تم تحميل هذا الملف من موقع المناهج العمانية

www.alManahj.com/om

الملف مذكرة شرح واختبارات في وحدة الدائرة من سلسلة متعة الرياضيات

موقع المناهج ← المناهج العمانية ← الصف الثاني عشر ← رياضيات بحتة ← الفصل الأول


روابط مواقع التواصل الاجتماعي بحسب الصف الثاني عشر للسلسلي روابط مواد الصف الثاني عشر على تلغرام التربية الاسلامية العربية السلامية السلامية العربية السلامية السلامية العربية العربية

المزيد من الملفات بحسب الصف الثاني عشر والمادة رياضيات بحتة في الفصل الأول				
الكراسة التدريبية الشاملة (النهايات والاتصال)	1			
الكراسة التدريبية الشاملة (التفاضل وتطبيقاته)	2			
الكراسة التدريبية الشاملة (الهندسة التحليلية للدائرة)	3			
كراسة تدريبية شاملة	4			
أسئلة امتحان الفصل الدراسي الأول الدور الأول 2019 ~ 2018م	5			

وحدة : <mark>الدائرة</mark>

https://youtube.com/c/saholah?sub_confir منعه الرباضباك على يوتيوب

المخاضيا

المحل الهندسي لنقطت متحركت في الاحداثيات.

@ هو مسار نقطة تتحرك تحت شروط معينة .

	المسافة بين نقطتين أ = (س، ، ص،) ، ب = (س، ، ص،)
$\left(\frac{v_{1}+v_{1}}{r},\frac{v_{1}+v_{1}}{r}\right)=\frac{1}{r}$	إحداثي المنتصف
تقسم كل متوسط منهم بنسبة ١ : ٢ من جهة القاعدة أو ٢ : ١ من جها	نقطة تلاقي متوسطات المثلث.
ع = ام س، + بص، + جا ٢٠٠٠ ع - ع	البعد بين مستقيم ونقطة خارجة عنه

١) أوجد المحل الهندسي لنقطة (س، ص) تتحرك في الاحداثيات بحيث تبقى
 على بعدين متساويين من النقطتين : (٣، ٢) & (٥، - ١)

.............

٢) أوجد المحل الهندسي لنقطة تتحرك في مستوى بحيث يكون:
 بعدها عن نقطة الأصل نصف بعدها عن النقطة (- ١ ، ٢)

٣) أوجد المحل الهندسي لنقطة تتحرك بحيث يكون:

بعدها عن النقطة (٣،٠) ضعف بعدها عن النقطة (-٣،٠)

ثم اثبت أنه يمثل معادلة دائرة نصف قطرها ٤ سم ، مركزها (- ٥ ، ٠)

- ٤) أوجد معادلة المحل الهندسي لنقطة تتحرك بحيث تبقى دائما ً علي بعد ٣ وحدات إلي اليسار من المحور الصادي .
- ه) أوجد معادلة المحل الهندسي لنقطة تتحرك بحيث تبقى دائما ً على مسافة ٥ وحدات من أسفل محور السينات .
 - ٢) أوجد معادلة المحل الهندسي لنقطة بحيث يكون دائما ً الاحداثي الصادي لها ضعف الاحداثي السيني .

معادلت الدائرة في الصورة القياسيت

تعريف الدائرة : @ هي المحل الهندسي لنقطة تتحرك بحيث تبقى على بعد ثابت من نقطة تابتة أخمر هجرس

- @ هي مجموعة النقط التي تبعد عن المركز بمقدار ثابت (نصف القطر) .
- @ تنتج من قطع مستوي لمخروط دائري قائم (بحيث يكون المستوي عمودي على محور المخروط)
 - # محيط الدائرة: طول منحنى الدائرة (τ نق)
 - π = مجموعة النقط الموجودة على وداخل الدائرة . نوجد له المساحة = π نق π
 - # دائرة تمر بالنقطة (نقطة تقع على الدائرة) أي أن النقطة تحقق معادلة الدائرة .
 - # لإيجاد إحداثيات تقاطع الدائرة مع محور السينات: نضع ص = ٠
 - # لإيجاد إحداثيات تقاطع الدائرة مع محور الصادات: نضع س = ٠

الصور المختلفة لمعادلات الدائرة

ملاحظات	معادلة الدائرة	الهركز	
معامل س معامل ص = ۱= ۱	س۲ + ص۲ = نق۲	نقطة الأصل (٠٠٠)	الصورة القياسية
معامل س = معامل ص = ١	(س – أ) ٢ + (ص – ب) ٢ = نق٢		

- ١) أوجد معادلة دائرة مركزها نقطة الأصل وطول نصف قطرها ٤ سم.
- ٢) أوجد معادلة دائرة مركزها (٠٠٠) وطول نصف قطرها ٦ سم .
- ٣) أوجد في الصورة القياسية معادلة دائرة مركزها (٣ ، ٥) وطول نصف قطرها ٧ سم .
 - ٤) أوجد معادلة دائرة مركزها (٢،-١) وطول نصف قطرها ٣ سم .

٥) أوجد إحداثيات المركز وطول نصف قطر كل من الدوائر الآتية:

$$\cdot = \lor - \lor \omega + \lor (`` - \omega) "$$
 $= \lor (`` + \omega) + \lor (`` + \omega) " + `` + \omega `` ``$

 $17 = {}^{r}(\Lambda + \omega + 1) + {}^{r}(1 - \omega + 1) = 11$

تدريبات علي الصورة القياسيث للدائرة

١) أى النقاط الآتية تقع على دائرة مركزها نقطة الأصل وطول نصف قطرها ٥ سم ؟

(7 , 0) , (7 , 7) , (5 - , 7 -) , (5 , 7)

٢) اثبت أن النقطة (٤،٣) تقع على الدائرة: س٢ + ص٢ - ٩ = صفر

۳) هل النقطة (۲ ، ٥) تقع على الدائرة : (س - ۱) 7 + (ص - ۲) 7 = ٥

٤) أوجد معادلة دائرة مركزها نقطة الأصل وتمر بالنقطة (٣،٣) ثم أوجد نصف قطرها .

٥) أوجد معادلة دائرة مركزها (٢ ، ١) وتمر بالنقطة (- ١ ، ٥) ثم أوجد نصف قطرها .

إذا تعرضت لانسحاب (س، ص) إلى (س - ١، ص - ٣)

إذا تعرضت لإنعكاس علي محور السينات .

إذا تعرضت لإنعكاس علي محور الصادات.

إذا تعرضت لإنعكاس في نقطة الأصل.

بالدوران حول نقطة الأصل بزاوية ٩٠°

بالدوران حول نقطة الأصل بزاوية ٢٧٠°

۷) أوجد معادلة الدائرة: $س^{Y} + ص^{Y} = 3$ إذا تعرضت لانسحاب (m، ص) إلى (m + 1، Y - m = 3)

٨) أوجد معادلة دائرة مركزها يقع علي محور السينات وطول قطرها ٤ سم ، وتمر بنقطة الأصل .

٩) أوجد معادلة دائرة مركزها يقع علي محور الصادات وطول نصف قطرها وتمر بالنقطة (٤،٢)

٠٠) أوجد معادلة الدائرة التي يقع مركزها على المستقيم س = -٤ وتقطع محور الصادات في النقطتين (٣،٠)، (٩،٠)

الصورة العامت للدائرة

ملاحظات	معادلة الدائرة	الهركز
ل = - أ ك = - ب	س ٔ + ص ٔ + ۲ ل س + ۲ ك ص + حـ = ·	(ご - , ひ -) = (i , , -)
ح = ل ۲ + ك ٢ – نق ٢		

المركز = (- نصف معامل س ، - نصف معامل ص)

شروط معادلة الدائرة: ١) الدالة تربيعية في س ، ص

@ عندما: نق = صفر تكون الدائرة عبارة عن نقطة .

@ عندما: نق < صفر فان المعادلة لا تمثل دائرة .

@ إذا كانت ح = صفر فإن الدائرة تمر بنقطة الأصل.

~~

أي من المعادلات الآتية تمثل دائرة مع ذكر السبب:

مع: المد هجرس

$$1 = \frac{2}{16} - \frac{2}{25} \# \Lambda$$

$$1 = \frac{2}{16} + \frac{2}{25}$$
 #V

التحويل بين الصورتين الكميث والقياسيث

من الصورة العامة للقياسية	من الصورة القياسية للعامة	
س ۲ + ص ۲ + ۲ ل س + ۲ ك ص + حـ = ۰	(س – أ) ٢ + (ص – ب) ٢ = نق ٢ نحدد أو لا ً: المركز = (أ، ب) ونصف القطر = نق	المعطيات
 ١) نوجد المركز = (- نصف معامل س ، - نصف معامل ص) ٢) نوجد نصف القطر : نق = ل + ك - ح ٣) نكتب الصورة القياسية 	 معامل س = _ ضعف أ معامل ص = _ ضعف ب معامل ص = _ ضعف ب ٢) ح = ل ٢ + ك٢ _ نق٢ ٤) نكتب الصورة العامة 	الطريقة الأولى
طريقة إكمال المربع: (1) نضع المجاهيل في طرف والأعداد في طرف بحيث يكون معامل $m' = m' = 1$ (2) نضيف (نصف معامل m) للطرفين (نصف معامل m) عدد m' + ($m - m'$) عدد m') نحولها للصورة: ($m - m'$) عدد	طريقة فك الأقواس :	الطريقة الثانية

حول معادلات الدوائر الآتية إلى الصورة العامة: أوجد المركز ونصف القطر

حول معادلات الدوائر الآتية إلى الصورة القياسية: ثم أوجد إحداثيات المركز وطول نصف القطر:

$$^{77} = 0$$
 $^{7} = 0$ $^{7} =$

٢) أوجد في الصورة العامة معادلة دائرة مركزها (- ١ ، ٢) وطول نصف قطرها ٣ سم .

٣) أوجد معادلة دائرة مركزها (٣، - ٤) وطول نصف قطرها ٢ سم .

 ٤) أوجد معادلة الدائرة: س' + ص' - ٤ س = ٧ إذا تعرضت لانسحاب (س، ص) إلى (س + ١، ٢ ص - ٣) مع : الهد هدس ه) أوجد معادلة الدائرة: س + س + ص - ٦ س - ٢ ص - ٦ = ٠ تحت تأثير الانسحاب (س، ص) إلى (٢ س، ٣ ص) 7) أوجد إحداثيات المركز وطول نصف قطر كل من الدوائر الآتية: ۲# ۳ س۲ + ۳ ص۲ – ۱ س + ۱۲ ص + ۸ = ۰ ٤ # س + ص ٢ - ٤ س - ٧ = ٠ ٣# س ٚ + ص ٚ + ۱ = ٤ س 🗕 ٢ ص ٧) أوجد إحداثيات المركز وطول نصف قطر كل من الدوائر الآتية: ۲# س۲ + ص۲ – ۸ س + ۲ ص + ۲۵ = ۰ ۱# س۲ + ص۲ – س + ۲ ص – ۱۲ = ٠ ٤# س ٔ + ص ٔ - ۸ س + ٦ ص + ٤ = ٠ ٣# س` + ص` 🗕 ٨ س + ٦ ص + ٢٦ = ٠ ۲# س۲ + ص۲ – ۲ س + ۶ ص + ۲ = ۰ ۰ = ۱۲ + ص۲ - س + ۲ ص + ۲ ا = ۰ **۱۳ س ۲ + ۳۱ س ۲ = ۲۰ س + ۳۱ س + ۲۳** ۷# ۲ س۲ + ۲ ص۲ + س + ص = ۰ ٨) أوجد معادلة دائرة تمر بالنقطتين (٢،٥)، (-١،١) ومركزها يقع على محور السينات. ٩) أوجد معادلة دائرة تمر بالنقطتين (١،٣)، (-٢،١) ومركزها يقع على المستقيم: ص = ٢ س + ٣ ١٠) أوجد معادلة الدائرة التي مركزها (٣،١) وتمس المستقيم: ٣س – ٤ ص + ١٠ = ٠ ١١) أوجد معادلة الدائرة التي مركزها (٠٠٠) وتمس المستقيم: ٣ س + ٤ ص + ٢٥ = ٠

۱۳) اثبت أن الدائرتین س 7 + 7 – 7 س 4 ۸ ص + 7 = 7 ، 3 س 7 + 3 ص 7 + 3 ص 7 + 1 ص 7 + 1 ص 7 + 1 ص 7 + 1 ص 7 اثبت أن الدائرتين س 7 + 1 ص 7 أن أوجد البعد بين محيطيهما .

۱۲) أوجد معادلة دائرة مركزها (- ۲ ، \circ) ويمر محيطها بمركز الدائرة : \circ + \circ \circ \circ \circ \circ \circ \circ \circ \circ

معادلت دائرة بمعلوميت نهايتي القطر

إيجاد معادلة دائرة إذا كان أ (س، ، س،) ، ب (ص، ، ص،) نهايتي قطر فيها

	الطريقة الأولي
(س – س،) (س – س،) + (ص – ص،) (ص – ص،) = ۰	الطريقة الثانية
(۱) نوجد المركز = $\left(\frac{\frac{\lambda}{\lambda}}{2} + \frac{\lambda}{2}\right)$) نوجد المركز = $\left(\frac{\lambda}{\lambda}\right)$	
٢) نصف القطر = المسافة من المركز لأحد النهايتين	الطريقة الثالثة
٣) نعوض في الصورة القياسية	
١) نفرض نقطة جـ (س ، ص) تنتمي لمحيط الدائرة	
۲) میل أ جـ × میل ب جـ = - ۱	الطريقة الرابعة
لأن زاوية أجب محيطية مرسومة علي قطر قياسها = ٩٠°	

أوجد معادلة دائرة احداثيات نهايتي قطرها كما هو مبين في كل من الحالات الآتية:

(0,1-),(1,7)#1

(7 . .) . (0 . 7) # 5

(\$ - , 7) , (A , 7) #7

۲) دائرتان متحدتا المركز م ، احداثیات نهایتي قطر الدائرة الصغری (۲ ، ۳) ، (۳ ، ۷)
 فإذا كان الفرق بین نصفی قطري الدائرتین یساوی ۳ وحدات ، فأوجد معادلة الدائرتین .

إذا علمت أن النقطتين (٢ ، ٤) ، (-١ ، ١) نهايتي قطر في دائرة وكانت هذه الدائرة تمر بالنقطة (٢ ، ٣) فما قيمة ٢ ، ثم اكتب معادلة هذه الدائرة.

أوجد نقاط التقاء المستقيم س-٣ص=٠ مع الدائرة س ٢٠ص -١٠٠ س-٥ص+٢٥=٠، ثم أوجد معادلة الدائرة التي تكون هاتان النقطتان نهايتي قطر فيها.

معادلت دائرة معلوم مركزها وتمس أحد المحورين

مع: أمر هجرس إذا كان المركز (- ٤ ، - ٥)		teti		
نقطة التماس	نصف القطر	المركز		
(· · · =)	نق = ٥	(عدد ، نق)	نهس محور السينائ	
(° - ′ ·)	نق = ٤	(نق ، عدد)	نَّهس محور الصادات	
(س،۰)،(۰،ص)	نق = س = ص	(نق ، نق)	نمس المحورين	
مستقيم عن س = نق)	مركزها يقع على المسنقيم			
المركز على الخط المستقيم	معلوم مركزها ونهس مسنقيم			

الدائرة تمس المحورين: احداثيي المركز متساويين (وقد يختلفا في الاشارة حسب الربع الذي يقع فيه المركز).

- ١) أوجد معادلة دائرة مركزها (٤، ٣) وتمس محور السينات.
- ٢) أوجد معادلة دائرة مركزها (٢ ، ١) وتمس محور الصادات .
- ٣) أوجد معادلة دائرة تمس محور السينات في النقطة (٣،٠) ويقع مركزها على المستقيم: ص = ٤
 - ٤) أوجد معادلة دائرة تمس محوري الاحداثيات وطول نصف قطرها ٣ وحدات وتقع في الربع الثاني .
 - ٥) أوجد معادلة دائرة تمس المحورين عند (٢ ، ٠) ، (٠ ، ٢)
 - ٢) أوجد معادلة دائرة تمس المحورين ومركزها يقع على المستقيم: ص = ٣ ما عدد الحلول؟
 - ٧) أوجد معادلة دائرة تمس محور السينات في النقطة (٥،٠) وتمر بالنقطة (٢،٣)
 - ٨) أوجد دائرة تمس المحورين وتمر بالنقطة (٢،-١)
 - ٩) أوجد دائرة تمس المحورين وتمس المستقيم: ص = ٤
 - ۱۰) أوجد معادلة دائرة تمس الدائرة : $س^{\prime}$ + $ص^{\prime}$ = β ومركزها (۰ ، ه)
- $\Lambda = 0$ أوجد معادلة دائرة تمس محور السينات والمستقيم $\Omega = 0$ والاحداثي السيني للمركز ضعف الاحداثي الصادي
 - ١٢) أوجد معادلة دائرة يقع مركزها على المستقيم: س + ص = ٤ وتمس كلا من محوري الاحداثيات.

معادلت دائرة تمر بثلاث نقاط ليست على استقامت واحده

طريقة الحل: ١) نعوض بالنقاط الثلاثة في المعادلة العامة للدائرة.

٢) نحل المعادلات الثلاثة عن طريق: # نطرح الأولى والثانية ## نطرح الأولي والثالثة ٣) نحل المعادلتين الناتجتين ثم التعويض في أحد المعادلات الثلاث .

ويمكن الحل باسنخدام الآلة الحاسبة للناكد من الحل .

۱) أوجد معادلة د	رة تمر بالنقاط (۰ ، ۰) ، (۲ ، - ٤) ، (٦ ، ٨)
٢) أوجد معادلة د	رة تمر بالنقاط (- ٥ ، ١) ، (١ ، ٠) ، (٢ ، ١)
٣) أوجد معادلة دائرة تمر بنقطة الأصلوتقطع من محوري السينات	الصادات جزأين موجبين طولاهما ٣ ، ٤ علي الترتيب
٤) أوجد معادلة دائرة تمر بالنقطتين (، ١)، (- ٣، ٩) ويقع مركزها علي محور الصادات.
٥) أوجد معادلة دائرة تمر بانقطتين (٢	، - ١)، (١، ٥) ويقع مركزها علي محور السينات.
٦) أوجد معادلة دائرة تمر بالنقطتين (۱ ، ۳) ، (۰ ، ۰) ويق مركزها علي محور السينات .
٧) أوجد معادلة دائرة تمر بالنقطتين (٤	- ٤)، (- ٢، - ٦) ويقع مركزها علي المستقيم: س + ص
 ٨) أوجد معادلة دائرة تمر بالنقطتين (- 	، ٤)، (٠، ٣) ويقع مركزها علي المستقيم: س - ٢ ص :

موضع نقطت بالنسبت لدائرة

لتحديد موضع النقطة (س، ، ص،) بالنسبة للدائرة .

الطريقة الأولى الطريقة الثانية ١) نحدد المركز وطول نصف القطر . ١) نعوض بالنقطة في معادلة الدائرة فإذا كان الناتج ٢) نوجد طول : م أ موجب م أ = نق داخل خارج خارج الدائرة الدائرة م أ > نق داخل م أ < نق ٣) نستخدم الشكل

علاقت مستقيم بالدائرة:

م أ = نق م أ = نق م أ = نق م أ > فاطع م أ < نق م أ < نق

- ١) نوجد طول العمود الساقط من المركز على الخط المستقيم = م أ
 - ٢) نحدد المركز ونوجد نق
 - ٣) نستخدم الشكل

مركز الدائرة هو نقطة تقاطع قطرين فيها . # نصف القطر عمودي على المماس من نقطة التماس

علاقت دائرة بدائرة أخرى

رسي المماسات الداخلية	أمر هـ المماسات الخارجية	مع المماسات المشتركة	نقاط التقاطع		الرسم	الإسم
	•	لا يوجد	لا يوجد	م ن = ٠		متحدتا المركز
•	•	لا يوجد	لا يوجد	م ن < نق ، ــ نق ،		إحداهما داخل الأخرى
•	١	١	١	م ن = نق ، – نق ،		متماستان من الداخل
•	*	*	SIL.	نق ، + نق ، < م ن < نق ، – نق ،		متقاطعتان
1	*	٣	,	م ن = نق ، + نق ،		متماستان من الخارج
*	*	£	لا يوجد	م ن > نق ، + نق ،		متباعدتان

خط المركزين: هو القطعة المستقيمة الواصلة بين المركزين.

الوتر المشترك: قطعة مستقيمة تقطع كلاً من الدائرتين في نقطتين.

المماس المشترك: مستقيم يقطع كلاً من الدائرتين في نقطة واحدة .

المماس المشترك الخارجي: تقع الدائرتين في جهة واحدة من المماس المشترك.

المماس المشترك الداخلي: تقع الدائرتين في جهتين مختلفتين من المماس المشترك.

@ معادلة الوتر المشترك لدائرتين متقاطعتين = الفرق بين معادلتا الدائرتين بعد توحيد معاملات س٬ ، ص٬ في كلتا المعادلتين .

معادلت المماس وطولت

طريقة الحل: ١) نحدد المركز وطول نصف القطر.

٢) نوجد طول: م أ لتحديد موضع النقطة (س، ، ص،) بالنسبة للدائرة .

معادلة المماس	طول المماس	عدد المماسات	موضع النقطة	
-	-	لا يمكن رسم مماس	مركز الدائرة	م أ = ٠
- 2	_	لا يمكن رسم مماس	داخل الدائرة	م أ < نق
 ا نوجد میل نصف القطر (فرق الصادات ÷ فرق السینات) ۲) منه نوجد میل المماس (المقلوب باشارة مخالفة) ۳) معادلة المماس : ص - ص = المیل (س - س) 	لا يمكن ايجاد طوله	مماس واحد	على	م أ = نق
۱) نضع المعادلة: ص – ص،= م (س – س،) في الصورة العامة: أ س + ب ص + ج = \cdot ۲) نوجد قيمة م بالتعويض في: العمود الساقط من المركز على المماس نق = $\frac{ m }{ m } + \frac{ m }{ m }$ نق = $\frac{ m }{ m } + \frac{ m }{ m }$	@ من فيتاغورس : (المماس) = (م أ) ' – نق '	مماسان متساويان في الطول	خارج	م أ > نق

١) أوجد معادلة المماس للدائرة: س٢ + ص٢ – ٤ س – ٦ ص + ٩ = ٠ والمرسوم من النقطة (عَيْ الْحَيْ الْحَيْ

") أوجد طول ومعادلة المماس للدائرة: س' + ص' - 3 س - 7 ص + 9 = 0 والمرسوم من النقطة (" ، ١)

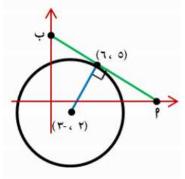
(1) أوجد معادلة المماس للدائرة: $m^2 + m^2 - \Lambda$ m + 2 m + 4 = 0 عند النقطة ($m^2 + m^2 + m^$

٢) أوجد معادلة المماس للدائرة:
$$س^{7} + ص^{7} - \Lambda$$
 س - ٢ ص = ٠ عند النقطة (π ، ٥)

$$^{"}$$
) أوجد معادلة المماس للدائرة : $^{"}$ + $^{"}$ + $^{"}$ + $^{"}$ + $^{"}$ + $^{"}$ + $^{"}$ - $^{"}$ النقطة ($^{"}$ ، - $^{"}$)

$$(1 - 1)$$
 أوجد معادلة المماس للدائرة $(1 - 1)$ س $(1 - 1)$ س $(1 - 1)$

ه) أوجد معادلة الوتر المشترك للدائرتين:


٦) أوجد طول المماس المرسوم للدائرة: $س^{7} + ص^{7} - 3$ m - 7 ص - 17 = 0 من النقطة (٤ ، ٣)

$$^{(0)}$$
 أوجد طول المماس المرسوم للدائرة : $^{(0)}$ + $^{(0)}$ + $^{(0)}$ $^{(0)}$ + $^{(0)}$ + $^{(0)}$ من النقطة ($^{(0)}$ ، $^{(0)}$

٩) أوجد طول المماس المرسوم للدائرة:
$$س ' + ص ' - ١٠ س + ٨ ص + ٥ = ٠ من النقطة (٥ ، ٤)$$

(، ،) أوجد طول المماس المرسوم للدائرة:
$$س^{\prime}$$
 + m^{\prime} + m^{\prime} + m^{\prime} + m^{\prime} ث ص + ح = ، من النقطة (، ، ،)

: س $- \omega - \pi = 0$ هو مماس مشترك للدائرتين : س $- \omega - \pi = 0$

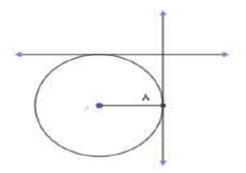
المماس المرسوم للدائرة $m^7 + m^7 - 3m + 7m - 7m = 0$ ، من النقطة (n = 0) المحورين الإحداثيين في النقطتين n = 0 ، n = 0 ، ب واستنتج مساحة المثلث n = 0 ب حيث n = 0 نقطة الأصل.

مراجعة الوحدة الثالثة

أسئلن اختبارات الأعوام: ٢٠٠٩ – ٢٠١٩

اختیار ۱۸-۱۹ دور أول

= ١ يساوي :	۲ + ص۲ + ۶س =) للدائرة س	طة (٢،٥	موم من النق	المماس المرء	١) طول
۳٦ 🗆						
ها يقع في الربع	معادلة دائرة مركز ه	ء - نمثل	+١٠٠ ص	،۲ + ل س	نت س ^۲ + صر	۱) إذا كا
		ل تسا <u>وي</u> :	· فإن قيمة ا	يم ص =	وتمس المستق	الرابع
17-	£-		٤		17	
يعامد المستقيم	معادلة قطرها الذي	ر = ۱۷ فإن	٤س — ٢ <mark>ص</mark> ر	+ ص +	معادلتها س٢	۱۲) دائرة
				۱۲ هي :	, ـ ۲ ص = ٬	ه س
. = 11 +	۲ مس + مس	\supset		. = 11	ص + ٥س -	۲ 🗆
. = 11 +	۲ ۲ ۲ مص			. = 11	س + ەص -	۲ 🗆
سِني كما في	رى تمس المحور الم	والدائرة الصغ	(7,7)	ز، مرکزیهه	ن متحدثا المرك	۱) دائرتا
في :	لد <mark>ل</mark> ة الدائرة الكبرى ه	: ۳ ، ف <mark>إن</mark> مع	: ن کنسبة ۲	كان نسبة ع	، المقابل ، فإذا ،	الشكل
	<u>س</u> 		۱٦ =	س – ٦)٢	·) + (~ - c	🗆 (س
			۸۱ =	ص – ٦)٢) + [*] (* - ¿	🗆 (بر
	() })	1 =	س – ۲)۲) + [*] (*	🗆 (س
•		س 🛨	١=	س – ۳)۲	-) + [↑] ([¬] -	🗆 (س
~ • ~ • ~ • ~	•	• ~ • ~ • ~ •	• ~ • ~ • ~ • ~ •		~ • ~ • ~ • · · · · ·	• ~
يساوي ٥:	۱۰۰ ص - ج = ۰	ں ^۲ ــ ٦س -	رة س ٢ + ص	· قطر الدائر	ان طول نصف	٤٢) إذا ك
					قيمة ج	أ) أوجد
			نسبة للدائرة	ال (۳، ۲	ع النقطة (-)	ب) ، ض


٢٥) أوجد الصورة العامة لمعادلة الدائرة التي تمس المحور الصادي في النقطة (٠،٢) و المستقيم ص = ٣٠ ويقع مركز ها في الربع الثاني .

1-0

اختیار ۱۷-۱۷ تجریبی

- □ س+ص=٩
- ٧ ٢ ٢ ٤ ص

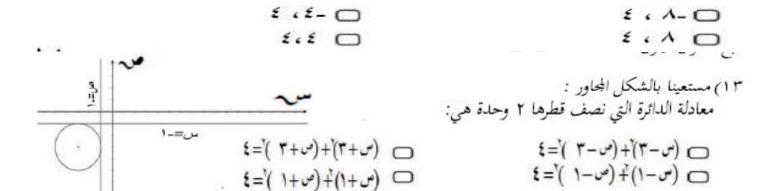
- ١٢) معلالة الدائرة في السكل المقابل هي:
 - (س ۸) + (ص ۸) ا = ۱۲ = ۱۲
 - $TE = {1 \choose w} + {1 \choose w} + {1 \choose w} = 3F$
 - $\exists \xi = \left[\left(\wedge + \wedge \right) + \left(\wedge \wedge \right) \right] = \exists T$
- $TE = (M + M) + (M + M) \square$
- ۱۲) إذا كانت النقطة (۱ ، ٩) تقع على الدائرة س ٢ + ص ٢ ٢ ٩ س + ٤ ص ٦ = ٠ فإن قيمة ٩ تساوي :
 - Y-O A-O
- ١٤ إذا كان المستقيم ل يمس الدائرة م التي مركزها (١٠٤)، عند النقطة (٢٠٢) ، فإن معادلة المستقيم ل
 هي:

$$(7-\omega)^{\frac{1}{2}} = (7-\omega)$$

$$(1-\omega)^{\frac{1}{2}} = (1-\omega)^{\frac{1}{2}} = (1-\omega)^{\frac{1$$

٤) أوجد معادلة الدائرة التي تمر بالنقاط الآتية: أ(١،٠)، ب(٧،٠)، جـ (٥،-٣).

............


إذا كانت النقطنان (-٣ ، ٣) ، (٨ ، ج) هما نهاينا قطر لدائرة نمس محمور الصادات ، فأوجد قيمة جومعادلة الدائرة .

أوجد معادلة الدائرة الذي تمس محور الصادات عند النقطة (• ، ٤) و نقطع الجزء الموجب لمحور السينات
 في نقطتين البعد بينهما ٦ وحدات .

<u>اختیار ۱۲ - ۱۷ تجریب</u>

ص - ٤س + ٢ص+ج = ٠ يساوي ١٤٠	س+س	الدائرة	١١) إذا علم أن نصف قطر
			فان قيمة ج يساوي:

١) إذا كان طول المماس المرسوم من النقطة (٥، ٧) للدائرة سلّ مل على على على المرسوم من النقطة (٥، ٧) للدائرة سلّ مل على على على الله عل

9 🗇	9- O	
Y-0	10	

٢١) ﴿ أوجد معادلة الدائرة التي تمر بنقطة الأصل وتقطع من محوري الصادات و السينات الموجبين ٤ وحدات و ٦ وحدات على الترتيب

٢٤) برهن أن المستقيم ص= س+ 1 يمس الدائرة من
$$- 1$$
 من $- 1$ $- 1$ $- 1$ $- 1$ $- 1$ $- 1$ $- 1$ $- 1$ ثم أوجد أحداثيات نقطة التماس

٢٠) أثبت أن المستقيم س-ص-٣=٠ مماس مشترك للدائرتين
 ١٣- سل-٢س - ٢٥٥ - ٣=٠ ، سل+ صل+٤س-٢ص - ١٣-٠٠

اختبار ١٥ - ١٦ تجريبي

١١) نصف قطر الدائرة التي مركز ها (٢،٣) وتمس محور الصادات يساوي :

۱ (۵ ۲ (ج ۲ (۱

١٢) اذا كانت النقطتان ﴿(٣،١) ،ب(٣،٧) نهايتي قطر في دائرة فإن معادلتها هي:

 $T = {}^{T}(T - \omega) + {}^{T}(T - \omega)$ $(\omega - T)^{T} = P$ $(\omega + T)^{T} + (\omega - T)^{T} + (\omega + T)^{T} = T$

 $T = {}^{1}(T + \omega) + {}^{1}(\xi + \omega)$ $= {}^{1}(T + \omega) + {}^{1$

١٣) اذا كان $m^{7} + m^{7} + 7$ m - (a + 1) m + 9 = 0 تمثّل معادلة دائرة تمس محور السينات وطول نصف قطر ها يساوي ٢ فإن قيمة هـ تساوي :

1-7/7 (2 7/7 ÷ 7(-) 0(1

۱۶) عدد المماسات المشتركة للدائرتين $m^{7}+m^{7}+7m+10m+07=0$ ، $m^{7}+m^{7}+7m+10m+07=0$ $m^{7}+m^{7}+10m+010=0$ $m^{7}+m^{7}+10m+010=0$

٢١) أوجد معادلة الدائرة إذا كان معادلة القطرين المتعامدين فيها ص=٠، س=٠ وطول قطرها ٦٠√٦

٢٠) اذا كانت ((٢٠١) ب(٢٠٤) ج(٥٠١)، د(٥٠١) تمثل رؤوس مربع فأوجد:

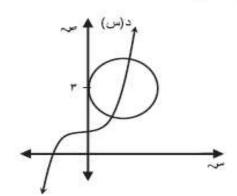
أ) معادلة الدائرة التي تمس أضلاع المربع من الداخل

ب) معادلة الدائرة التي تمر برؤوس المربع

اختیار ۱۵ - ۱۲ دور أول

(۱۱ احداثیات مرکز الدائرة (س
$$-$$
 ۲) + (ص $+$ ۲) = ۱۵ هو:

۱۲) إحدى معادلتي المماسين للدائرة
$$m^2 + m^2 - \Lambda m + 7m + 1m = 0$$
 والموازى لمحور السينات هي:


$$Y_{0} = Y_{0} + Y_{0$$

$$1 = {}^{t}(1 + \omega) + {}^{t}(1 + \omega)$$
 \bigcirc $0 \cdot = {}^{t}(1 + \omega) + {}^{t}(1 + \omega)$ \bigcirc

۱٤) في الشكل المجاور إذا كان المنحنى
$$c(m) = 7m^7 + 1$$
 مر مركز الدائرة،

فإن طول نصف قطر الدائرة يساوي:

$$\frac{1}{l} \bigcirc \qquad \qquad l \subset$$

$$V = {}^{r}(Y + {}^{$$

$$(4 - 1)^{-1}$$
 أوجد طول المماس المرسوم للدائرة $(4 - 1)^{-1}$ $(4 - 1)^{-1}$ $(4 - 1)^{-1}$ أوجد طول المماس المرسوم للدائرة $(4 - 1)^{-1}$

اختبار ۱۶ - ۱۵ تجريبي

i)
$$w' + w' = 9$$
 $w' + w' + w' = 1$
 $w' + w' = 9$ $w' + w' = 1$
 $w' + w' = 9$ $w' + w' = 1$
 $w' + w' = 1$

٢١) النقطة (٢، -٣) هي مركز دائرة تمس محور الصادات، أوجد كلا من:

١) الربع الذي يقع فيه مركز الدائرة. ٢) نصف قطرها. ٣) معادلة الدائرة.

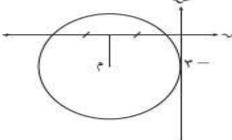
٢٤) أوجد معادلة الدائرة التي تمس المحورين وتمس المستقيم ١٥ س + ٨ص - ٦٠ = ٠ وتقع في الربع الأول .

۲۵) إذا كان ع، ل نهايتي قطر في الدائرة س + ص ۲ - ۳ س + م ص - ۱۵ = ۰
 حيث ع (۳،۰)، م عدد حقيقي. أوجد إحداثي النقطة ل.

	<u> اختیار ۱۶ - ۱۰ د</u>	
(11	معادلة الدائرة التي مركزها النقطة (٢،٠)	وطول قطرها ٨ وحدات هي :
	$78 = {}^{7}\omega + {}^{7}(Y - \omega) \Box$	$17 = {}^{4}\omega + {}^{4}(Y - \omega) \Box$
	$7\xi = {}^{4}\omega + {}^{7}(Y + \omega) \Box$	$17 = {}^{4}\omega + {}^{4}(Y + \omega)$
(11	إذا كانت النقطتان (۲، ۱)، (٤، ١) نهايتا أ	طر في دائرة تمر بنقطة الأصل ،
	فإن قيمة ١ تساوي:	
	۸- 🔾	٣- 🔾
	<u>'</u> O	'\ \
(11	إذا كانت س ⁷ + ص ⁷ - هـس + ٣ هـ ص +	(هـ+٤) س ص = صفر، هـ∈گ
	مَثل معادلة دائرة ، فإن مركز الدائرة هو :	
	(17-, 8)	(Y₁-r)
	(17, 8 -)	(-Y, F)
(18	$- ^{7}(0 + 0)^{7} - ^{7} = 0$ دائرتان معادلتیهما س	. صفر ، س ^۲ + ص ^۲ — ۱ = صفر .
	عدد المماسات المشتركة للدائرتين يساوي:	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	¥ O
(٢1	حوّل معادلة الدائرة س ^٢ + ص ^٢ – ٨س + ١٦٠	ى + ٧٩ = صفر إلى الصورة القياسية ،
	ثم أوجد إحداثيات المركز، وطول نصف القطر.	
(45	أوجد طول المماس المرسوم للدائرة س٢+ ص	+ ١٤ص = ١٥ من النقطة (٠،٦).
. ONLANCE		
(40	دائرة تمس المستقيم س = ٢، وتمر با	لنقطتين (٠،٠)، (٣-١).
	أوحد طول نصف قطر الدائرة اذا علمت	، أن مكنها بقع في الربع الثالث

اختيار ١٤ - ١٥ دور ثاني

:9	۱۱) مرکز الدائرة $m^2 + m^2 - 3m = \Lambda$ ه
(· , Y_)	(٠,٢)
(Y-··) O	(۲.٠)
قطرها ٢، تمس المستقيم:	١١) الدائرة التي مركزها (-٤ ، ١) ونصف
🔾 ص = ۱	⊃ س = ۲
🔾 ص = –۳	□ س = –۲
مُّثِّل معادلة دائرة، فان قيمة م تساوي:	$q = {}^{r}$ ا اذا کانت $q = {}^{r}$ ($q + {}^{r}$) هم $q + {}^{r}$ ($q + {}^{r}$) هم $q + {}^{r}$
1 🔾	٣ 🔾
\frac{\pi}{\pi} \co	\frac{\sqrt{\chi}}{\chi} \cquare
بة س 7 + (ص 2 نقطتين،	١٤) إذا كان المستقيم ص = س يقطع الدائر
	فإن قيم ن تنتمي إلى الفترة:
] & , & - [□]-7.7
] ۲.∞-[□]∞, ٤[□
) = ٩ ، حدد كلا مما ياتي:	4 دائرة معادلتها (س + ۵) 4 + (ص 2
لدائرة.	 أ) موقع النقطة (-٦ ، ١) بالنسبة لا
للدائرة.	ب) وضع المستقيم ص+ ٢س = صفر بالنسبة
	ا إذا كان الفرق بين قطري دائرتين متحدتي المراعي الم
33	
، ويقع مركزها على المستقيم ص = -س.	٧٥) دائرة تمس المستقيمين س = ٥ ، ص = ٧
	أوجد طول نصف قطرها .


<u> اختيار ۱۳ - ۱۶ دور أول</u>

۱۱) نصف قطر الدائرة التي معادلتها س + س -

9 0

١٢) من الشكل المجاور مركز الدائرة م التي تمس محور الصادات وتقطع من محور السينات السالب وتراً طوله ٨ وحدات هو :

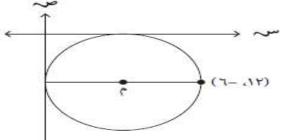
١٣) معادلة الدائرة التي تمر بالنقطتين ٢ (٢٠٢) ، ٣ (٢٠٤) والمماسين لها عند ٢٠١ متوازين هي:

قطرها يساوي ٢ \sqrt{r} وحدة، فإن معادلة الدائرة هي :

٢١) أوجد معادلة الدائرة التي تمر بالنقاط (٠،٠)، (٤،٠)، (٠،٤).

٢٤) أوجد المحل الهندسي لنقطة تتحرك في المستوى بحيث يكون بعدها عن النقطة (٣ ، ٤) يساوي ثلاثة أمثال بعدها عن النقطة (٣ ، - ٤).

(۲۰، ۰) أوجد معادلتي المماسين المرسومين للدائرة $س^* + ص^* - \wedge m + \wedge = -$ من النقطة (\cdot ، ۰)


اختیار ۱۳ - ۱۶ دور ثانی

من الشكل المجاور معادلة الدائرة التي مركزها م هي:

$$m_1 = {}^{\mathsf{Y}}(1+\omega) + {}^{\mathsf{Y}}(1-\omega)$$

$$188 = {}^{t}(m + \omega) + {}^{t}(1 - \omega)$$

(۱۲ مرکز الدائرة التي معادلتها $m' + m' - 7m + 76m + 0 = • ، حيث <math>b \in 9$ وطول نصف قطرها ٧ ٥ هو:

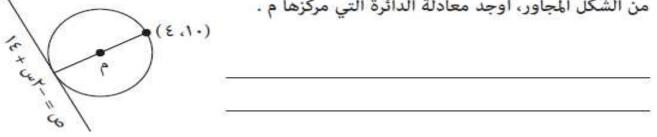
(-1,-7)

(1, -7)

۱۳) طول نصف قطر الدائرة التي معادلتها (۳س +
r
) + (r 0 – r 0) = (۱۳ یساوي :

9 0

۱٤) إذا كان طول المماس المرسوم من نقطة (
$$-$$
۷، $+$ 0) للدائرة $-$ 0 + $+$ 0 + $+$ 0 س = • يساوي وحدتين ، حيث ل $+$ 2 ، فإن قيمة ل تساوى :


₹V □

<u>οε</u> Ο

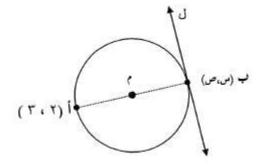
(۱۸) أوجد معادلة العمودي على مماس المنحنى $ص^{7} + ص - 7m = 3$ عند النقطة (۱، ۲)

٢٢) ضع معادلة الدائرة ٢س٢ + ٢ص٢ - ١٦س - ١٢ص = ٢٤ في الصورة القياسية ثم أوجد مركزها ونصف قطرها.

٢٥) من الشكل المجاور، أوجد معادلة الدائرة التي مركزها م.

٢٦) أوجد معادلة الدائرة التي مس محور السينات في النقطة (-٤، ٠) ، ويقع مركزها على المستقيم ص + ٢س - ١ = صفر .

اختیار ۱۲ - ۱۳ تحدید


۱۱) مرکز الدائرة التي معادلتها
$$3(7 + \omega)^7 + 3(\omega - 1)^7 = 9$$
 هي :

١٢) الشكل المقابل يمثل معادلة دائرة طول نصف

$$q = {}^{\Upsilon}(1+\omega) + {}^{\Upsilon}(\Psi-\omega) \square$$
 $q = {}^{\Upsilon}(1+\omega) + {}^{\Upsilon}(\Upsilon-\omega) \square$

$$q = {}^{\Upsilon}\omega + {}^{\Upsilon}(\Upsilon - \omega)$$

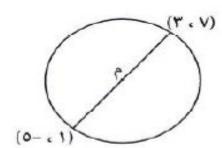
$$q = {}^{\Upsilon}(\Upsilon - \omega) + {}^{\Upsilon}\omega \square q = {}^{\Upsilon}(\Upsilon - \omega) + {}^{\Upsilon}(\Upsilon + \omega) \square$$

ب) الشكل المجاور يمثل معادلة الدائرة

$$\xi \cdot = (\circ - \circ) + (\land - \circ)$$

أوجد معادلة المماس ل المرسوم لهذه الدائرة عند

النقطة ب (س ، ص) .


ج) أوجد معادلة الدائرة التي يقع مركزها على محور السينات وتمر بالنقطتين (٢،١)، (٤، ٣-)

اختیار ۱۲ - ۱۳ دور اُول

- ٨ص = ١١ هو:	٦٠ + ص٢ +	مركز الدائرة س٢ –	(11
---------------	-----------	-------------------	-----

١٢) معادلة الدائرة التي مركزها (م) والمرسومة في الشكل المجاور هي:

$$1 \cdot \cdot \cdot = {}^{\mathsf{T}} (1 - \omega) + {}^{\mathsf{T}} (\xi + \omega) \quad \Box$$

$$Y0 = {}^{r}(1 + \omega) + {}^{r}(E - \omega)$$

$$1 \cdot \cdot \cdot = (1 + \omega) + (2 - \omega)$$

-0+1 إذا كانت دائرة تمس المحور السينى عند -1+1+1 ، ومركزها يقع على المستقيم -1+1+1فإن طول نصف قطرها يساوى :

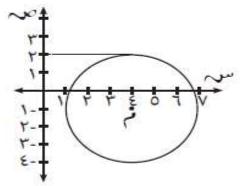
1٤) معادلة أحد مماسي الدائرة $w^7 + w^7 = 3$ الموازي للمستقيم $w^7 + w^7 = 4$

بيّن أن المستقيم ص + س = ٤ يقطع الدائرة س٢ + ص٢ = ١٦

أوجد معادلة الدائرة التي قر بالنقطتين (٧، -٤)، (٧، ٢)، ومركزها يقع على المستقيم ٣س - ٢ص - ٨ = ٠

دائرة معادلتها (س – *) * + (ص – *) * = * * * * أضلاع المثلث أ ب ج متطابق الأضلاع. أوجد معادلة المحلّ الهندسي لحركة روؤس المثلث ، بحيث تبقى على بعد ثابت من مركز الدائرة. (علماً بأن القِطَع المتوسطة للمثلث تتقاطع في نقطة واحدة تقسم كل منها بنسبة ١:٢ من جهة الرأس)

اختیار ۱۲ - ۱۳ دور ثانی


١١) أي من المعادلات الآتية تمثل معادلة دائرة ؟

$$9 = {}^{T}(T - \omega) - {}^{T}(T + \omega)$$
 \square $(\omega + 7)^{T} + (\omega - 7)^{T} + (\omega$

۱۲) طول المماس المرسوم من النقطة (٥، ٠) للدائرة $m^{7} + m^{7} = 11$ يساوي :

١٣) معادلة الدائرة المرسومة في الشكل المجاور هي:

$$0 = \Lambda + \Omega + \Omega^{7} - \Lambda + \Omega + \Omega^{7} + \Omega + \Omega^{7} + \Omega + \Omega^{7} +$$

المستقيم - v = v = v وه س المستقيم المستقيم المستقيم المستقيم المستقيم v = v = v والمستقيم المستقيم v = v

أوجد معادلة الدائرة إذا كان أ(٢ ، ٣) ، ب (٤ ، = ٥) نهايتي قطر فيها.

أوجد معادلة أحد المماسين للدائرة $m^2 + m^2 = 7$ المرسومين من النقطة (r, r)

~.~.~.

دائرة مركزها نقطة الأصل ، $\frac{1}{9}$ وتر فيها معادلته $\frac{1}{9}$ س $\frac{1}{9}$ وطوله $\frac{1}{9}$ وطوله $\frac{1}{9}$ أوجد معادلة الدائرة.

اختبار ۱۱ - ۱۲ دور أول

	ص + ۱)۲ = ٤ هو:	معادلتها (س - ۲) ^۲ + (م	١١) مركز الدائرة التي
(Y : 1-) O	(1-11)	(1.7-)	(1-, ٢)
	حور الصادي هي:	ي مركزها (-٢، ٣) وقس الم	١٢) معادلة الدائرة التي
- ځس + ٦ص + ٩ =٠	⊃ س ^۲ + ص۲	- ٤س + ٦ص +٤ = ٠	- ۲س۲ + ص۲ −
+3 س - 7ص + ٩ =٠		عس - ٦ص + ٤ = ٠	
+ ۲ ص - ۸=۰ هي:	ة س۲ + ص۲ – ٤س	كن رسم مهاس منها للدائر	١٣) النقطة التي لا هِمَ
(٢.1)	(٢٢)	(", ") ()	(1.7-)
 وتقع في الربع الأول هي: 	: ۲ ، س = ۸ ، ص =	ي تمس المستقيمات س =	١٤) معادلة الدائرة الت
+ (ص - ٤)٢ = ٩	□ (س – ۲)۲ -	$r = r(0 - \omega)$	ص (س - ۳)۲ +
$Y = {}^{r}(\mathcal{V} - \mathcal{V}) +$	🗀 (س – ٤)٢ -	$(\alpha_{\mathcal{Q}}-\Upsilon)^{\gamma}=\rho$	ص (س – ٥) ^۲ +
~ • ~ • ~ • ~ • ~ • ~ • ~ • ~ •			
(۲،٤)، جـ (۲،۶).	: از ۰۰۰)، پ	التي قر بالنقاط الآتية:	أوجد معادلة الداثرة
~ • ~ • ~ • ~ • ~ • ~ • ~ •			~ • ~ • ~ • ~ • ~ •
		ن المشترك للداثرتين:	أوجد معادلة المماس
+ عص + ع = ٠	ۍ۲ + ص۲ − ۶س + ۲ر	- ع ص + ع = ۰ ، سو	س ۲ + ص۲ - ٤س -
		ر بنقطة تماسهما.	علماً بأن المماس يم
~ ~			₹*
	۱۲ دور ثانہ	<u>اختیار ۱۱ -</u>	
	•	ة س ⁷ + ص ⁷ + 7ص - ٦ :	١١) نصف قطر الدائرة
	101 0		TTV O
	₹Y \ □		T. V 0
ي عند النقطة :	مِّس المحور الصادي	· = ٤ + ص + ٤ - ٢	۱۲) الدائرة س ^۲ + ص
	(^)		(A)
	(7:.)		(۲-،-)
نے قط فیما ہے:		ي يكون فيها النقطتان (٤	
07.0			
$+ (\omega - 7)^7 = 37$		$\exists \xi = (G + Y)^{2} = \exists \xi$	
$+17 = (17 + 17)^{7} = 171$	ک (س – ٤)	$(ص - 7)^{\prime} = 71$	ك (س+٤) ⊢
بتقع في الربع الثاني هي:	۵، ص≔۹، س≕۰ و	ي تمس المستقيمات ص =	١٤) معادلة الدائرة الت
$+(\infty - V)^{Y} = \Gamma I$	C (س + ۲)	· (ص – ۷) ع	🗀 (س – ۲)۲ +
$+ (\omega + V)^{r} = \Gamma I$	(س – ۲)	$\xi = {}^{Y}(V - w) +$	(س + ۲) ^۲ ب
.(-,7).(7,.)	بالنقاط (٠،٠)،	رة المرسومة التي تمر	أوجد معادلة الدائ
		للدائرة س' + ص' -	