تم تحميل هذا الملف من موقع المناهج البحرينية

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/bh

* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر اضغط هنا

https://almanahj.com/bh/12

* للحصول على جميع أوراق الصف الثاني عشر في مادة رياضيات ولجميع الفصول, اضغط هنا

https://almanahj.com/bh/12math

* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر في مادة رياضيات الخاصة بـ الفصل الثاني اضغط هنا https://almanahj.com/bh/12math2

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الثاني عشر اضغط هنا

https://almanahj.com/bh/grade12

* لتحميل جميع ملفات المدرس عبد الله حسن أحمد اضغط هنا

almanahjbhbot/me.t//:https اضغط هنا على تلغرام: اضغط هنا

إعداد : أ.عبر الله حسخ أحمر

ریض ۳۲٦

مملكة البحرين وزارة التربية و التعليم مدرسة أحمد العمران الثانوية للبنين

ملخص قوانين ما قبل المنتصف في ريض 366

تذكر أن

الدالة

y = f(x) الدالة	$y', \frac{dy}{dx}, \frac{df}{dx}$	أولأ
x^n	$n.x^{n-1}$	
cx n	$c.n.x^{n-1}$	دوال القوة
c ثابت: <i>c</i>	0	

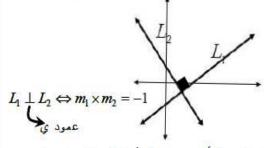
مشتقتها $h'(x) = \overline{f(x)}.g'(x) + \overline{g(x)}.f'(x)$ $h'(x) = \overline{f(x)}.g'(x) + \overline{g(x)}.f'(x)$ $h'(x) = \overline{f(x)}.g'(x)$ $h'(x) = \overline{f(x)}.g'(x$ h(x) = f(x).g(x)دالتين $h'(x) = \frac{g(x).f'(x) - f(x).g'(x)}{[g(x)]^2}$ $h(x) = \frac{f(x)}{g(x)}$ دالتين (مشتقة المقام × البسط) - (مشتقة البسط × المقام) المقام تربيع

قواعد الإشتقاق

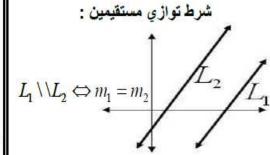
إذا كانت $f(x),g(x)$ دالتين قابلتين للإشتقاق				
مشتقة دالة التركيب	شرط تركيب دالتين			
هناك طريقتان : المخالف التركيب ومن ثم الإشتقاق المخالف التركيب ومن ثم الإشتقاق الثانية : المتخدام القاعدة التالية : $[f\circ g]'(x)=f'[g(x)].g'(x)$	يكون التركيب $[f\circ g](x)$ دالة إذا تحقق الشرط التالي: مجال f (الأولى) \subseteq مدى g (الثانية)			

ة حسخ أحمر	اد : أ.عبراز ر	إعد	(1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	1000 1000 1000 1000 1000	صفحة (2)	and 1 cand 1 cand 1 cand 1 cand 1 cand 1 cand 1	(ami) (ami	(1 cam 1	ریض ۳۲٦
(دالة مرفوعة لأسية (دالة مرفوعة لأسية				مشتقة الدالة الأسية					
-	$\dfrac{dy}{dx}=\dfrac{dy}{dz}\cdot\dfrac{dz}{dx}$ $y=f_1(z),z=f_2(x)$ إذا كانت $y=f_1(z),z=f_2(x)$ ويكون اشتقاق الدالة المركبة $y=[f_1\circ f_2](x)$ هو				قاعدة التسلسل				
xy	x, y y y y x						الاشتقاق الضمني		
$\lim_{x\to 0} \frac{1}{x}$	نظریة - cos x x	= 0	نظریه نتیجه $\frac{\tan x}{x} = 1$ $\lim_{x \to 0} \frac{\sin x}{x} = 1$			نهايات الدوال المثلثية			
sin	n x n x	S	مشتقته $\cos x$ $\sec^2 x$ $x \cdot \tan x$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x	مشتقات ا		
الدالة $y = \sin[g(x)]$ وينطبق $y = \sin[g(x)]$ بقية الدوال المثلثية المثلثية مرفوعة $y = \sin^n[g(x)]$ الأخرى $y = \sin^n[g(x)]$		(ز)] دالة مثا	$\frac{dy}{dx} = \cos[g(x)].g'(x)$ $\frac{dy}{dx} = n.\sin^{n-1}[g(x)].\cos[g(x)].g'(x)$			مشتقات الدوال المثلثية			

alManahj.com/bh


	نداد : أ.عبرازاه دسخ أحمر	= 1	صفحة (3)			
AVMAN WAS WAS WAS WAS WAS WAS	المشتقات العليا: هي ناتج اشتقاق الدالة عدد من المرات $y = f(x)$ للدالة					
	المشتقة النونية	المشتقة الثالثة	المشتقة الثانية	المشتقة الاولى	يقان	
	$y^{(n)}, \frac{d^n y}{dx^n}, \frac{d^n}{dx^n} f(x), f^{(n)}(x)$	$y''', \frac{d^3y}{dx^3}, \frac{d^3}{dx^3}f(x), f'''(x)$	$y'', \frac{d^2y}{dx^2}, \frac{d^2}{dx^2}f(x), f''(x)$	$y', \frac{dy}{dx}, \frac{d}{dx}f(x), f'(x)$	أنطيا	

إعداد: أ.عبرا إن حسم أحمر


$m=f^{1}(x_{1})$ فإن $x=x_{1}$: المنحنى عند	تذكر: لإيجاد ميل المماس	: فإن $y = f(x)$	لمنحنى الدالة
معادلة المستقيم في الصورة القياسية : $ax + by + c = 0 , m = \frac{-a}{L}$: m و میله (x_1, x_2) $y - y_1 = n$	إذا كان يمر بالنقطة $n(x-x_1)$	معادلة المستقيم

: m و ميله (x_1, x_2) و ميله $y - y_1 = m(x - x_1)$

شرط تعامد مستقيمين:

أو بصورة أخرى : ميل أحد المستقيمين يساوي مقلوب ميل الآخر معكوساً إشارته.

التوازي والتعامد

 $y - y_1 = \frac{-1}{x}(x - x_1)$: a sale like in the sale is a sale in $y - y_1 = \frac{-1}{x}(x - x_1)$

معادلتي المماس والعمودي

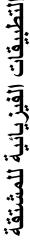
أولا ً: كان المماس للمنحني يصنع زاوية قياسها θ مع الإتجاه الموجب لمحور السينات :

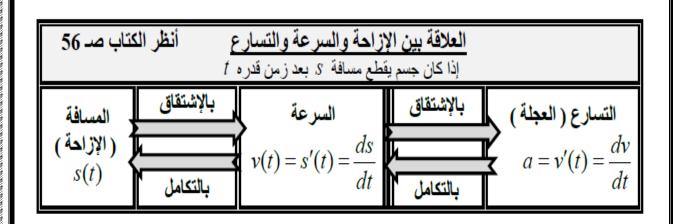
 $m = f^{\setminus}(x_1) = \tan \theta$: نضع

رابعاً: إذا كان المماس للمنحنى يوازي مستقيما ax + by + c = 0 معادلته

: ثانيا أنه المناس المنحنى يوازي محور السينات فإن
$$m = f^{\setminus}(x_1) = 0$$

 $m = \frac{-a}{L}$ نوجد ميل المستقيم و ليكن m حيث ميل المماس = ميل المستقيم ، أي أن $f^{\setminus}(x_1) = m$


ثالثا أ:المماس للمنحنى يوازي محور الصادات غير معرف $m = f^{\setminus}(x_1)$ (مثلا المقام = 0)


ملاحظات

خامساً: إذا كان المماس يوازي محور X: وبالتالي: m=0 فإن:

 $x=x_1:$ معادلة المماس ، $y=y_1:$ معادلة العمودي

إعداد: أ.عبدالله حسخ أحمد

ملاحظات فيزيائية

s=0 أو x^2 : إذا تحرك جسم ثم رجع لنقطة البداية فإن الإزاحة

ثانياً: إذا إنعدم التسارع (العجلة) نضع a=0 عندها إما يكون الجسم ساكناً ، أو انه يسير بسرعة منتظمة a=0

■ في حالة السكون اللحظي لجسم ما .

■ في اللحظة التي يعكس (يغير) فيها الجسم إتجاه حركته .

عندما يقذف الجسم ويصل القصى ارتفاع.

v=0 ثالثاً: تكون السرعة في كل الحالات التالية

uرابعاً: لإيجاد السرعة الإبتدائية u_0 لجسم ما نعوض عن u = 0 في معادلة السرعة u