (30-0)
           = Sin 30 cos 8 - Cos 30 sin 6
                                             LH.S = R.H.S
               = 1 (056 - 5 sing
                                                                      (١) أثبت صحة
       3) \tan(\theta + 45) = \frac{1 + \tan\theta}{1 - \tan\theta}
           L. H.S = tan (6+45) = tan (45+6)
                - tan 45 + Lang
                     1 - tan 45 tan 1 - LI) tan 8
                                       = 18.14.5
      Sin 3\theta = 3 Sin \theta - 4 Sin^3 \theta
      = Sin (8+28)
       . Sin 6 Cos28 + Cos6 528
1'p = sine[1-2sin20] + cos & (2sine cos 8)
UKL = Sin B - 2 sin B + 2 sin B (1 - Sin 2 B)
      = Sind - 2 Sin36 + Zsin6 - Zsin3
         35ing - 4 sin36
       5) \cos\left(\frac{3\pi}{2} - \theta\right) = -\sin\theta
                                                      6) \tan\left(\theta + \frac{\pi}{2}\right) = -\cot\theta
                                                       tan (10-)- 17)
        L.H.S = COS (270 18
        = COS 270 LOS 8 # Sin 270 Sin 8
                                                     5 · EGT(-G)
         = (0) cos 8 + (-1) sing
```

= - S.h.B = R.H.S


الرقاع الشرق الثانوية للبنين - ريض ٢٦٤٠ - العام الدراسي ١٩ -٢-٢٠٢م

10


- Cot

اذا كان رقع مدلة عن الروايا ل سع داخساره صا 7) $\sin 24^\circ + \cos 54^\circ = \cos 6^\circ$ L. HS = Sin (30-6) + cos (60-6) (51,30 cos6 - cos30 sin6) + (cos60 cos6 + sin 60 sin6) - cos6 - 13 sin6 + 2 cos6 + 13 sin6 1 cos6 + 1 cos6 8) $\cos\left(\theta + \frac{\pi}{3}\right)\cos\frac{2\pi}{3} - \sin\left(\theta + \frac{\pi}{3}\right)\sin\frac{2\pi}{3} = -\cos\theta$ (05 (B+ 11 + 2 TT) (05 (8+11) COSE COS 180 - Sin & Sin 180 (cos8)(-1) - (sua)(0) = - (056 9) $\sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B$ $sin(A + B) = \frac{tanA + tanB}{secAsecB}$ + tan B secA secB R.H.S = tanA + tays Sec A seck . cost . cos SINB COSA COSTS SIMA COSB + COSA SIMB n (A+B) = @ L.H.S

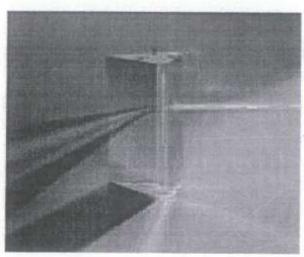
الرفاء الشرق الثانوية للبنين -ريض ١٦٠٥ - العام الدرامي ٢٠٢٠ - ٢٠١٩م

 (٢) في الشكل أدناه، إذا كان مقدار القوة اللازمة F، والضرورية لإبقاء الخزنة ثابتة على المنحدر تعطى بالعلاقة F = Wtan(A + heta) : فأثبت أن $\mu = tan heta$ هو وزن الخزنة، و $\mu = tan heta$ فأثبت أن $F = \frac{W(sinA + \mu cosA)}{cosA - \mu sinA}$

(= W (SMAKSMO, COSA) COSA 6 5148 SINA

(- W C SINACOS + SMB COSA)

cost core - smasma


F-W SINACOS B+COSA SINB

W= Sin (A+0)

= wtar(A+B) (05 (A+0)

(٣) عندما يمر الضوء من خلال منشور زجاجي، فإن معلول الانكسار ٢ في الزجاج بالنسبة للهواء يعطى بالمعادلة: ميث $n = \frac{\sin\left[\frac{1}{2}(a+b)\right]}{\sin^{\frac{1}{2}}}$ ، حيث $n = \frac{\sin\left[\frac{1}{2}(a+b)\right]}{\sin^{\frac{1}{2}}}$

. $n = \sqrt{3}sin\frac{a}{2} + cos\frac{a}{2}$ انه في المنشور المعطى:

المتطابقات المثلثية لضعف الزاوية

المتطابقات الأتية صحيحة لقيم θ جميعها:

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $\sin 2\theta = 2 \sin \theta \cos \theta$

 $\cos 2\theta = 2\cos^2\theta - 1$

 $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$

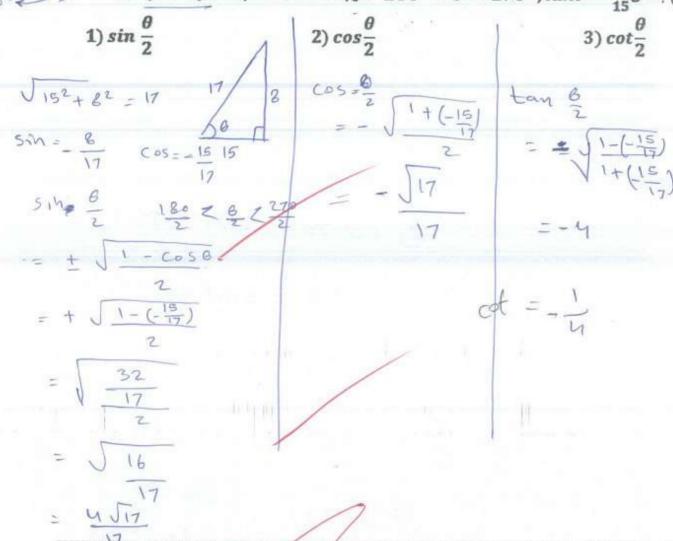
 $\cos 2\theta = 1 - 2\sin^2\theta$

: ا كان $\frac{12}{10}=180^\circ$, $\sin heta=\frac{12}{100}$ القيمة الفعلية ال (١) اذا كان $\sin heta=\frac{12}{100}$

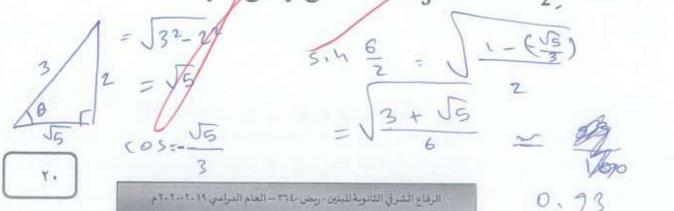
1) sin2θ	2) cos20	3)cot 20	4) sec2θ
SINZO = 25m Cos	Co526=	tanz6	Secre Josea
$2\left(\frac{12}{13}\right)\left(-\frac{5}{13}\right)$	1-2(1/2)2	= sin28	
(13/(13)	= 119	- COS 26	3
C - 13/12	169	= 169	= Sec26=
6 5	V	- 119	
Cos = - 5		2 169	() E () []
	7	= - 120	
= 2(12)(5	13	=Gotzo	1: 12/20
5-120	/	=_1	120 = 169 4
	Bo.omar90	tanz6	12119

 $\frac{-4\sqrt{2}}{9}$. $90^\circ < \theta < 180^\circ$ ، $\cos \theta = -\frac{1}{3}$ إذا كانت $\sin 2\theta$ ، $\sin 2\theta$ أرجد القيمة الفعلية لـ 1

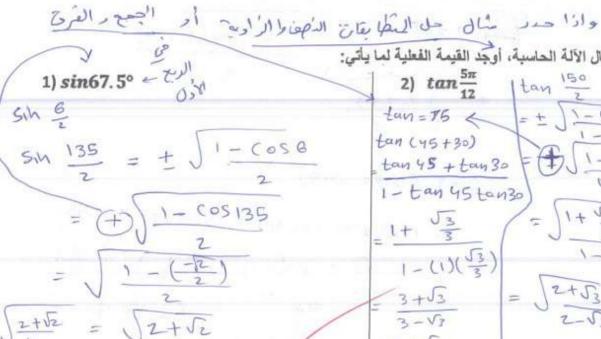
2 sin cos6 SIM = الرفاء الشرق الثانوية للبنين - ريض ١٦٤٠ - العام الد


المتطابقات المثلثية لنصف الزاوية

مفهوم أساسي


المتطابقات الآتية صحيحة لقيم θ جميعها:

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}} \quad \cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}} \quad \tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}, \cos\theta \neq -1$$


و المنطبقات القيمة الفعلية لـ : $\theta < 270^{\circ}$, $tan\theta = \frac{8}{15}$ و المنطبقات القيمة الفعلية لـ : $\theta < 270^{\circ}$, $\theta < 270^{\circ}$, $\theta < 270^{\circ}$) إذ كان المنطبقات القيمة الفعلية لـ : $\theta < 270^{\circ}$, $\theta < 270^{\circ}$, $\theta < 270^{\circ}$, $\theta < 270^{\circ}$) المنطبقات القيمة الفعلية لـ : $\theta < 270^{\circ}$, $\theta < 270^{\circ}$, $\theta < 270^{\circ}$, $\theta < 270^{\circ}$) المنطبقات القيمة الفعلية لـ : $\theta < 270^{\circ}$, $\theta < 270^{\circ}$) المنطبقات القيمة الفعلية المنطبقات القيمة المنطبقات المنطبقات القيمة المنطبقات القيمة المنطبقات القيمة المنطبقات القيمة المنطبقات ال

أوجد القيمة الفعلية لـ $\frac{\theta}{2}$ ، $\sin \theta = \frac{2}{3}$ علمًا بأن $\sin \theta = \frac{1}{3}$ تقع في الربع الثاني.

اذا لم يحدد في السؤال أحل لأى طرعي

2)
$$tan \frac{5\pi}{12}$$
 $tan \frac{150}{2}$
 $tan = 76$ $= \pm \int_{1-\cos\theta}^{1-\cos\theta}$
 $tan (45 + 30)$ $= \pm \int_{1-\cos\theta}^{1-\cos\theta}$
 $tan 45 + tan 30$ $= \pm \int_{1-\cos\theta}^{1-\cos\theta}$

(١) بدون استعمال الآلة الحاسبة، أوجد القيمة الفعلية لما يأتي:

3) 2sin15cos15

5 M 30

4)
$$2\cos^2 22.5 - 1$$

- COS (2 x 225)

= 005 49

$$5) \quad \frac{2tan67.5}{1-tan^2 67.5}$$

tay (2 x 67.5)

= tan 135

6)
$$1-2\sin^2\frac{7\pi}{12}$$

Cos (2 x 105)

Cos 210

$\frac{Tan 68 - \cot 67}{2} = 1$	2 Sin 67.5 Cos 67.5
1 + Tan 68 Tan 23 = 1	$\frac{2SINOVIS COS 07.5}{Cos 40 Cos 10 + Sin 40 Sin 10} = \sqrt{2}$
= tan 68 - tay 231	S.W 2x67.5
1 + tan 68 tan 33	COS (40-10)
= tan (68-23).	= 5.4 135
= tan 45 = 1	$= \frac{\sqrt{2}}{2} \div \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{3}$
$\frac{Tan25 - Tan175^{\circ}}{+ Tan25 \cdot Tan175} = \frac{\sqrt{3}}{3}$	$\frac{Sin 50}{1 + Cos 50} = Tan 25^{\circ}$
tan (25-175)	
-tan (-150) +160	L.H.S 2 SIN 25 COS25
= tan (210) = 52	236
	1 cost6 cos25 = ton25 R.
$\frac{2Tan112.5}{-Tan^2 112.5} = 1$	$\frac{Cos 55 \sin 15 - Sin 55 \cos 15}{2 Cos^2 25 - 1} = -1$
tan (2×112.5) =	(5:n55 cos 15 - cos 55 sin 15)
tan (225) = 1	- (Sin (55-15))
	(05 (2 × 25)
	-(Sin (40)) (05(50)
	-cos so = -1 - R.H.s

(2) Sin 25 + cos 55 = cos 5(1) $\sin 40 = 8 \sin 5 \cos 5 \cos 10 \cos 20$ SIN (30-5) + cos (60-5) L.H.S= sin 2 (20) sin 30cos\$5 - cos30 sins + cos60 cos5+ = 2 sin 20 cos 20 = Z (25 in 10 costo) cos20 5,460 5145 = 4 (25,45 cos5) costo cos 20 = 1 cos5 - 5 sins + 1 cos5 + 5 sins = & SING COSS COSTO COS ZO - R.H.5 1 005 5 $Sin35 + Sin70 = Tan35^{\circ}$ $\frac{1 + \cos\theta + \cos 2\theta}{\sin\theta + |\sin 2\theta|} = \cot \theta$ 1+Cos35+Cos70 L. H. S = 1 + COS 0 + Zeos cart Sin35 + 25in 25 cos 35) Sind + ZSind COSB 1 A CO 535+ 2 cos 35-1 = cos (1+2(0,8) 51 35 (1+ 2 (0535) SIN (I+ ZEOSO) (0535 (1+2cos35) = cot 8 = R.H.S SIN 35 - Lan 36 = P.H.S 4) $tan50^{\circ} = \frac{1 + tan5^{\circ}}{1 - tan5^{\circ}}$ $Sin^2\theta = \frac{1}{2}(1 - Cos 2\theta)$ R.H.S = 1 [1 - (1 - 25in 20)] tan 50 = fan (45+5) - (1-1+25in20) tanys + tans 1 x 25in29 + tan 45 tans = 5m2A 1 - (1) tans 1 + tans

2) $sin8\theta = 8sin\theta cos\theta cos2\theta cos4\theta$

RAS sin 80

(2 Sin 40 cos 40)

2 (25in 20 cos 20) cos 40

4(25ing cos8)coszacusha

85008 COSB COS 20 COS 40

1)
$$\frac{\sin 4\theta}{\sin \theta} = 4\cos \theta \cos 2\theta$$

(25, n 26 cos 26)

Sin

2 (2 5 × 6 cos 0) cos 20

5146

4 cos B cos 26 9

3) $(sin\theta + cos\theta)^2 = 1 + sin2\theta$

(.H,5 = Sin2 + cos2 + 2 sin cos6

+ SINZE

4)
$$\cos^4 \theta - \sin^4 \theta = \cos 2\theta$$

6-H.S =

((052 +51/2) (cos2 - 51/2)

(1) (coszb)=coszb

$$5)\frac{\sin 2\theta}{1-\cos 2\theta}=\cot \theta$$

2 sincos

1-(1-25in26) 125in (05 1+25in26

25/4 COS

5,4

$$6)\frac{\sin 2\theta}{1+\cos 2\theta}=\tan \theta$$

Zsincos

X+10050 -X

Sim = Land

8)
$$\frac{\cos 2\theta}{1+\sin 2\theta} = \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}$$

45

1.413 = ccs2 - c/m

COST +SING 25IN COS

= cos2 -/sin2

COST + ESINCOS + SIME

(cos - s.h) (Eos + s.h)

((05+51h)((05+5+5)

$$tan2\theta = \frac{2}{\cot\theta - \tan\theta}$$

$$= \frac{2}{1 - \tan \theta} = \frac{2}{\cot \theta - \tan \theta}$$

9)
$$\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos 2\theta$$

10)
$$\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta}$$

$$= \left(1 - \frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta}\right)$$

COS 20 = R. HS

💽 Bo.omar90 🦺

.
$$sin2 heta=rac{24}{25}$$
 اِذَا كَانَ $sin heta+cos heta=rac{7}{5}$ فَأَثْبُتُ أَنْ: (٢)

$$5.1^{2}\theta + Cos^{2}\theta + 25.10Cos^{6} = \frac{49}{25}$$
 $1 + sin^{2}\theta = \frac{49}{25}$
 $5.1128 = \frac{49}{25} - 1 = 24$

$$tan(2\theta_1+\theta_2)=1$$
 : فَأَشِتَ أَنْ: $0<\theta_1, \theta_2<90$ حيث $tan\theta_1=rac{1}{3}$, $tan\theta_2=rac{1}{7}$ اذا كان (۳)

$$tan 2B = \frac{tan 20_1 + tan 0_2}{1 - tan 2B_1 tan 8_2}$$
 $tan 2B = \frac{2tan B_1}{1 - tan^2 0_1} = \frac{2(\frac{1}{3})}{1 - (\frac{1}{3})^2} = \frac{5}{4}$
 $= \frac{3}{1 - (\frac{3}{4})(\frac{1}{4})}$

$$\cot \theta + \sec \theta = \frac{\cos^2 \theta + \sin \theta}{\sin \theta \cos \theta}$$

Sin X cos

Cosxcost Ixsin

= cos2 + sin

 $\cos 3 \theta = 4 \cos^3 \theta - 3 \cos \theta$

(٤)تدريب أثبت أن:

$$Sec2 \theta + Tan2 \theta = \frac{Cos\theta + Sin\theta}{Cos\theta - Sin\theta} = L_1H_1S = \frac{1}{(os26)}$$

$$\frac{cos2\theta}{1 + sin2\theta} = \frac{cot\theta - 1}{cot\theta + 1}$$

$$\frac{cos - S_1H_1}{S_1H_1} = \frac{cos - S_1H_1}{coss + S_1H_1} = \frac{cos - S_1H_1}{cos + S_1H_2} = \frac{cos - S_1H_2}{cos + S_1H_2} = \frac{cos - S_1H_1}{cos + S_1H_2} = \frac{cos - S_1H_2}{cos + S_1H_2} = \frac{cos - S_1H_1}{cos + S_1H_2} = \frac{cos - S_$$

الرفاع الشرق الثانوية للبتين - ريض -٢٦٤ - العام الدراسي ١٩ -٢ - ٢ - ٢ م

- R. 14.5

 $2\cos\theta - 1 = 0$ اوجد مجموعة حل المعادلة: 0 $= 1 - 2\cos\theta$ في كل من الحالات كما هو بالجدول

في كل من الحالات كما هو ا
¥ هنا لائه يوجد =
0 € θ ≤ 360
90 ≤ θ ≤ 270
0 < θ < 2π
$45 \frac{\pi}{4} < \theta < \pi$
لجميع قيم 6 بالدرجات
لجميع قيم 6 بالراديان

الرسان $0 < \theta < 2\pi$ علماً بأن $0 < \theta < 2\pi$ علماً بأن علما المعادلة: (٢)

$$B_{r} = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = 60$$
 $\frac{2}{2}\sin 6 = -\frac{\sqrt{3}}{2}$

$$G_3 = 120 + 6 = 120 + 60 = 240$$
 $Sin 6 = -353$ $G_4 = 360 - 60 = 300$ $Sin 6 = -353$ $G_4 = 360 - 60 = 300$

$$60\left(\frac{\pi}{180}\right) = \frac{\pi}{3} \qquad 240\left(\frac{\pi}{120}\right) = \frac{4}{3}\pi$$

حل المعادلة $\theta = \sqrt{3}$ لجميع قيم θ بالدرجات (٣)

$$\cot = \sqrt{3}$$

$$\tan = \frac{1}{\sqrt{3}}$$

$$= \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = 30$$

2 180 + 6 = 180 + 30 = 210

دل المعادلة θ جارت کے θ الجمیع قیم θ بالرادیان.

$$\begin{array}{lll}
\Theta_{1} &= 5 \text{ in}^{-1} \left(\frac{1}{\sqrt{2}} \right) &= 45 \\
\Theta_{5} &= 180 + \Theta &= 180 + 49 = 225 \left(\frac{17}{180} \right) \frac{5}{4} \text{ TT} \\
\Theta_{5} &= 360 - \Theta &= 360 - 225 &= 135 \left(\frac{77}{180} \right) &= \frac{3}{4} \text{ TT} \\
\frac{5}{4} \text{ TT} + 2 \text{ TT} \times 6 \text{ July 1} \Theta_{200} \\
3.71 + 2 \text{ TT} \times
\end{array}$$

(°) في الفترة 360 $\theta < 0$ حل المعادلات التالية: مرام حجرية

1)
$$sin\theta = 0$$

2)
$$cos\theta = 0$$

$$6 + 9 = 0$$
 3) $tan\theta = 0$

4)
$$sin\theta = 1$$

5)
$$cos\theta = 1$$

7)
$$sin\theta = -1$$

8)
$$cos\theta = -1$$

$$6$$
) $cot\theta$ = فير معرف

 $0 \le \theta \le 360$ علماً بأن sin2 heta - sin heta = 0 علماً بأن (١) علما (١)

2 sin 6 cos6 - (1) sin 6 = 0

$$Sin B(2cos - 1) = 0$$

 $Sin B(2cos - 1) = 0$
 $G = 0, 180, 360$
 $Cos = \frac{1}{2}$
 $G = 0, 180, 360$
 $G = 0, 180, 360$

. $0 \leq \theta \leq 360$ علماً بأن $sin2\theta = cos\theta$ علماً بأن (۲) SIN26 - COSE 25 MCOS - COSG COSB (2514-1) 25+M = 1 (0 30 90, 270, 35, 150 $90 \le \theta \le 270$ حيث $4\cos^2\theta - 1 = 0$ ما المعادلة (۸) 4052 _ 1 = 0 cos = 5 = cos = 5 = $0 \leq heta < 2\pi$ علماً بأن $\cos 2 heta + 4\cos heta = -3$ علماً بأن (٩) علماً بأن B= 180

الدرجات، θ عادلة $\theta = 8 - 15 \sin\theta$ لجميع قيم θ بالدرجات.

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 8 - 15\sin\theta$$

$$0 = 2\sin^{2} - 1 + 3\cos^{2} - 1 + 3\cos\theta$$

$$1 = 2\sin^{2} - 1 + 3\cos\theta$$

$$1 = 2\sin^{2} - 1 + 3\cos\theta$$

$$1 = 2\cos^{2} - 1 + 3\cos\theta$$

$$1 = 3\cos^{2} - 1 + 3\cos\theta$$

$$1 = 3\cos^{2$$

الرفاع الشرق الثانونة للبنين - ربض ١٦٠٠ - العام البراسي ١٩ -٢ - ٢٠٠١م

$$.0 < heta < 360$$
 حيث $cos2 heta = rac{1}{2}$ حيث (۱۳) حل المعادلة

(۱٤) حل المعادلة: $0=\sqrt{2}+\sqrt{2}$ لجميع قيم θ بالراديان.

$$\frac{66 = \frac{511}{4} + 211 \times \frac{60}{6} = \frac{711}{4} + 211 \times \frac{2 \sin 66}{2} = -\sqrt{2}}{2}$$

$$\frac{5 \sin 60}{2} = -\sqrt{2}$$

$$\frac{225 \times \frac{11}{120}}{2} = \frac{511}{4}$$

$$\frac{315 \times \frac{11}{120}}{2} = \frac{711}{4}$$

$.0 < heta < 2\pi$ حيث $2sinrac{ heta}{3} - \sqrt{3} = 0$ حيث (۱۰) حل المعادلة:

الرفاء الشرق الثانوية للبنين - ريض ١٦٠٤ - العام الدراسي ٢٠١١ - ٢٠٠١ م

در المعادلة au = cos heta = 1 بالراديان. حل المعادلة au

(Sin - cos)2 = (1)2-5in2 + cos2 - 25in cos = 1 1 - 2 sin 6 cos 6=1 - 2 Sin cos = 0 اذا ربعی الطربیق 5in 605 =0 B i de state de sie 0=0,180,360 B. 90,270 180= TH-7TK 90= T +2TIK راك على المعادلة heta=0 au المعادلة heta=0 المرجات. auSKN x Cos - Cos 2 = 0 لازم تكت صده Sim 70 Wis 131 Cos6_ cos6 = 0 (05 6 (1 - cos6) =0 COSB=0 1 COSB=1 0 = 90,270 \ 0= 10,360 J=1 = { 90+360K }= (30+180K) الى تحمينا درجات. $\sin\theta + \cos\theta = \sqrt{2}$ القيم بالدرجات. $\sin\theta + \cos\theta = \sqrt{2}$ القيم بالدرجات. المعادلتين: $\sin\theta + \cos\theta = \sqrt{2}$ (Sin & + cos =) = (\2) 2 SIM 2 + COS2 + SIME = Z Sin2 + cos & + 25in = cos = 2 1 + 5,426=2 + 5140 = 2 Sin 28 =1 5in 0=1 26 = 90 + 360 K 45 + 180 K

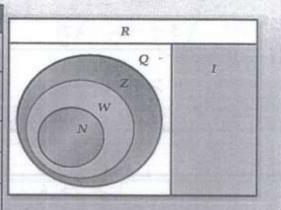
31, 12 K

الرفاء الشرق الثانوية للبلين - ربض ١٦٥٠ - العام الدراسي ١٩ -٢-٢٠١٠م

الدرجات. خل المعادلة $an^2 heta - 1 = 0$ الدرجات. (۸) حل المعادلة المعا

 $Tan \ \theta Sec \theta + 2 Tan \theta = 0$ هما المعادلة θ المعادلة المعادلة

$$tan = 0$$
 $5ec = -2$
 $cos = -\frac{1}{2}$
 360
 $cos = -\frac{1}{2}$
 $cos = -\frac{1}$

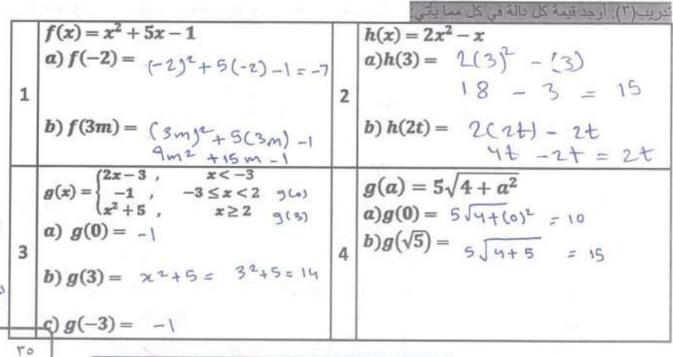

8 = 0 + 180K

مفهوم أساسي

🗾 Bo.omar90

1000-000	1		١
30	5		2
-	-		
	-	-	7

سف إلى لوچىتادا		بقية (R)
الرمز	attei	المجموعة
Q	$0.125, -\frac{7}{8}, \frac{2}{3} = 0.66$	الأعداد النسبية
1	$\pi = 3.14159$ $\sqrt{3} = 1.73205$	الأعداد غير النسبية
Z	-5,17,-23,8	الأعداد الصحيحة
W	2,96,0,√36	الأعداد الكلية
N	3, 17, 6, 86	الأعداد الطبيعية



تدريب (١): اكتب كلاً من مجموعات الأعداد الآتية باستعمال الصفة المميزة، وعلى صورة فترة (إن أمكن):

	المعتبرة، وحق حرد (رن سح):		ريب (١). احتب حدر من مجموعات الإعداد الأثيه باستعا
	{3,4,5,6,}		{, -4, -3, -2, -1}
1	Ex/x ≥ 3, x ∈ w} @ Time!	2	\x1x < -1, x ∈ z3
	لايمكن كساسل على جورة منرة لانعا		لا يمكن كتلا يتقي على طورق غيرة
	منتوبية [7,8,9,10,11]		{-5,-4,,6,7}
3	(x175x611 , x6w)	4	{x/-5 < x < 7, x ∈ Z}
	لايمكن كساستي على المورة عوة		٧ يويكن كيا يعما على جورة
	لاند لع يحدد عل كسوراد 9 ≥ x ≥ 9 -7		2 < y < 5
5	{ x / - 7 < x < 9 , x < 8}	6	(8/22/45,4ER)
	[ور7-] الفترة		النترة (2,5)
	$x \ge 2$		x > 18 $x < 0$
7	{x/x≥2,xER}	8	{x/x>18 or x < 0, x ER}
	[2, 0)		(18, co)U(-0,0)
	المضاعفات الموجبة للعدد 3		المضاعفات الموجبة للعدد 8
9	{x x=3n, n∈N]	10	{x1x=8n,nEN}
	لا يوجد مبرة		لا يو در فر ه -

تدريب (٢): حدد ما إذا كانت كل علاقة مما يأتي تمثل ٧ كدالة في ٢ :

_		x تدریب (Y) : حدد ما إذا كانت كل علاقة مما یاتي تمثل y كدالة في
1	متغير لا يمثل اسم الشخص، وقيم لا تمثل قمه الشخصي. د التي التي التي التي التي التي التي التي	ال ال (۲ -1 -4 -1 -4 -2 -5 -5 -5 -5 -5 -5 -1 -1 -1 -4 -1 -4 -4 -1 -4 -4 -1 -4 -4 -1 -4 -4 -1 -4 -4 -1
3	الم	
4	4x + y = 9	$y^{2}-x=5$ $y=x^{3}-1$ $y=\frac{1}{2}$ $y=\frac{1}{2}$ $y=\frac{1}{2}$ $y=\frac{1}{2}$ $y=\frac{1}{2}$


```
ولا: أكمل ما يلي:
```

١) مجال دالة كثيرة الحدود/الثابتة/ الجذر التكعيبي/ المطلقة هو السيا ٢) مجال دالة الجذر التربيعي هو: .. جا. بحمة ... الجبدر ألكم ... من الروا حج معنى ٣) مجال الدالة النسبية: أ) كثيرة حدود قسمة كثيرة حدود: ...المصدر..... كل مجال الدالة النسبية: أ) كثيرة حدود قسمة كثيرة حدود: ب ا) كثيرة حدود قسمة جذر تربيعي: المحال من المحال من المحال المح ج) جذر تربيعي قسمة كثيرة حدودا نُحَنَّالجدر الكبيد من او رساوي 122-10 die plest piest les 0 6 تدریب: أوجد مجال الدوال التالیة: =3/x - 3 $f(x) = \frac{1}{2}x^2 - 5x + 3$ $f(x) = \sqrt[4]{3x + 24}$ h(t) = |t-2| (10) 3x+24 >0 22-8 3x > -24 (x1x > -8, xER) x > -24 [-8,00) $f(x) = \frac{\sqrt[5]{12 - 4x}}{x - 10} \to R$ f(t) = -العحال محال السم K=10=0 x=10 اذا مسفيا على ساس نعكس اذا مسفيا على ساس نعكس الانكارة R/E103 pled olso ولكي راين العب أن مكتب (10) R/(10) t < 7 $f(x) = \sqrt{25 - x^2}$ $f(x) = \frac{\sqrt{3x - 12}}{2x - 14}$ مقاح تعاطع المجانين 32-12 >0 3× ≥ 12 2x-14=0 -x2 3-25 22 = 4 x = 4 2 = 7 $x \leq \sqrt{-25}$ $x \leq 5^{-1}$ [x/x=4,xER] R/(7)

(X1X=4, X = 1, X ER)

الرفاع الشوق الثانوية للبنين - ريض ٢٦٤٠ - العام الدراسي ٢٠١٩ - ٢٠١٨م

[4,00) \ 173 [4,7) U(7,00) (2)2 25, 48) (-800,5]

من وي

$$f(x) = \frac{x^2 + 7x - 1}{\sqrt{x^2 + 6}}$$

$$f(x) = \frac{\sqrt{2x - 10}}{x^2 - 7x}$$

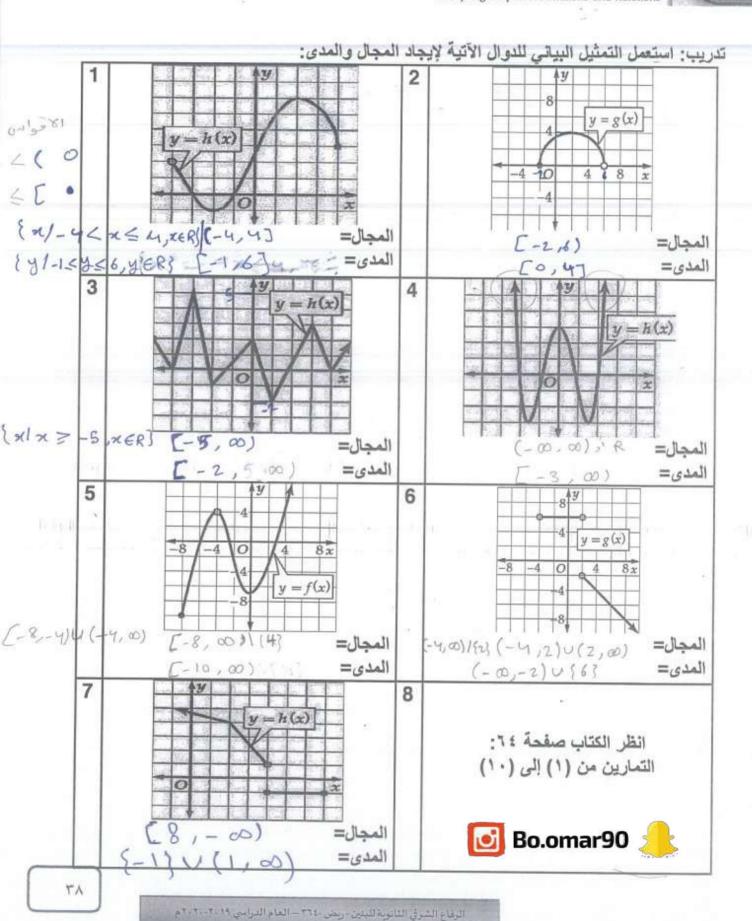
$$f(x) = \frac{\sqrt{x^2+5}}{3x-12}$$

$$f(x) = \frac{\sqrt{x+5}}{x^2-9}$$

$$x+5 \ge 0$$
 $x=3$
 $(x-3)(x+3)=0$
 $x=3$
 $(x-3)(x+3)=0$
 $x=3$
 $(x-3)(x+3)=0$

$$f(x) = \frac{2+5x^2}{3x(x+2)} + \frac{25}{x-8}$$

$$f(x) = \frac{2 + 5x^2}{3x(x+2)} / \frac{5x}{x-9}$$


 $3 \times (x+2) = 0$ $\times -8 = 0$ $3 \times = 0$ $\times +2 = 0$ $\times -8$ 1 = 0 $\times -2$ 1 = 0 $\times 1 \times 4 = 2,0,8, \times \in \mathbb{R}$ 1 = 0 $\times 1 \times 4 = 2,0,8, \times \in \mathbb{R}$

$$h(x) = \frac{3x}{\sqrt{x-2}-4}$$

$$f(x) = \frac{3-x}{\sqrt{x^2-4}}$$

x-2 > 0 x-2-4 > 0 x-2-4

تدريب: استعمل التمثيل البياتي للدوال الآتية لإيجاد المجال والمدى:

حير بأ: مقطع بربياتيا:

2(0)+3=3

مقطع يربيانيا: ١٠٥

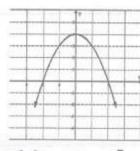
جبريا:

عبرياً: · · · : أيب

f(x) = 2x + 3

26=-1.5

0= 2x +3


مقطع ير بيانيا: 2 ر 2 -

foc = 4-xe 0 = 4-22

04 x2 = 54

x=+2

2

 $f(x) = 4 - x^2$

 $h(t) = \sqrt{4t + 1}$

جبریا: 6 = 6+(٥) + + (٥)

مقطع و بيانيا: 6

مقطع تد بيانيا: 2 _ 3 _ 3

جبرياً:

x2 + 6x + 6 = 0

(x+2)(x+3)

x=-2 \ x = -3

4

جبریا: ۱= ۱+۱۵)۲۱

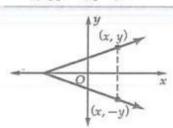
مقطع م بياتيا: ا

مقطع تد بیانیاً: 📜 –

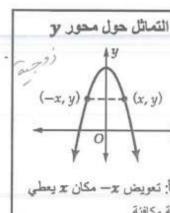
جبريا:

02 = J4t+1

02= 4++1

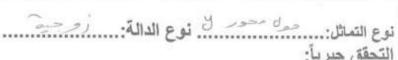

1 = 4t

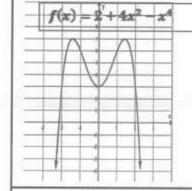
t = - \ 4


49

اختبارات التماثل:

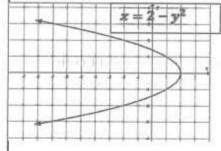
التماثل حول محور ير




جبريا : تعويض س- مكان و يعطى معادلة مكافئة

جبرياً: تعويض عر- مكان عد يعطى معادلة مكافئة

تدريب: استعمل التمثيل البياني لتحديد توع التماثل، وما إذا كانت الدالة زوجية أم فردية أم غير ذلك:


التماثل حول نقطة الأصل

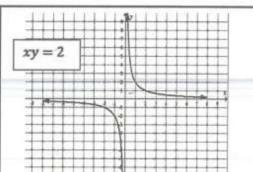
جبریاً: تعویض y مکان

ور ير يعطي معادلة مكافئة

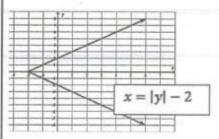
نوع التماثل: حول مح التحقق جبرياً:

$$x = 2 - (-y)^2$$

 $x = 2 - 4^2$

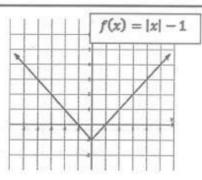


نوع التماثل: حول الله المال نوع الدالة: روجيم التحقق جبرياً:


$$f(n) = \frac{1}{2} (-x)^2 - 8$$

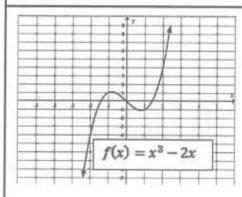
$$= \frac{1}{2} x^2 - 8$$

يتبع التدريب السابق:


نوع التماثل: حاد المركز الإبارانوع الدالة: عرب التحقق جبريا:

نوع التماثل: حول الم التحقق جبرياً:

x = 1y1-2


لانه المله يحنى الإسارة السالبة

نوع التماثل: حرف للسنوع الدالة: ﴿ وَحِمْ اللهِ اللهِ اللهِ الدالة المُعْمَالِينَ اللهُ ال

$$f(x) = |-x| - 1$$

$$f(x) = |x| - 1$$

$$f(n) = (-x)^3 - 2(-x)$$

$$-y = -x^3 - 2(-x) = x^3 + 2y$$

$$-y = -(x^3 - 2y)$$

$$+ y = +(x^3 - 2y)$$

لعتر

الاختبار الجبري للدالة الزوجية والفردية:

$$f(-x) = -f(x)$$
 إذا كانت الدالة فردية (متماثلة حول نقطة الأصل) فإن: (٢

تدريب: بين جبريا نوع الدوال الآتية من حيث كونها زوجية أو فردية أو غير ذلك.

$$1) f(x) = 3x^4 - 5x^2$$

2)
$$f(x) = x^6 - 15x^2 + 2$$

$$F(-x) = 3(-x)^{4} - 5(-x)^{2}$$

$$= 3x^{4} - 5x^{2}$$

$$= 6(x)$$

f(-x) = f(x)

$$f(-x) = (-\pi)^6 - 15(-\pi)^2 + 2$$

$$= x^6 - 15x^2 + 2$$

$$= f(x)$$

3)
$$f(x) = x^5 - 2x^3 + x$$

$$4) f(x) = \frac{\cos x + |x|}{\tan x}$$

$$f(-x) = (-x)^{5} - 2 = -x)^{3} + (-x)$$

$$= -x^{5} + 2x^{3} - x$$

$$= -(x^{5} - 2x^{5} + x)$$

$$= -6(x)$$

$$\frac{F(-x)}{\cot(-x)} = \frac{\cos(-x) + |-x|}{\cot(-x)}$$

$$= \frac{\cos(x + |x|)}{-\tan x}$$

$$= -\left(\frac{\cos(x + |x|)}{-\tan x}\right)$$

$$= -\left(\frac{\cos(x + |x|)}{-\tan x}\right)$$

$$= -\left(\frac{\cos(x + |x|)}{-\tan x}\right)$$

$$5) f(x) = \frac{3x^6 + 2x^3}{2x}$$

6)
$$f(x) = 4x^6 - |x|$$

$$f(-x) = \frac{3(-x)^6 + 2(-x)^3}{2(-x)}$$

$$= \frac{3x^6 - 2x^3}{-2x}$$

$$= -\left(\frac{3x^6 - 2x^3}{2x}\right)$$

$$= -\left(\frac{3x^6 - 2x^3}{2x}\right)$$

$$f(xx) = 4(-x)^{6} - |-x|$$

$$= 4x^{6} - |x|$$

$$= f(x)$$

$$= \frac{1}{2}$$

الرفاع الشرقي الثانوية للبنين - ريض ٢٦٤ – العام السراسي ٢٩٠ - ٢٠٠٠م

لازوسور لا نورية

لاخترا

$$-7) f(x) = |x| + \sin x$$

$$F(-x) = |-x| + \sin(-x)$$

$$= |x| + -\sin x$$

$$= |x| + -\sin x$$

$$= |x| - \sin x$$

$$= -(-|x| + \sin x)$$

$$= -(-|x| + \sin x)$$

8) $f(x) = cos x - \frac{tan x}{x}$

$$\begin{cases} (-x) = (os(-x) - \frac{-tod-x}{(-x)}) \\ = (osx - \frac{1}{todx}) \\ = (os$$

8 j. 5 c 8 je 45

تبريبر: إذا كانت a(x) دالة فردية، فحدّد إذا كانت b(x) فردية، أو زوجية، أو ليست أيًّا منهما، أو لا يمكن تحديدها. برِّر إجابتك.

$$b(x) = a(-x)$$
 (59)

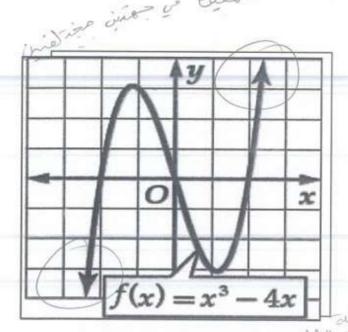
$$b(x) = -a(x)$$
 (60)

$$b(x) = [a(x)]^2$$
 (61)

$$b(x) = a(|x|)$$
 (62)

$$b(x) = [a(x)]^3$$
 (63)

(a) = a |x

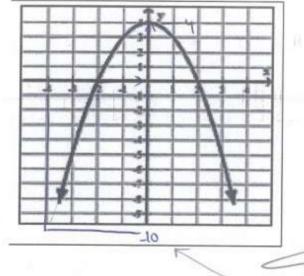

b(-x) = (a|x|)

= a(1-x))

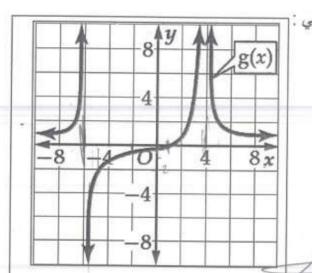
: التحليل البياني للدوال

١ مستخدما التمثيل البياني التالي للدالة (f(x) اوجد ما يأتي :

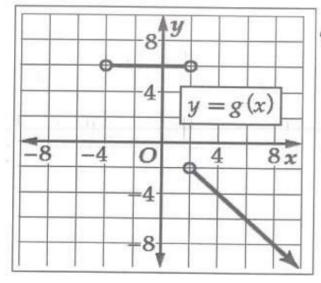
$$f(-2) = (-2)^3 - \frac{1}{2}(-2)$$
: قدر مما یاتی

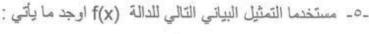

f(4) = (4)3 - 4 (4)

Bo.omar90

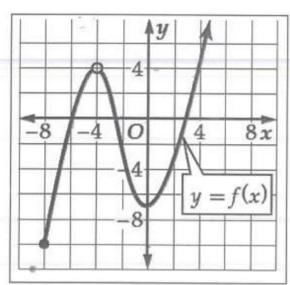

- ٢- مستخدما التمثيل البياني التالي للدالة (f(x) اوجد ما يأتي :

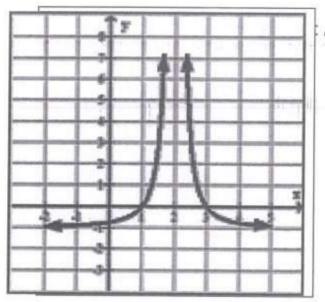
(°) نوع التماثل: حول ك


f(0) = 4


-٣- مستخدما التمثيل البياني التالي للدالة (f(x) اوجد ما يأتي :

$$f(4) = 0$$
 $f(-4) = -10$


$$f(-2) = -$$
 اقدر مما یاتي : ور مما یاتي :



#1 مستخدما التمثيل البياني التالي للدالة (f(x) اوجد ما يأتي

$$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right)$$

المستخدم التمثيل البياني التالي للدالة (f(x) اوجد ما يأتي

f(0) = -7

عند النعظمة الملوت.

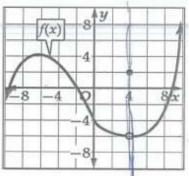
الرام المربع

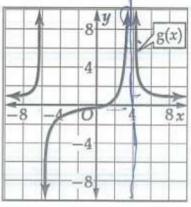
تدريب: استعمل التمثيل البياني لتقدير النهايات التالية إن كان لها وجود:

 $2^{1/2} \cdot f(4) = 2$

$$\lim_{x \to 4^{-}} f(x) = -b$$

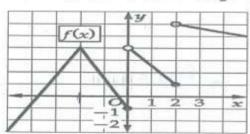
$$\lim_{x \to 4^{+}} f(x) = -b$$


$$\lim_{x\to 4} f(x) = -6$$


$$\lim_{x \to 4^-} f(x) = \infty \lim_{x \to 4^+} f(x) = \infty$$

$$\lim_{x \to 4} f(x) = \infty$$

$$\lim_{x \to -6^{-}} f(x) = 00 \lim_{x \to -6^{+}} f(x) = 00$$


$$\lim_{x\to -6} f(x) = \bigcup_{x\to -6} f(x) = \bigcup_{x$$

 $\lim_{x\to 0^-} f(x)$ (38)

للدالة الممثَّلة بيانيًّا أدناه، قدِّر كل نهاية مما يأتي إذا كان لها وجود:

ايجاد غاية دالةعند نقطة رجبريا)

x = 3 size $f(x) = \begin{cases} 4x + 1 \\ x^2 - 3 \end{cases}$ $x \ge 3$

2.9	2.99	2.999	3	3.001	3.01	3.1
6.41	5.94	5.99	6	13.004	13.04	13.4

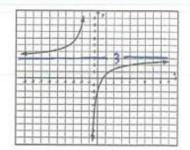
L:m ×→3- Foo = 6

الرفاع الشرق الثانوية للبتين - ريض ١٣١٠ – العام الدراسي ٢٠١٩ - ٢٠٢م

Lim (-(x)=13

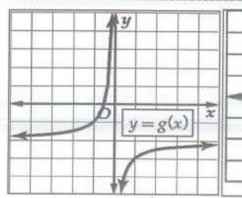
الحل:

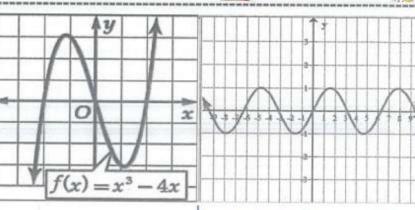
النهاية ليست موحودة

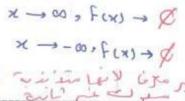

٤V

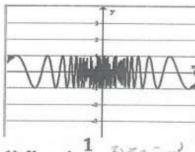
٢ سلوك طرفي التمثيل البياني رجبريا وبيانيا)

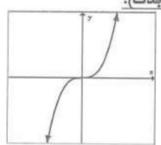
استعمل التمثيل البياني للدالة التالية لوصف سلوك طرفي التمثيل البياني ثم عزز إجابتك جبرها

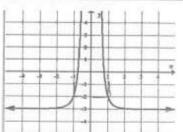

$$f(x) = \frac{3x - 2}{x + 1}$$


Of x - 0, f(x) -> 3 x -> -0) f(x) -> 3



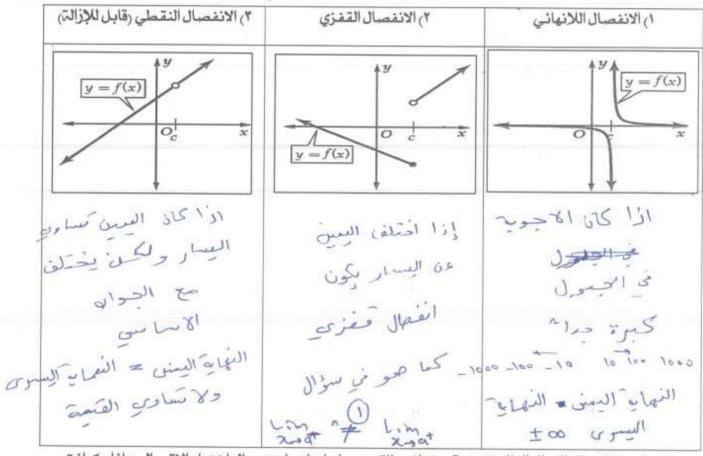



his
$$\chi \to \infty$$
, $f(x) \to -2$
 $\chi \to -\infty$, $f(x) \to -2$


Lim Fexs - 00

تدريب: قدركل نهاية مما يأتي (إن وجدت):

- $1) \lim_{x\to 0} \sin\frac{1}{x} = \sqrt{2\pi} \int_{-\infty}^{\infty} e^{-x^2} dx$
- $2) \lim_{x \to 0} x^2 sin x = 0$
- $3) \lim_{x \to \infty} \left(\frac{1}{x^4} 3 \right) = -3$


- $1) \lim_{x \to \infty} \sin \frac{1}{x} = \sqrt{x}$
- $2) \lim_{x \to \infty} x^2 sin x = \infty$
- $\lim_{x \to -\infty} \left(\frac{1}{x^4} 3 \right) = -3$
- 1) $\lim_{x \to -\infty} \sin \frac{1}{x} = 2$ $\lim_{x \to -\infty} x^2 \sin x = -\infty$
- 3) $\lim_{x\to 1} \left(\frac{1}{x^4} 3\right) = -2$

اذا كاد كل الاجوب منشابة تكون مدولة

ا- أن تكون الدالة معرفة عند النقطة ٢٠ أن تكون الدلها مر موجودة (١٠١٥ ٢٠٠١ ٢٠ مردة الدالة عند الدالة عند الدالة

٣ اتصال الدوال وأنواع الانفصال:

س: متى تكون الدالة متصلة عند نقطة ؟

ابحث اتصال الدوال التالية عند قيم ▼ المعطاة، وبرر إجابتك باستعمال اختبار الاتصال. وإذا كانت
 الدالة غير متصلة، فبين نوع الانفصال هل هو لا نهائي، قفزي، أم قابل للإزالة.

$$x = 4$$
 عند

- 121 -

$$f(x) = \begin{cases} 2x - 1 & x > 4 \\ x^2 - 5 & x \le 4 \end{cases}$$

f(4) = 42-5 = (1)

18895 3.9 3.99 4 4.001 4.01 4.1 000

3.9 3.99 1 4.001 4.01 4.1 0.00

10.21 10.92 10.992 11 7.002 7.02 7.2 0,81 is

x = 4

Lim
$$f(x) = 11$$

 $x \rightarrow y^{-}$
Lim $f(x) = 7$
 $x \rightarrow y^{+}$
Lim $f(x) = 11 \neq \lim_{x \rightarrow y^{+}} f(x) = 7$
 $x \rightarrow y^{-}$

النماية كيس لما رجود الدالة منفهلد-(قضريو) ٢- ابحث اتصال الدوال التالية عند قيم x المعطاة، وبرر إجابتك باستعمال اختبار الاتصال. وإذا كانت الدالة غير متصلة، فبين نوع الانفصال عل هو (لانهائي، قفزي، أم قابل للإزالة.)

$$f(x) = \frac{1}{(x+4)^2}$$

$$x = -4 \text{ sign } f(x) = \frac{1}{(x+4)^2}$$

-					-				
	x	_4.0	-4.01	-4.001	-4	-3.222	-3.97	-3.9	
	у	100	10000	(05	Ø	105	10000	100	1

- Sur & all apieco

٣- ابحث اتصال الدوال التالية عند قيم ١٤ المعطاة، وبرر إجابتك باستعمال اختبار الاتصال. وإذا كانت الدالة $(-5)^{2}+3(-5)^{-10}=\frac{(-5)^{2}+3(-5)^{-10}}{3}=\frac{(-5)^{2}+3(-5)^{-10}}{3}=\frac{(-5)^{2}+3(-5)^{-10}}{3}=\frac{(-5)^{2}+3x-10}{3}=\frac{(-5)^{2}+3x-10}{3}=\frac{(-5)^{2}+3x-10}{3}$

$$(6x^{5}) = \frac{(-5)^{2} + 3(-5) - 10}{-5 + 5} = 0$$

$$f(x) = \frac{x^2 + 3x - 10}{x + 5} \quad (1)$$

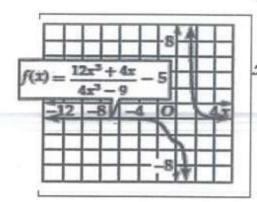
- apri WINI - apris 11 Speid speil

,x>-3

 ابحث اتصال الدوال التالية عند قيم X المعطاة، وبرر إجابتك باستعمال اختبار الاتصال. وإذا كانت الدالة غير متصلة، فبين نوع الانفصال هل هو لا نهائي، قفزي، أم قابل للإزالة.

$$x = -3 \text{ sign} \qquad f(x) = \begin{cases} 2x + 14 \\ x^2 - 1 \end{cases}$$

$$f(x) = x^2 - 1 = (-3)^2 - 1 = 8$$


$$8 = \begin{cases} -3.1 & -3.01 & -3.001 & -3 - 1.991 & -2.991 & -2.91 \\ 8.6 & 8.06 & 8.006 & 8 & 8.001 & 8.02 & 6.2 \end{cases} = 8$$

$$x^2 - 1$$

$$x^3 - 1$$

$$x^4 - 1$$

الرقاع الشرق الثانوية للينين - ريض -٣٦٤ - العام الدراسي ١٩ -٢-٢٠٢ م

٣ _خطوات ا يجاد خطوط التقارب الأفقية والرأسية :

- التأكد من وجود (انفصال نقطى) من عدمه (تحليل واختصار العامل المشا
 - ٢- خط تقارب راسي (انفصال لانهائي) (المقام = صفر)
 - ". خط تقارب افقي رسلوك طرفي الدالة) على حسب درجة البسط والمقام
 - البسط = درجة المقام عسم
 - ۲ درجة البسط اصلارمن درجة المقام ٥ = ٢
 - البسط اكبر من درجة المقام لا يرحد

أوجد المجال، وخطوط التقارب الأفقية والرأسية رإن وجدت لكل دالة مما يأتي

$$f(x) = \frac{3x+2}{1x+1}$$

$$\Rightarrow x = -1$$

$$f(x) = \frac{x^2 - x - 6}{x + 4}$$

$$N + 9 = 0 \qquad x = -9$$

$$V = 0 \qquad x = -9$$

$$X = -9$$

$$f(x) = \frac{5x+5}{x^2-3x-4}$$

$$\frac{5(x+1)}{(x-4)(x+1)}$$

$$(x-4)(x+1)$$

$$\frac{5}{x-4}$$

$$f(x) = \frac{x^2 - x - 6}{x^2 - 9}$$

$$\frac{(7(\sqrt{3})(x+2)}{(x/-3)(x+3)}$$

$$x + 2$$

$$x + 3$$

$$x + 3$$

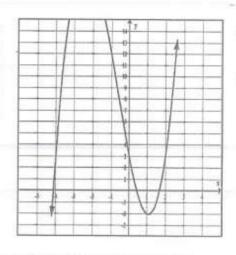
$$x + 3 = 0 | x - 3 | x = +3$$

$$x + 3 = 0 | x - 3 | x = +3$$

$$x + 3 = 0 | x - 3 | x = +3$$

$$x + 3 = 0 | x - 3 | x = +3$$

$$x + 3 = 0 | x - 3 | x = +3$$


الرفاع الشرق الثانوية للينين - ريض -٢٦٤ - العام الدراسي ٢٠١٩ - ٢٠١٩م

الا س عاري الرأس خط التعاري الرأس حد = -3 حدد الأعداد الصحيحة المتتالية التي تنحصر بينها أصفار الدالة الحقيقية في الفترة [a,b]:

-6	-5	-4	-3	-2	-1	0	1	2	3	4
-93	-32	3	18	19	12	3	-2	3	24	67

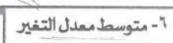
0< 1<1 + 1

ICKCZ NA

 $f(x) = x^3 + 5x^2 - 4$, [-6,2]

-6	- 9	- 4	-3	-2	- 1	0	1	2
-40	-4	12	14	8	0	-4	12	24

-3, 3] في الفترة $f(x) = x^2 + x + 0.16$ وينها الأصفار الحقيقية لي $f(x) = x^2 + x + 0.16$ والفترة الأعداد الصحيحة المتتالية التي تنحصر بينها الأصفار الحقيقية لي $f(x) = x^2 + x + 0.16$


X	-3	-2	-1	0	1	2	3
f(x)	6.16	2.16	0.16	0.16	2.16	6.16	12.16

اذا کا، امناتج نیس اجواں وستالین کت ب

Jan jep 129

$$m_{\text{sec}} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$m_{\text{sec}} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ هو ميل المستقيم الواصل بين نقطتين

اوجد متوسط معدل التغير للدالت مما يأتي في الفاترة المعطاة:

$$f(x) = 3x^2 + 2x$$

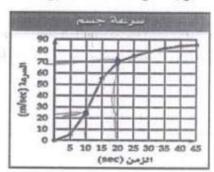
$$f(x_1) = f(3) = 3(3)^2 + 2(3) = 33$$

$$M = \frac{f(x_t) - f(x_1)}{x_t - x_1} = \frac{161 - 53}{7 - 3} = 32$$

الزمن $d(t) = 16t^2 + 20t + 4$ عطيا الارتفاع بالعلاقة : tبالثواني و d المسافة التي يقطعها الجسم. اوجد متوسط سرعة الجسم في الفترة من 0.5 sec الى . 2sec [0.5, 2]

$$\frac{1}{2}(\frac{1}{2}) = \frac{16(2)^2}{20(2)} + \frac{20(2)}{4} + \frac{108}{2}$$

🗾 Bo.omar90


٣- أو جد متوسط معدل التغير مستخدما الشكل المقابل في الفترة في [10, 20]

$$f(10) = 70$$

$$f(10) = 25$$

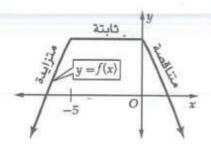
$$70 - 15 = 415$$

$$10 - 10 = 415$$

لا الثابت $f(x) = 3x^2 - kx$ الثابت $f(x) = 3x^2 - kx$ الثابت الثابت $f(x) = 3x^2 - kx$

$$f(3) = 3(3)^{2} - K(3) = 27 - 3K$$

$$f(1) = 3(1)^{2} - K(1) = 3 - K$$

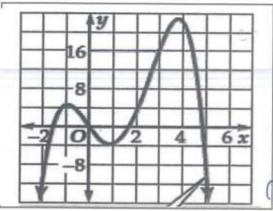

$$12 = \frac{27 - 3K - (3 - K)}{3 - 1}$$

٧ اطراد الدوال

- $(-\infty, -5)$ متزايدة في الفترة f(x) *
 - * ثابتة في الفترة (5,0)
 - متناقصة في الفترة (∞,0)

٨ ـ القيم القصوى

مستخدما التمثيل البياني اوجد ما يأتي:


$$R = 1$$

(٣) فترات التزايد والتناقص لاقرب 0.5

adpa

$$(\circ)$$
 co (π) de de de de de (\circ) co (\circ) $($

_ -#1-# مستخدما التمثيل البياني التالي للدالة (x) اوجد ما يأتي :

تَمَا َ حَمِل (١, ١) مَنا مَعِل (٥, ١) مَنا مَعِل (٥, ٥) مَنا مُعِل (٥, ٥.٥) دراسة سلوك طرفي الدالة (٣) دراسة سلوك طرفي الدالة

$$x \rightarrow \infty$$
, $f(x) \rightarrow -\infty$
 $x \rightarrow -\infty$, $f(x) \rightarrow -\infty$

R Ulanto (0)
$$(-\infty, 23]$$
 (1) $(-\infty, 23]$ (2) $(-\infty, 23]$ (3) $(-\infty, 23]$ (4) $(-\infty, 23]$

(°) متوسط معدل التغير للدالة في الفترة [2, 3] = 12

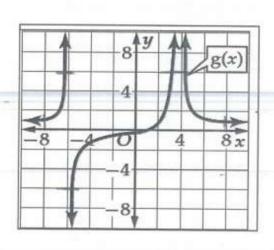
 $f(x) = x^3 - 4x$

#2#*مستخدما التمثيل البياتي التالي للدالة (f(x) اوجد ما يأتي:

(۱) القيم القصوى ونوعها:

عنه عنه محلي محلي ١٠٥ - علا القيم القصوى ونوعها:

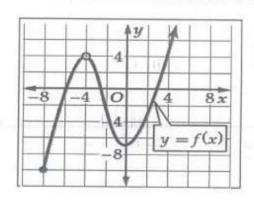
هنهرى محلي المحالي ١٠٥ - علا التناقص:


(۲) فترات التزايد والتناقص:

در الدر (١٠٥ - ١٠

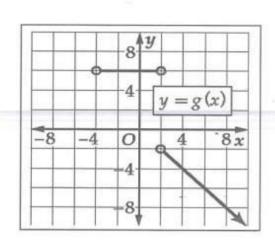
- بنا تمهم (۱۰۵, ۱۰۵) - بزاید (۲۵, ۱۰۵) (۳) دراسة سلوك طرفي الدالة (۳) دراسة سلوك طرفي الدالة

(٤)خطوط التقارب ونوعها (ان وجدت)


$$M = \frac{-3 - 0}{1 - 2} = \frac{-3}{3} = -1$$

- -٣- مستخدما التمثيل البياتي التالي للدالة (f(x) اوجد ما يأتي :
 - (١) القيم القصوى ونوعها:

(٢) فترات التزايد والتناقص:


SIE & Speil

3 مستخدما التمثيل البياني التالي للدالة (x) اوجد ما يأتى :

$$\{ x/x \ge -8, x \in \mathbb{R} \} \setminus \{-4\} = \text{line (1)}$$

Sle & spil

-#5-# مستخدما التمثيل البياني التالي للدالة (g(x) اوجد ما يأتي :

$$|\mathcal{A}/\mathcal{A}| \geq -4 \cdot \mathcal{A} \in \mathbb{R} \setminus \{2\} = \text{display}$$
 (1)

(٨) در اسة سلوك طرفي الدالة x-> 00, f(x) -> -00

$$g(-2) = 6$$

greel spe VI

g(2) = 200 8

#6# مستخدما التمثيل البياني التالي للدالة (f(x) اوجد ما يأتي

(°) فترات التزايد والتناقص: كلموم مرد كموى محلو و على مهلق - مزاید (۱۰۱٫۱۰۶) - شامع (۲۰۱٫۲۹)

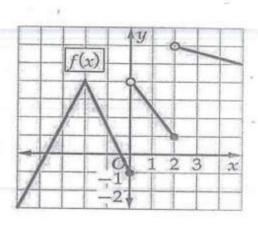
(٦) در اسة سلوك طرفي الدالة x -100, f(x) -100 N → - 00 , f (N) -> ~ ~ N &

(٧) الاتصال (او حدد نوع الانفصال) انتهال التحال ال

(A) خطوط التقارب الافقية والراسية خيم ل المعارى الرئيس عديد

OY

حساب النهايات جبريًا Evaluating Limits Algebraically


$$\lim_{x\to 0^-} f(x) = 1$$

$$\lim_{x \to 0^+} f(x) = 9$$

$$\lim_{x\to 2^-} f(x) = 1$$

$$\lim_{x\to 2^+} f(x) = 6$$

$$\lim_{x \to 1} f(x) = 2.5$$

1) $\lim_{x\to 2} (3x^2 - 5x + 7) =$

$$\lim_{x\to 5}\sqrt{x^2-2}=$$

3)
$$\lim_{x \to -5} \left(\frac{x^2 + 3x - 6}{x - 4} \right) =$$

$$\left(\frac{(-9)^2+3(-9)-6}{(-9)-9}\right)$$

4)
$$\lim_{x\to -1} (4x^6 + 3x^5 - x) =$$

$$2) \lim_{x \to k} (x^2 + 3x) = 70$$

$$= |C^{2} + 3K = 70$$

$$= |C^{2} + 3K - 70 = 0$$

$$(K - X)(K + 10) = 0$$

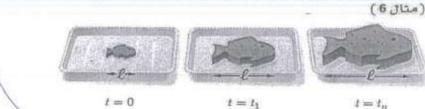
أوجد قيمة المجهول لل فيما يلي:

3)
$$\lim_{x\to 1} \frac{x^3+k}{kx-5} = \frac{1}{3}$$

$$=\frac{(1)^3+K}{K\cdot -9}$$

$ \frac{3^{2}-9}{3^{2}-5(5)} = 0 $ $ \frac{3^{2}-9}{5^{2}-5(5)} = 0 $	-	صب النهايات التالية:
$ \frac{2(x+3)}{2} = \frac{3+3}{3} = 2 $ $ = \frac{2(x+3)}{2} = \frac{3+3}{3} = 2 $ $ (x-2) (x^2+2x+4) $ $ x(x-2) (x^2+2) $ $ = \frac{12}{6} = \frac{5}{2} $ $ (x-25) (x^2+5) $	$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x}$	$= 2) \lim_{x \to -2} \frac{x^2 - 5x - 14}{5x + 10} = \frac{-2}{5}$
$ \frac{1}{2} 1$	is 32-3(3) 0	= (21-7)(21+2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$(x-2)(x^{2}+2x+4)$ $x(x^{2}-4)$ $(x-2)(x^{2}+2x+4)$ $x(x-2)(x+2)$ $= \frac{x^{2}+7(2)+4}{2} = \frac{12}{8} = \frac{8}{2}$ $(x-25)(x+5)$ $= \frac{x^{2}+7(2)+4}{2} = \frac{12}{8} = \frac{8}{2}$ $(x-25)(x+5) = 5x+9 = 5x$ $(x-25)(x+5) = 5x+9 = 5x$ $(x-25)(x+3)x = 5x$ $(x-$		5
$(x-2)(x^{2}+2x+4)$ $x(x^{2}-4)$ $(x-2)(x^{2}+2x+4)$ $x(x-2)(x+2)$ $= \frac{x^{2}+7(2)+4}{2} = \frac{12}{8} = \frac{8}{2}$ $(x-25)(x+5)$ $= \frac{x^{2}+7(2)+4}{2} = \frac{12}{8} = \frac{8}{2}$ $(x-25)(x+5) = 5x+9 = 5x$ $(x-25)(x+5) = 5x+9 = 5x$ $(x-25)(x+3)x = 5x$ $(x-$	73 - 9	= -2-1 = - 7-5
$\frac{\chi(\chi)(\chi+2)(\chi+2)}{\chi(\chi-2)(\chi+2)} = \frac{\chi-25}{\chi+5} = \frac{\chi+5}{\chi+5}$ $\frac{\chi(\chi-2)(\chi+2)}{\chi(\chi-2)(\chi+2)} = \frac{\chi-25}{8} = \frac{\chi+5}{2}$ $= \frac{\chi^2+\chi(\chi)+\chi}{\chi+6-3} = \frac{\chi+5}{2}$ $= \frac{\chi^2+6-3}{\chi+6-3} = \frac{\chi+6}{2}$ $= \frac{\chi+6-3}{\chi+6-3} = \frac{\chi+6+3}{\chi+6+3}$ $= \frac{\chi+6-9}{\chi+6-9} = \frac{\chi+6+3}{\chi+6+3}$ $= \frac{\chi+6-9}{\chi+6-9} = \frac{\chi+6}{\chi+6+3}$ $= \frac{\chi+6-9}{\chi+6-9} = \frac{\chi+6}{\chi+6+3}$ $= \frac{\chi+6-9}{\chi+6-3} = \frac{\chi+6+3}{\chi+6+3} = \frac{\chi+6+3}{\chi+6+3}$ $= \frac{\chi+6-9}{\chi+6-9} = \frac{\chi+6+3}{\chi+6+3} = \frac{\chi+6+3}{\chi+6$		4) $\lim_{x \to 25} \frac{x - 25}{\sqrt{x} - 5} = \frac{6}{6}$
$ \frac{x(x-2)(x+2)}{2(2+1)} = \frac{12}{8} = \frac{8}{2} $ $ \frac{7}{2(2+1)} = \frac{12}{8} = \frac{12}{8} $ $ \frac{7}{2(2+1)} = \frac{12}{8} $ $ \frac{7}{2(2+1)} = \frac{12}{8} $ $ \frac{7}{2(2+1)} = \frac{12}{12} $ $ 7$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		The second secon
5) $\lim_{x \to 3} \frac{\sqrt{x+6} - 3}{9 - x^2} = 0$ 6) $\lim_{x \to -3} \frac{x^2 - 3 x }{7x + 21}$ $\frac{\sqrt{x+6} - 3}{-(x^2 - 9)} \cdot \frac{\sqrt{x+6} + 3}{\sqrt{x+6} + 3} = \frac{x^2 - 3(-x)}{\sqrt{x+6} + 3}$ $\frac{x+6 - 9 = xx-3}{\sqrt{x+6} + 3} \cdot \frac{x-3}{\sqrt{x+6} + 3} = \frac{x^2 + 3x}{\sqrt{x+3}} = \frac{x^2 + 3x}{\sqrt{x+3}} = \frac{x^2 - 3x}{\sqrt{x+3}}$ 7) $\lim_{x \to 0} \frac{\sqrt{x+9} - 3}{x} = 0$ 8) $\lim_{x \to 0} (\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} \frac{\sqrt{x+9} - 3}{x} = \frac{x^2 - 3x}{\sqrt{x+9} + 3}$ $\lim_{x \to 0} \frac{\sqrt{x+9} + 3}{\sqrt{x+9} + 3} = \frac{x^2 - 4x - 5}{\sqrt{x+9} + 3}$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$ $\lim_{x \to 0} (\frac{x^2 - 4x}{\sqrt{x^2 - 25}} - \frac{5}{x^2 - 25}) = 0$	= 22+2(2)+4-12=3	(x-25) (x+5) = 5x+9= 50
$ \frac{\int x+6-3}{-(x^2-9)} \cdot \frac{\int x+6+3}{\int x+6+3} = \frac{x^2-3(-x)}{\sqrt{x}+6+3} = \frac{x^2+3x}{\sqrt{x}+21} = \frac{x+6-9=x-3}{\sqrt{x}+3} \cdot \frac{x-3}{\sqrt{x}+3} = \frac{x^2+3x}{\sqrt{x}+21} = \frac{x^2+3x}{\sqrt{x}+3} = \frac{x^2+3x}{\sqrt$		r ² - 3 r
$\frac{x+6-9=3x-3}{-(3x-5)(x+3)(\sqrt{x+6}+3)} = \frac{x-3}{(x-3)(x+3)(\sqrt{x+6}+3)} = \frac{x+2}{7x+21}$ $= \frac{1}{(x+3)(\sqrt{x+6}+3)} - \frac{1}{(3+3)(\sqrt{x+6}+3)} = \frac{1}{36} = \frac{x(x+3)}{7(x+3)} = \frac{x}{7} = -\frac{3}{7}$ $\frac{1}{7} \lim_{x\to 0} \frac{\sqrt{x+9}-3}{x} = \frac{0}{0}$ $1 \lim_{x\to 0} \frac{\sqrt{x+9}-3}{x} = \frac{0}{0}$ $1 \lim_{x\to 0} \frac{\sqrt{x^2-4x}}{x} = \frac{5}{x^2-25} = \frac{0}{x^2-25}$ $1 \lim_{x\to 0} \frac{x^2-4x-5}{x^2-25} = \frac{1}{2}$ $1 \lim_{x\to 0} \frac{x^2-4x-6}{x^2-25} = \frac{1}$	$\frac{\int x + 6 - 3}{-(x^2 - 9)} \cdot \frac{\int x + 6 + 3}{\int x + 6 + 3}$	x = -3(-x)
7) $\lim_{x\to 0} \frac{\sqrt{x+9-3}}{x} = \frac{0}{0}$ 8) $\lim_{x\to 5} \left(\frac{x^2-4x}{x^2-25} - \frac{5}{x^2-25}\right) = \frac{0}{0}$	x+6-9= x=3 = x-3	×2+3×
7) $\lim_{x \to 0} \frac{\sqrt{x+9-3}}{x} = \frac{0}{0}$ 8) $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$ $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{0}{0}$	= (7+3)(1/21/21)= -1	$=\frac{\chi(\chi+3)}{\chi(\chi+3)}=\frac{\chi}{\chi}=\frac{3}{\chi}$
$\frac{\chi}{(x+9-9)} = \frac{\chi}{(x-5)(x+9+3)}$ $\frac{\chi}{(x-5)(x+9)} = \frac{\chi}{(x-5)(x+9)}$ $\frac{(x-5)(x+9)}{(x-5)(x+9)}$	7) $\lim_{x\to 0} \frac{\sqrt{x+9-3}}{x} = \frac{0}{0}$	8) $\lim_{x \to 5} \left(\frac{x^2 - 4x}{x^2 - 25} - \frac{5}{x^2 - 25} \right) = \frac{9}{9}$
$\frac{7(+9-9)}{(x)(\sqrt{x+9}+3)} = \frac{3!}{(x-5)(x+1)}$ $\frac{(x-5)(x+1)}{(x-5)(x+5)}$	X July 143	$\lim_{x \to 6} \frac{x^2 - 4x - 6}{x^2 - 25}$
V 100 100 100 100 100 100 100 100 100 10	$\frac{x+9-9}{(x)(\sqrt{x+9}+3)} = \frac{36}{(x)(\sqrt{x+9}+3)}$	(x-5)(x+1)
(Jx+11 + 5 6		$\frac{5+1}{5+5} = \frac{3}{5}$

نعسم ملی اکبر اسس فی حاله رجود ۵۰


(2 , 2), (2 , 0)	- 2
9) $\lim_{x\to 4} \frac{(x^3-4x^2)+(2x-8)}{5x-20}$	10) $\lim_{x \to -\infty} \frac{3x^3 - 4}{8 - x^2 - 12x^3} =$
Lim x2 (x-4)+2(x-4)	
5(x-4)	3 x 3 - 4 x 5
2-34 (x24) (x2+2) 5 (x-4)	$\frac{x_3}{x_5} - \frac{x_5}{x_5} - \frac{12x^3}{x_5}$
Liny = 42+2 = 18	$\frac{1.111}{200} = \frac{3}{200} = \frac{3}{12} = 3$
11) $\lim_{x \to -\infty} \frac{3x_{x,5}^2 - 4x_{x,5}^5}{8x_{x,5}^2 - 4x_{x,5}^2} = $	12) $\lim_{x \to \infty} \frac{4x - 5}{8x^5 + x^2} =$
Liny 3/2 - 4	Lius 43 - 5 x5 - 25 8 + x3
-00 KX4 - 43	+ x2 - 5 - 5
-4 = - 00	21 300 8 + 1/3
J-6	0 = 0
$\frac{x^{5}}{x^{2}} = x^{5} = (-\infty)^{3} = -\infty$	8
$\lim_{x \to -2} \begin{cases} x - 3, & x \le -2 \\ 2x - 1, & x > -2 \end{cases}$	14) $\lim_{x\to 0} \frac{\sin 8x}{2x} = \frac{z}{z} = 4$
Transfer to the state of the st	
L_{1m} $2x-1 = 2(-2)-12$ $x \rightarrow -2^{+}$	0.01 -0.001 0 0.001 0.01
Lin	5.069 0.069 \ alla alla opta
y 2 -2 - 1-3 = -2-3 = -9	0.07
i= lin F (x) = -5	
الا كان عير تساوي ١١١ كان	

سه لا وجود

إسفتج، تحتوي مادة هلامية على حيوان الإسفنج، وعند وضع المادة الهلامية في الماء، فإن حيوان الإسفنج يبدأ بامتصاص الماء $\ell(0) = \frac{(0.9 (0.0)^{3} + 2.9 \ell^{2} + 2.$

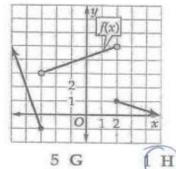
والتضخم. ويمكن تمثيل ذلك بد 25 +
$$\frac{1001}{10+t^2}$$
 = حيث θ طول حيوان الإسفنج بالمليمترات بعد t ثانية من وضعه في الماء.

= 29

a) ما طول حيوان الإسفنج قبل وضعه في الماء؟ -

a) ما طول حيوان الإسفنج قبل وضعه في الماء
$$a$$
 ما نهاية الدالة عندما a b

حـ ع) وضّح العلاقة بين نهاية الدالة ٤ وطول حيوان الإسفنج.


4 G

$$g(x) = \frac{x + \pi}{\cos(x + \pi)}$$
 عندما تقترب (62 من $g(x) = \frac{x + \pi}{\cos(x + \pi)}$ عندما تقترب $g(x) = \frac{x + \pi}{\cos(x + \pi)}$ عندما تقترب $-\frac{1}{2}\pi$ C $-\pi$ A $-\frac{3}{4}$ B

COS (X +TI) 01 T = T = TT

to + +2

f(x) التمثيل البياني للدالة f أدناه، ما قيمة (63) باستعمال التمثيل البياني للدالة

J ليس لها وجود

تعريف المشتقة: وهي ميل المماس لمنحنى الدالة f عند أي نقطة عليه:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

تدريب: أوجد باستخدام التعريف مشتقة (f(x) ، ثم احسب قيمتها عند النقطة المعطاه

2)
$$f(x) = x^2 - 4x$$
; (2, -4)

« X(2x+h-4) = 2x+0-4 = 2x-4

2)
$$d(t) = \frac{1}{t+3}$$
 ; $t=1$

(t+4+3)(t+3) $(t+3)(t+3)^{-1}(t+3)^{2}$. أوجد باستخدام التعريف ميل الماس للمنحنى $f(x) = \sqrt{x+4}$ عند أي نقطة واقعة عليه .

2) $f(x) = 4x^2 - 1$; at x = 2 $f(x) = \lim_{h \to 0} \frac{f(x+h)^2 - 1}{h} - f(x)$ $\lim_{h \to 0} \frac{f(x+h)^2 - 1}{h} - \lim_{h \to 0} \frac{f(x+h)^2 - 1}{h}$ $\lim_{h \to 0} \frac{f(x+h)^2 - 1}{h} - \lim_{h \to 0} \frac{f(x+h)^2 - 1}{h}$ $\lim_{h \to 0} \frac{f(x+h)^2 - 1}{h} - \lim_{h \to 0} \frac{f(x+h)^2 - 1}{h}$ $\lim_{h \to 0} \frac{f(x+h)^2 - 1}{h} - \lim_{h \to 0} \frac{f(x+h)^2 - 1}{h}$ $\lim_{h \to 0} \frac{f(x+h)^2 - 1}{h} - \lim_{h \to 0} \frac{f(x+h)^2 - 1}{h}$ $\lim_{h \to 0} \frac{f(x+h)^2 - 1}{h} - \lim_{h \to 0} \frac{f(x+h)^2 - 1}{h}$ $\lim_{h \to 0} \frac{f(x+h)^2 - 1}{h} - \lim_{h \to 0} \frac{f(x+h)^2 - 1}{h}$

 $4(x+h)^2-1-(4x^2-1)$

4 (xe+2xh+h2) -x - 4x +x

الرقاع الشرق الثانوية للبنين - ريض -٣٦٤

8xh + 4h - 4182 + 41

المشتقة

3-4

dy

dx

Derivative

أوجد المشتقة الأولى للدوال التالية :

2)
$$f(x) = 3x + 2\sqrt{x}$$
;
= $3 + 2x^{\frac{1}{2}}$
= $3 + 1 \times \frac{1}{2}$
= $3 + \frac{1}{\sqrt{x}}$
 $h(t) = (2t + t^2)(3t)$
= $6t^2 + 3t^3$

With 2 12t + 9t2

$$h(t) = 5t(2t - 16t^2 - 2)$$

$$10t^2 - 80t^3 - 10t$$

X=1 إذا علم أن ميل المماس للمنحنى هو المشتقة الأولى للدالة، فأوجد ميل المماس للمنحنى عندما $f(x)=5x^4+\frac{5}{x^4}+\frac{x^4}{5}+\frac{4}{\sqrt{x^5}}+\frac{5}{\sqrt{4}}$. واعلم أن ميل المصادى ما المستقدة الأولى للدالة، فأوجد ميل المماس للمنحنى عندما $f(x)=5x^4+\frac{5}{x^4}+\frac{x^4}{5}+\frac{4}{\sqrt{x^5}}+\frac{5}{\sqrt{4}}$

$$f'(x) = 20x^3 - 20x^{-5} + \frac{4x^3}{5} + \frac{5}{4}x^{\frac{1}{4}} + 0$$

$$= 20(1)^3 - 20(1)^{-5} + \frac{4(1)^3}{5} + \frac{5}{4}(1)^{\frac{1}{4}} + 0$$

$$f(x) = x^3 + ax - 2$$
 فأوجد $f'(x) = x^3 + ax - 1$ أوجد قيمة $f'(-1) = 5$

$$f'(-1) = 5$$

$$3x^{2} + \alpha - 0$$

$$F'(-1) = 3(-1)^{2} + \alpha = 5$$

$$\alpha = 5 - 3(-1)^{2}$$

$$\alpha = 7$$

$$f(x) = \frac{x^3}{3} - 3x^2 + 5 \text{ is is is }$$

$$f'(x) = 0 \text{ is it is a substitute}$$

$$\frac{3x^2}{3} - 6x + 6 = 0$$

$$x^2 - 6x$$

$$x(x - 6)$$

$$x = 6$$

1)
$$f(x) = x^5 - 4x^3 + 5x - 8$$

 $f'(x) = 5x^4 - 12x^2 + 5$
 $f''(x) = 20x^3 - 24x$
 $f'''(x) = 60x^2 - 24$

المنافقة الثالثة لما يأتي:
$$f(x)$$

$$f(x)$$

$$2) y = 3t^{-2} - 5t^{4} + \sqrt[3]{-2}$$

$$f''(t) = -6t^{-3} - 20t^{3} + 0$$

$$f''(t) = 16t^{-4} - 60t^{4}$$

$$f'''(x) = -64t^{-5} - 120t$$

7. تمثل $h(t)=55t-16t^2$ الارتفاع بالأقدام بعد t ثانية لكرة قذفت راسيا إلى أعلى. أوجد معادلة السرعة المتجهة اللحظية عند أي زمن t .

$$s(t) = 18t - t^3 - 1$$
 $t = t$ $t = t$

 $s(t) = 18t - t^3 + 3t^2 - 6$ عندما يكون التسارع عندما يكون التسارع 12 $m/\sec t$ عندما يكون التسارع $t = 18t - t^3 + 3t^2 - 6$

$$2\sqrt{3}$$
 $\sqrt{3}$ $\sqrt{3}$

الرقاع الشرق الثانوية للبتان - ريض ١٦٥٠ - العام السراسي ٢٠٠١ - ٢ م ٢٠ م

۵: استعمل الاشتقاق إيجاد النقاط الحرجة لكل مما يأتي، ثم أوجد نقاط القيم العظمى والصغرى
 لكل دالة في الفترة المعطاة:

$$f(x) = 2x^2 + 8x$$
 : [-5.0]

2)
$$f(t) = t^3 - 12t^2 + 5$$
; [-1,5]

+ (3t - 24) + (3t - 24)

(-5,0) it f(-5) = 2(-5)2+8(-5)=10 copiesano

 $\frac{1}{3} = \frac{3}{3} = \frac{24}{3}$

((0,5) (8, -) 600 d tal

٦- مثل 330 $+ 160t + 20t^2 - 160t$ ارتفاع سعد بالأقدام أثناء مشاركته في قفزة البنجي، حيث الزمن بالثواني. في الفترة [0,6]. أوجد أقصى وأدنى ارتفاع يبلغه سعد في هذه الفترة.

$$h(E) = 201^{2} - 160t + 33^{\circ}$$

$$h(0) = 20(0)^{2} - 160(0) + 33^{\circ} - 33^{\circ}$$

$$h(4) = 20(4)^{2} - 160(4) + 33^{\circ} = 10$$

$$h(6) = 20(6)^{2} - 160(6) + 33^{\circ} = 90$$

- رياضة : ارجع إلى فقرة "لماذا؟" في بداية الدرس. افرض أن $h(t) = 65t 16t^2 + 5$ النية عندما $h(t) = 65t 16t^2 + 5$ عندما $h(t) = 65t 16t^2 + 5$ عندما $h(t) = 65t 16t^2 + 5$
 - a) أوجد (h'(t).
- أوجد تقاط القيم العظمى والصغرى لمسار الكرة في الفتزة [4,0].
 - c) هل يمكن لأحمد ركل الكرة لتصل إلى ارتفاع 70ft ؟

نقط وج

ه مشتقة حاصل الضرب

اذا كانت f(x) = u(x).v(x) فإن مستقتها:

$$f'(x) = u(x).v'(x) + v(x).u'(x)$$

$$f(x) = (4x+3)(x^2+9)$$

اوجد مشتقة ما يأتي:

$$f'(x) = (4)(x^{2} + 9) + (2x)(4x + 3)$$

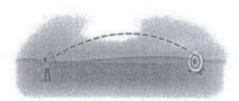
$$f(x) = 4x^{2} + 36 + 8x + 6x$$

$$f'(x) = 4x^{2} + 36 + 8x + 6x$$

2)
$$h(x) = (3x^4 + 2x)(5 - 3x)$$
; $x = -1$
 $f'(x) = (12x^5 + 12)(5 - 3x) + -3(3x^4 + 12x)$
 $= 60x^3 - 36x^4 + 100 - 6x - 9x^4 - 6x$
 $= -45x^4 + 60x^3 - 12x + 10$
 $= -45(-1)^4 + 60(-1)^3 - 12(-1) + 10 = -83$

و مشتقة خارج القسمة
$$\frac{u(x)}{v(x)}$$
 فإن مشتقتها:

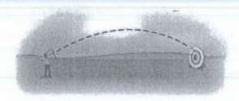
$$f'(x) = \frac{v(x).u'(x) - u(x).v'(x)}{[v(x)]^2}$$


أوجد مشتقة ما يأتي:

1)
$$f(x) = \frac{2x-3}{3x-2}$$
 ; $x = 2$ $f(x) = \frac{2(3x-2)-3(2x-3)}{(3x-2)}$
= $\frac{6x-4-6x+9}{(3x-2)^2}$
= $\frac{6}{(3x-2)^2}$

2)
$$f(m) = \frac{5m^2 - 3m}{3m + 1}$$
 ; $m = -1$ $f'(m) = \frac{(16m) - 3(3m + 1)^2}{(3m + 1)^2}$

الرفاع الشرق الثانوية للبنين - ربض ٢٦٤٠ – العام المرامي ٢٠١٨ - ٢٠٦٨م


(3M+1)2 15m2+10m-5 (3M+1)2 رماية ، أطلق محمد سهمًا بسرعة $35 \, \mathrm{ft/sec}$ باتجاه هدف . افرض أن ارتفاع السهم h بالأقدام بعد t ثانية من إطلاقه مُعطى بِ h . $h(t) = -16t^2 + 35t + 1.5$

- a) اكتب تعبيرًا يمثّل السرعة المتجهة اللحظية(t) للسهم.
 - b) ما سرعة السهم بعد 0.5/sec من إطلاقه؟
 - c) متى يصل السهم إلى أقصى ارتفاع؟
 - d) ما أقصى ارتفاع يصل إليه السهم؟

- جيوانات، يُعطى عدد الحيوانات P في محميَّة طبيعية بالمثات بعد $P(t)=\frac{40t^3+48t+100}{5t^3-70t-95}$
 - a) أوجد العدد التقريبي للحيوانات في المحميّة بعد 5 سنوات.
 - b) ما أقصى عدد ممكن للحيوانات في المحمية؟ الما
- 54) صواريخ، أطلق صاروخ رأسيًا لأعلى بسرعة 150 ft/sec. اقرض أن ارتفاع الصاروخ h(t) بالأقدام بعد t ثانية ومعطى $h(t) = -16t^2 + 150t + 8.2$
 - a) اكتب تعبير يمثل السرعة المتجهة اللحظية (v(t) للصاروخ.
 - b) ما سرعة الصاروخ بعد 1.5 sec من إطلاقه؟
 - c) متى يصل الصاروخ إلى أقصى ارتفاع؟
 - d) ما أنصى ارتفاع يصل إليه الصاروخ؟

رمايية ، أطلق محمد سهمًا بسرعة $35 \, \mathrm{ft/sec}$ باتجاه هدف . اقرض أن ارتفاع السهم h بالأقدام بعد t ثانية من إطلاقه مُعطى يـ h بالأقدام h . $h(t) = -16 \, t^2 + 35 \, t + 1.5$

- a) اكتب تعبيرًا يمثِّل السرعة المتجهة اللحظية (t) للسهم.
 - b) ما سرعة السهم بعد 0.5/sec من إطلاقه؟
 - c) متى يصل السهم إلى أقصى ارتفاع؟
 - d) ما أقصى ارتفاع يصل إليه السهم؟

- بعد الحيوانات أيعطى عدد الحيوانات P في محميّة طبيعية بالمثات بعد $P(t) = \frac{40t^3 + 48t + 100}{5t^3 70t 95}$ نستة بـ t
 - a) أوجد العدد التقريبي للحيوانات في المحميَّة بعد 5 سنوات.
 - b) ما أقصى عدد ممكن للحيوانات في المحمية؟
 - 54) صواريخ الطلق صاروخ رأسيًّا لأعلى بسرعة 150 ft/sec افرض أن ارتفاع الصاروخ h(t) بالأقدام بعد t ثانية ومعطى $\mu(t) + 150t + 150t$
 - a) اكتب تعبير يمثل السرعة المتجهة اللحظية (v(t) للصاروخ.
 - b) ما سرعة الصاروخ بعد 1.5 sec من إطلاقه؟
 - c) متى يصل الصاروخ إلى أقصى ارتفاع؟
 - d) ما أقصى ارتفاع يصل إليه الصاروخ؟