

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/eg

* للحصول على أوراق عمل لجميع مواد الصف الثالث الإعدادي اضغط هنا https://almanahj.com/eg/9

* للحصول على جميع أوراق الصف الثالث الإعدادي في مادة رياضيات ولجميع الفصول, اضغط هنا https://almanahj.com/eg/9

* للحصول على أوراق عمل لجميع مواد الصف الثالث الإعدادي في مادة رياضيات الخاصة باضغط هنا https://almanahj.com/eg/9

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الثالث الإعدادي اضغط هنا https://almanahj.com/eg/grade9

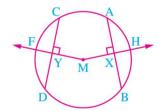
نماذج امتحانات

الصف 3 الإعــدادي

الفصل الدراسي الثاني ٢٠٢١

∠ Answer the following questions :

1 Choose the correct answer from those given :

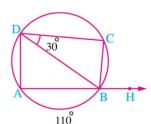

- The slope of the straight line 3 X + 2y = 1 is
 - (a) $\frac{2}{3}$
- (b) $-\frac{3}{2}$
- (c) $-\frac{2}{3}$
- (d) $\frac{3}{2}$
- 2 M and N are two intersecting circles, their radii lengths are 3 cm. and 5 cm.
 - , then MN \in
 - (a) $]8, \infty[$
- (b)]3,5[
- (c)]0,2[
- (d)]2,8[
- The measurement of any angle of the regular hexagon is
 - (a) 90°
- (b) 108°
- (c) 120°
- (d) 135°
- **4** ABCD is a cyclic quadrilateral, $m (\angle A) = 70^{\circ}$, then $m (\angle C)$ equals
 - (a) 25°
- (b) 20°
- (c) 110°
- (d) 100°
- **5** In \triangle ABC, if $(AB)^2 = (AC)^2 + (BC)^2$, then \angle B is
 - (a) acute.
- (b) obtuse.
- (c) right.
- (d) reflex.
- 6 The measure of the inscribed angle drawn in a semicircle equals
 - (a) 130°
- (b) 90°
- (c) 50°
- (d) 180°

2 [a] In the opposite figure :

AB and CD are two chords equal in length in the circle M

 $,\overrightarrow{\mathrm{MX}}\perp\overrightarrow{\mathrm{AB}},\overrightarrow{\mathrm{MY}}\perp\overrightarrow{\mathrm{CD}}$

Prove that : HX = FY

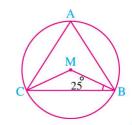


[b] In the opposite figure :

 $H \in \overrightarrow{AB}$, $m(\widehat{AB}) = 110^{\circ}$

 $, m (\angle CDB) = 30^{\circ}$

Find: $m (\angle HBC)$

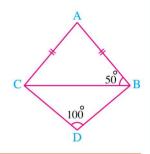


[a] In the opposite figure:

ABC is a triangle drawn in the circle M

 $, m (\angle MBC) = 25^{\circ}$

Find : $m (\angle BAC)$

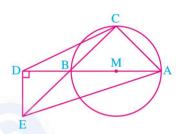


[b] In the opposite figure:

$$AB = AC$$
, $m (\angle D) = 100^{\circ}$

$$, m (\angle ABC) = 50^{\circ}$$

Prove that : ABDC is a cyclic quadrilateral.

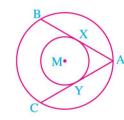

4 [a] In the opposite figure :

AB is a diameter in the circle M

$$, D \in \overrightarrow{AB}, D \notin \overrightarrow{AB}, \overrightarrow{DE} \perp \overrightarrow{AB}$$

$$, C \in \widehat{AB}, \overrightarrow{CB} \cap \overrightarrow{DE} = \{E\}$$

Prove that : ACDE is a cyclic quadrilateral

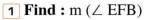


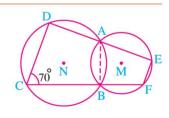
[b] In the opposite figure:

Two concentric circles of centre M

, AB and AC are two chords in the greater circle and tangents to the smaller circle at X and Y respectively.

Prove that : AB = AC


5 [a] In the opposite figure:

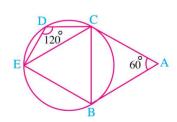

M and N are two intersecting circles at A and B

, AD is drawn to intersect the circle M at E and

the circle N at D, \overrightarrow{AB} is drawn to intersect the circle M at

F and the circle N at C, m (\angle BCD) = 70°

2 Prove that : $\overline{CD} // \overline{EF}$


[b] In the opposite figure:

AB and AC are tangent-segments to the circle at B and C

$$, m (\angle BAC) = 60^{\circ}, m (\angle CDE) = 120^{\circ}$$

Prove that : 1Δ BCE is an equilateral triangle.

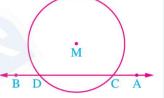
$$\overline{AC} // \overline{BE}$$

∠ Answer the following questions:

1 Choose the correct answer from those given :

- 1 ∠ A and ∠ B are two complementary angles , ∠ B and ∠ C are two supplementary angles , m (∠ A) = 30° , then m (∠ C) =°
 - (a) 30
- (b) 60
- (c) 90
- (d) 120
- 2 If the surface of the circle $M \cap$ the surface of the circle $N = \{A\}$ and the radius length of one of them equals 3 cm. and MN = 8 cm., then the radius length of the other circle equals cm.
 - (a) 5
- (b) 6
- (c) 11
- (d) 16

3 In the opposite figure:


 $\overrightarrow{AB} \cap$ the surface of the circle M =

(a) $\{C, D\}$

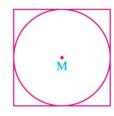
(b) $\overline{\text{CD}}$

(c) \overrightarrow{CD}

 $(d) \emptyset$

- 4 A circle can be drawn passing through the vertices of a
 - (a) rhombus.
- (b) parallelogram.
- (c) trapezium.
- (d) rectangle.
- **5** The rhombus whose two diagonal lengths are 12 cm. and 16 cm., then its side length equals cm.
 - (a) 6
- (b) 8
- (c) 10
- (d) 20

6 In the opposite figure :


If the side length of the square = 10 cm.

- then the surface area of the circle = \cdots cm².
- (a) $100 \, \pi$

(b) 25 π

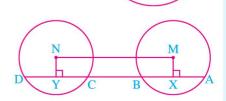
(c) 50π

(d) $40 \, \pi$

[a] In the opposite figure :

AB is a chord in the circle M

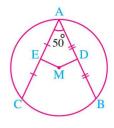
$$\overline{MC} \perp \overline{AB}$$
, m ($\angle ADB$) = 70°


Find : $m (\angle AMC)$

M and N are two congruent circles

, AB = CD ,
$$\overline{\text{MX}} \perp \overline{\text{AB}}$$
 and $\overline{\text{NY}} \perp \overline{\text{CD}}$

Prove that : The figure MXYN is a rectangle.

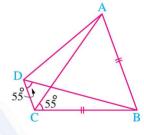

[3] In the opposite figure:

 \overline{AB} and \overline{AC} are two chords

in the circle M, D is the midpoint of AB

, E is the midpoint of \overline{AC} and m ($\angle BAC$) = 50°

Find: m (∠ DME)

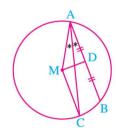

[b] In the opposite figure:

$$AB = BC$$

$$, m (\angle ACB) = 55^{\circ}$$

and m (
$$\angle$$
 BDC) = 55°

Prove that : The figure ABCD is a cyclic quadrilateral.

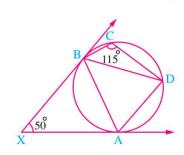

4 [a] In the opposite figure:

AB is a chord in the circle M

, \overrightarrow{AC} bisects \angle BAM and intersects the circle M at C

If D is the midpoint of AB

, prove that : $\overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$

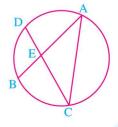

[b] \overrightarrow{AB} is a diameter in the circle M, \overrightarrow{AC} and \overrightarrow{BD} are two tangents to the circle M, \overrightarrow{CM} intersects the circle M at X and Y respectively and intersects \overrightarrow{BD} at E **Prove that**: CX = YE

[a] In the opposite figure:

 \overrightarrow{XA} and \overrightarrow{XB} are two tangents to the circle at A and B

$$, m (\angle AXB) = 50^{\circ}, m (\angle DCB) = 115^{\circ}$$

Prove that: $\boxed{1}$ \overrightarrow{AB} bisects \angle DAX



[b] In the opposite figure:

 \overline{AB} and \overline{CD} are two equal chords in length in the circle

$$,\overline{AB}\cap\overline{CD}=\{E\}$$

Prove that: The triangle ACE is an isosceles triangle.

∠ Answer the following questions :

1 Choose the correct answer from those given :

- 1 The measure of the inscribed angle is the measure of the central angle subtended by the same arc.
 - (a) half
- (b) twice
- (c) quarter
- (d) third
- 2 The length of the side opposite to the angle of measure 30° in the right-angled triangle equals the length of the hypotenuse.
 - (a) $\frac{1}{2}$
- (b) $\frac{\sqrt{3}}{2}$
- $(c)\sqrt{2}$
- (d) 2
- Two distant circles M and N with radii lengths 6 cm. and 8 cm. respectively then MN 14 cm.
 - (a) <
- (b) >
- (c) =
- (d) ≤
- The angle of measure 40° is the complemented angle of the angle of measure°
 - (a) 320
- (b) 140
- (c) 60
- (d) 50
- **5** The area of the rhombus with diagonal lengths 6 cm., 8 cm. is cm².
 - (a) 2
- (b) 14
- (c) 24
- (d) 48
- **6** In the cyclic quadrilateral ABCD , if m (∠ A) = $\frac{1}{2}$ m (∠ C) , then m (∠ A) =°
 - (a) 20
- (b) 30
- (c) 60
- (d) 120

[2] [a] In the opposite figure :

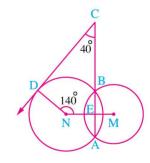
M and N are two intersecting circles at A and B

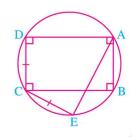
$$, C \in \overrightarrow{AB}, \overrightarrow{AC} \cap \overrightarrow{MN} = \{E\}$$

, D \in the circle N , m (\angle DNM) = 140°

and m (
$$\angle$$
 C) = 40°

Prove that : \overrightarrow{CD} is a tangent to the circle N at D

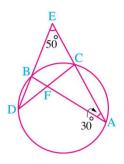

[b] In the opposite figure :


ABCD is a rectangle inscribed in a circle

, the chord \overline{CE} is drawn

where CE = CD

Prove that : AE = BC

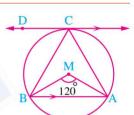

- 3 [a] State two cases of the cyclic quadrilateral.
 - [b] In the opposite figure:

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{F\}, \overrightarrow{AC} \cap \overrightarrow{DB} = \{E\}$$

$$, m (\angle A) = 30^{\circ}$$

$$m (\angle E) = 50^{\circ}$$

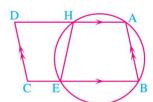
Find:
$$1 \text{ m}(\widehat{AD})$$



4 [a] In the opposite figure :

$$\overrightarrow{CD}$$
 is a tangent to the circle at C

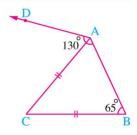
$$\overrightarrow{CD} / \overline{AB}$$
, m ($\angle AMB$) = 120°


Prove that: The triangle CAB is an equilateral triangle.

[b] In the opposite figure:

ABCD is a parallelogram.

Prove that : HDCE is a cyclic quadrilateral.

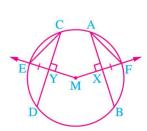


[a] In the opposite figure:

$$AC = BC$$
, $m (\angle ABC) = 65^{\circ}$

$$m (\angle DAB) = 130^{\circ}$$

Prove that : \overrightarrow{AD} is a tangent to the circle passing through the vertices of the triangle ABC


[b] In the opposite figure:

 \overline{AB} and \overline{CD} are two chords in the circle M

, $\overrightarrow{MX} \perp \overrightarrow{AB}$ and intersects the circle at F

 $\overline{MY} \perp \overline{CD}$ and intersects the circle at E, FX = EY

2 AF = CE

إجابات نماذج امتحانات

الصف 3 الإعــدادي

الفصل الدراسي الثاني ٢٠٢١

Answers of model


1

- **1** b
- 2 d
- 3 c

- **4** c
- **5** a
- 6 b

2

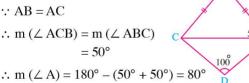
- [a] :: AB = CD $,\overline{MX} \perp \overline{AB}$
 - $,\overline{\mathrm{MY}}\perp\overline{\mathrm{CD}}$
 - \therefore MX = MY
 - \rightarrow : MH = MF = r
 - \therefore HX = FY

[b] : $m (\angle ADB) = \frac{1}{2} m (\widehat{AB})$

 $=\frac{1}{2} \times 110^{\circ}$ - 55°

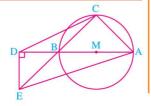
 \therefore m (\angle HBC) = m (\angle CDB) + m (\angle ADB) $=30^{\circ} + 55^{\circ} = 85^{\circ}$ (The req.)

- [a] In \triangle BMC:
 - \therefore MB = MC = r
 - ∴ m (∠ MCB) $= m (\angle MBC) = 25^{\circ}$



- \therefore m (\angle BMC) = $180^{\circ} (25^{\circ} + 25^{\circ}) = 130^{\circ}$
- \cdot : m (\angle BAC) = $\frac{1}{2}$ m (\angle BMC)

(inscribed and central angles subtended by \widehat{BC})

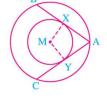

- $\therefore m (\angle BAC) = \frac{1}{2} \times 130^{\circ} = 65^{\circ}$
- (The req.)

- [**b**] In \triangle ABC:
 - \therefore AB = AC
 - $\therefore m (\angle ACB) = m (\angle ABC)$ $=50^{\circ}$

- : $m (\angle A) + m (\angle D) = 80^{\circ} + 100^{\circ} = 180^{\circ}$
- :. ABDC is a cyclic quadrilateral. (Q.E.D.)
- $[a] : \overline{AB}$ is a diameter of the circle.

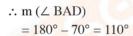
 \therefore m (\angle ACE) = m (\angle ADE)

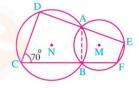
and they are drawn on \overline{AE} and on one side of it


:. ACDE is a cyclic quadrilateral. (Q.E.D.)

[b] Construction:

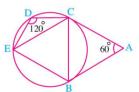
Draw \overline{MX} , \overline{MY}


Proof:


 $\therefore \overline{AB}, \overline{AC}$ are two tangents to the smaller circle at X , Y respectively

- $\therefore \overline{MX} \perp \overline{AB}, \overline{MY} \perp \overline{AC}$
- : MX = MY = r (radius length of the smaller circle)
- $\therefore AB = AC$ (Q.E.D.)

[a] : ABCD is a cyclic quadrilateral



- ∴ ABFE is a cyclic quadrilateral and ∠ BAD is exterior of it.
- \therefore m (\angle EFB) = m (\angle BAD) = 110° (First req.)
- ∴ m (\angle EFB) + m (\angle BCD) = 110° + 70° = 180°

and they are interior angles in the same side of FC

- ∴ CD // EF (Second req.)
- $[b] : \overline{AB}, \overline{AC}$ are tangent-segments to the circle

- $\therefore AB = AC$
- ∴ m (∠ ACB) = $\frac{180^{\circ} 60^{\circ}}{2}$ = 60° (1)
- ∴ m (∠ BEC) (inscribed)
 - = m (\angle ACB) (tangency) = 60° (2)
- , ∵ EBCD is a cyclic quadrilateral
- \therefore m (\angle EBC) = $180^{\circ} 120^{\circ} = 60^{\circ}$ (3)
- \therefore From (2), (3) in \triangle EBC:
- \therefore m (\angle BCE) = 60°
- $\therefore \Delta$ BCE is equilateral. (Q.E.D.1)

From (1) \cdot (3): \therefore m (\angle ACB) = m (\angle EBC) and they are alternate angles

 $\therefore \overline{AC} // \overline{BE}$ (Q.E.D.2)

Answers of model

1

- 1 d
- **2** a
- **3** b

- **4** d
- **5** c
- 6 b

2

[a] :: $m (\angle AMB) = 2 m (\angle ADB)$

$$=2\times70^{\circ}=140^{\circ}$$

(central and inscribed

angles subtended by \widehat{AB})

In \triangle ABM : $\because \overline{MC} \perp \overline{AB}$

- MA = MB = r
- \therefore \overrightarrow{MC} bisects \angle AMB
- $\therefore \text{ m } (\angle \text{ AMC}) = \frac{1}{2} \text{ m } (\angle \text{ AMB}) = \frac{1}{2} \times 140^{\circ} = 70^{\circ}$ (The req.)
- [b] : M , N are two congruent circles
 - , AB = CD
 - $,\overline{\text{MX}}\perp\overline{\text{AB}}$
 - $, \overline{\text{NY}} \perp \overline{\text{CD}}$
 - \therefore MX = NY , $\overline{MX} // \overline{NY}$
 - .. MXYN is a rectangle.
- (Q.E.D.)

3

- [a] : D is the midpoint of AB
 - $\therefore \overline{MD} \perp \overline{AB}$
 - \therefore m (\angle ADM) = 90°
 - , :: E is the midpoint of \overline{AC}
 - $\therefore \overline{\text{ME}} \perp \overline{\text{AC}}$
- \therefore m (\angle AEM) = 90°

From the quadrilateral ADME:

 \therefore m (\angle DME) = 360° - (90° + 90° + 50°) = 130°

[**b**] In \triangle ABC :

- \therefore AB = BC
- $\therefore m (\angle BAC)$ $= m (\angle ACB) = 55^{\circ}$
 - $= m (\angle ACB) = 55^{\circ}$
- : $m(\angle BDC) = m(\angle BAC) = 55^{\circ}$ and they are drawn on \overline{BC} and on one side of it
- ∴ ABCD is a cyclic quadrilateral. (Q.E.D.)

4

[a] In \triangle AMC:

- \therefore AM = MC = r
- \therefore m (\angle MAC) = m (\angle ACM)
- " : " m (\angle BAC) = m (\angle MAC)
- \therefore m (\angle BAC) = m (\angle ACM) and they are alternate angles.
- $\therefore \overline{AB} / \overline{CM}$
- , :: D is the midpoint of \overline{AB}
- $\therefore \overline{MD} \perp \overline{AB}$
- $\cdot : \overline{AB} / \overline{CM}$

D

 $\therefore \overline{\mathrm{DM}} \perp \overline{\mathrm{CM}}$

(Q.E.D.)

- [b] : AC is a tangent to the circle M at A
 - $\therefore \overline{MA} \perp \overrightarrow{AC}$
 - \therefore m (\angle CAM) = 90°
 - , ∵ BD is a tangent to the circle M at B
 - ∴ MB ⊥ BD
- \therefore m (\angle EBM) = 90°
- ∴ In ΔΔ CAM, EBM:
- $f m (\angle CAM) = m (\angle EBM) = 90^{\circ}$
- $m (\angle AMC) = m (\angle BME) (V.O.A.)$
- MA = MB (lengths of two radii)
- ∴ The two triangles are congruent and we deduce that CM = EM
- $\cdot :: XM = YM$ (lengths of two radii)
- , by subtracting
- \therefore CX = YE

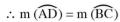
 $[a] :: \overline{XA}, \overline{XB}$

are two tangents to

the circle

- $\therefore XA = XB$
- ∴ In ∆ ABX
- $m (\angle XAB) = m (\angle XBA) = \frac{180^{\circ} 50^{\circ}}{2} = 65^{\circ}$
- , ∵ ABCD is a cyclic quadrilateral
- \therefore m (\angle BAD) + m (\angle DCB) = 180°
- ∴ m (\angle BAD) = 180° 115° = 65°
- \therefore m (\angle XAB) = m (\angle BAD)
- ∴ AB bisects ∠ DAX
- (Q.E.D.1)

(Q.E.D.)



- ∴ m (∠ ADB) (inscribed) = m (∠ XAB) (tangency) = 65°
- \therefore m (\angle BAD) = m (\angle ADB)
- \therefore In \triangle ABD : BD = BA

(Q.E.D.2)

- $[\mathbf{b}] :: AB = CD$
 - \therefore m (\widehat{AB}) = m (\widehat{CD})

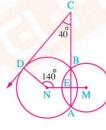
Subtracting $m(\widehat{BD})$ from both sides

- \therefore m (\angle ACD) = m (\angle BAC)
- \therefore In \triangle ACE : AE = CE
- \therefore \triangle ACE is an isosceles triangle.

(Q.E.D.)

Answers of model

- **1** a
- **2** a
- **3** b


- **4** d
- **5** c
- 6 c

- $[a] : \overrightarrow{MN}$ is the line of centres
 - \overline{AB} is the common chord.

 \therefore m (\angle BEN) = 90°

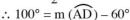
In the quadrilateral CDNE:

- \therefore m (\angle CDN) = 360° (140° + 40° + 90°) = 90°
- ∴ ND ⊥ CD
- \therefore \overrightarrow{CD} is a tangent to the circle N at D (Q.E.D.)

(properties of the rectangle)

- $\therefore m(\widehat{AB}) = m(\widehat{CE}) \text{ and adding } m(\widehat{BE})$ to both sides.
- \therefore m $(\widehat{AE}) = m (\widehat{BC})$
- $\therefore AE = BC$

(Q.E.D.)


- [a] State by yourself.
- [b] : $m(\widehat{BC}) = 2 m(\angle A)$

$$= 2 \times 30^{\circ} = 60^{\circ}$$

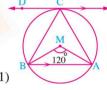
 $, :: m (\angle E)$

$$=\frac{1}{2}\left[m\left(\widehat{AD}\right)-m\left(\widehat{BC}\right)\right]$$

 $\therefore 50^{\circ} = \frac{1}{2} \left[m \left(\widehat{AD} \right) - 60^{\circ} \right]$

(First req.)

- : $m (\angle AFD) = \frac{1}{2} [m (\widehat{AD}) + m (\widehat{BC})]$
- :. m (\angle AFD) = $\frac{1}{2}$ [160° + 60°] = 110°


(Second req.)

4

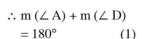
[a] ∵ m (∠ ACB)

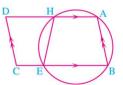
$$= \frac{1}{2} \text{ m } (\angle \text{ AMB}) = 60^{\circ}$$

(inscribed and central angles subtended the same arc \widehat{AB}) (1)

- ·· CD // AB
- \therefore m (\widehat{AC}) = m (\widehat{BC})

$$\therefore$$
 AC = BC


(2)


From (1) and (2):

- \therefore \triangle CAB is equilateral.
- (Q.E.D.)

 $[\mathbf{b}] : \overline{\mathbf{AB}} / \overline{\mathbf{DC}} , \overrightarrow{\mathbf{AD}}$

is a transversal to them.

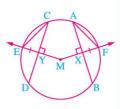
but ∠ CEH is an exterior angle of the cyclic quadrilateral ABEH

 \therefore m (\angle CEH) = m (\angle A)

(2)

From (1) and (2):

- \therefore m (\angle CEH) + m (\angle D) = 180°
- :. HDCE is a cyclic quadrilateral.


(Q.E.D.)

5

- [a] In \triangle ABC:
 - :: AC = BC
 - \therefore m (\angle BAC) = m (\angle ABC) = 65°
 - ∴ m (∠ CAD) = $130^{\circ} 65^{\circ} = 65^{\circ}$
 - : $m (\angle B) = m (\angle CAD) = 65^{\circ}$

- :. \overrightarrow{AD} is a tangent to the circle passing through the vertices of the triangle ABC (Q.E.D.)
- [b] :: MF = ME(lengths of two radii)
 - , XF = YE
 - \therefore MX = MY
 - $\therefore \overline{MX} \perp \overline{AB}, \overline{MY} \perp \overline{CD}$
 - \therefore AB = CD

(Q.E.D.1)

- $\therefore \overline{MX} \perp \overline{AB}$
- \therefore X is the midpoint of \overline{AB}
- $\therefore AX = \frac{1}{2} AB$, $\therefore \overline{MY} \perp \overline{CD}$
- \therefore Y is the midpoint of $\overline{\text{CD}}$
- \therefore CY = $\frac{1}{2}$ CD
- $\cdot :: AB = CD$
- $\therefore AX = \overline{CY}$
- \therefore In $\Delta\Delta$ AXF, CYE

$$AX = CY$$

$$XF = YE$$

$$lm(\angle AXF) = m(\angle CYE) = 90^{\circ}$$

 $\therefore \Delta AXF \equiv \Delta CYE$ $\therefore AF = CE$ (Q.E.D.2)

