شكراً لتحميلك هذا الملف من موقع المناهج العمانية

ملخص شرح درس حسابات التحليل الكهربائي

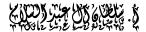
موقع المناهج ← المناهج العمانية ← الصف الثاني عشر ← كيمياء ← الفصل الأول ← الملف

تاريخ نشر الملف على موقع المناهج: 03-11-2023 18:48:44 اسم المدرس: سلطان آل عبد السلام

التواصل الاجتماعي بحسب الصف الثاني عشر

روابط مواد الصف الثاني عشر على تلغرام

التربية الاسلامية اللغة العربية العربي

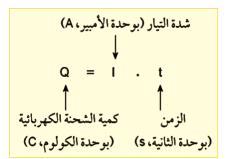

المزيد من الملفات بحسب الصف الثاني عشر والمادة كيمياء في الفصل الأول	
ملخص شرح درس التحليل الكهربائي	1
ملخص شرح درس تأثير الأيونات على قيم جهود الاختزال	2
أسئلة كامبريدج مترجمة في الوحدة الثانية	3
أسئلة كامبريدج مترجمة في الوحدة الأولى	4
نموذجان من الواجبات المنزلية	5

٦-٢ حسابات التحليل الكهربائي

أهداف التعلم

٢-١١ يحسب ما يلي:

- (أ) كمية الشحنة المنتقلة خلال عملية التحليل الكهربائي، باستخدام العلاقة الرياضية $Q = I \cdot t$
- (ب) كتلة أو حجم المادة الناتجة خلال عملية التحليل الكهربائي.
- ۱۲-۲ يذكر العلاقة الرياضية، $P = N_A \cdot e$ بين ثابت فارادي F وثابت أفوجادرو N_A والشحنة الموجودة على الإلكترون P ويطبقها.
- 17-7 يصف عملية تحديد قيمة ثابت أفوجادرو بوساطة التحليل الكهربائي.


حسابات التحليل الكهربائي

كمية الشحنة الكهربائية (الكهرباء):

تتناسب كمية الشحنة (بوحدة الكولوم C) التي تمر عبر الإلكتروليت أثناء التحليل الكهربائي مع:

- الزمن (t) الذي مر خلاله تيار كهربائي مستمر ثابت.
 - شدة التيار الكهربائي (۱).

تحويل وحدة الزمن:

min دقیقة
$$\times 60$$
 دقیقة مثال:

20 min $\times 60$ مثال: $\times 60$ 1200 s

ثابت فارداي :

• ويمكن أيضًا التعبير عن كمية الشحنة الكهربائية بدلالة وحدة قياس تسمّى فارادي Faraday (ورمزها F).

النفارادي Faraday: كمية الشحنة الكهربائية (بوحدة الكولوم coulomb) التي يحملها مول واحد من الإلكترونات أو مول واحد من أيونات تحمل شحنة واحدة منفردة.

تبلغ قيمة الفارادي الواحد 96500 C/mol

الفارادي Faraday: كمية الشحنة الكهربائية (بوحدة الكولوم coulomb) التي يحملها مول واحد من الإلكترونات أو مول واحد من أيونات تحمل شحنة واحدة منفردة.

z يمثل عدد مولات الإلكترونات المتبادلة

$$Ag^+(aq) + e^- \rightarrow Ag(s)$$

1 mol 1 mol

1F = 96500 C

$$Cu^{2+}(aq)$$
 + $2e^ \rightarrow$ $Cu(s)$

2 mol 1 mol

 $2F = 2 \times 96500 C$

الضارادي Faraday: كمية الشحنة الكهربائية (بوحدة الكولوم coulomb) التي يحملها مول واحد من الإلكترونات أو مول واحد من أيونات تحمل شحنة واحدة منفردة.

$$1 F = 96500 C/mol$$
 Q = z . F

z يمثل عدد مولات الإلكترونات المتبادلة

$$2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$$

1 mol 2 mol

 $2F = 2 \times 96500 C$

$$4 \mathrm{OH^{\text{-}}(aq)} \longrightarrow \mathrm{O_2(g)} \ +2 \mathrm{H_2O(I)} + 4 \mathrm{e^-}$$

4F = 4x 96500 C

علاقات:

تتناسب كتل المواد المتكوّنة عند أي قطب أثناء عملية التحليل الكهربائي تناسبًا طرديًّا مع كمّية الشحنة الكهربائية (بوحدة الكولوم C) المارة في

الإلكتروليت.

كمية الشحنة الكهربائية

 $Q_{(c)} = I_{(A)} \times t_{(s)}$

عدد مولات المادة الناتجة أثناء عملية التحليل الكهربائي

$$n = \frac{Q}{z.F}$$

الرمز z يمثل عدد مولات الإلكترونات المتبادلة و F ثابت فارادي

$$n = \frac{m}{M_r}$$
 ڪتلة المادة الناتجة $m = \frac{Q.M_r}{z.F}$

$$V_{(g)} = n \times 24 L$$
 حجم الغاز الناتج $r.t.p$ منظ ودرجة حرارة الغرفة

احسب كتلة فلز الرصاص المترسب على المهبط صفحة 97 أثناء التحليل الكهربائي، وذلك عند مرور تيار كهربائي شدته A 1.50 عبر مصهور برومید الرصاص (II) لمدة

(F = 96500 C/mol ، Pb = 207.2 A, قيمة)

$$Q_{(c)} = I_{(A)} \times t_{(s)}$$

$$n = \frac{Q}{z.F}$$

$$m = \frac{Q.M_r}{z.F}$$

$$Pb^{2+} + 2e^- \rightarrow Pb$$
 الحل

$$m = \frac{Q.M_r}{zF}$$

$$m = \frac{I.t.M_r}{z.F}$$

$$m = \frac{1.50 \times 20 \times 60 \times 207.2}{2 \times 96500}$$

$$m = 1.93g$$

$Q_{(c)} = I_{(A)} \times t_{(s)}$

$$n = \frac{Q}{z.F}$$

$$m = \frac{Q.M_r}{z.F}$$

مثال 9 احسب حجم غاز الأكسجين الناتج عند درجة حرارة مفحة 97 وضغط الغرفة (r.t.p) عند إجراء التحليل الكهربائي لمحلول مائي مركز من حمض الكبريتيك (H_2SO_4) ، لمدة 30.0 دقيقة باستخدام تيار كهربائي شدته .0.50 A

(F = 96500 C/mol، يشغل المول الواحد من الغاز حجمًا مقداره L 24.0 عند (r.t.p)

 $V_{(g)} = n \times 24L$

$$4OH^{-}(aq) \longrightarrow O_{2}(g) + 2H_{2}O(l) + 4e^{-}$$
 الحلّ:

$$n = \frac{Q}{z.F}$$

$$n = \frac{I.t}{z.F}$$

$$n = \frac{0.50 \times 30 \times 60}{4 \times 96500}$$

$$n = 0.00233 \text{ mol}$$

$V = n \times 24$

$$V = 0.00233 \times 24$$

= 0.0560 L

أسئلة صفحة 98

(٣٣) احسب كتلة الفضة المترسبة على المهبط عندما يمر تيار كهربائي شدته A 1.80 أثناء التحليل الكهربائي لمحلول من نترات الفضة لمدة 45.0 دقيقة.

(قيمة A: 4. F = 96500 C/mol ، Ag = 108

- التحليل محجم غاز الهيدروجين الناتج على المهبط عند درجة حرارة وضغط الغرفة (r.t.p) أثناء إجراء التحليل الكهربائي لمحلول مركز من حمض الكبريتيك (H₂SO₄)، لمدة 15.0 min باستخدام تيار كهربائي شدته 1.40 A الكهربائي لمحلول مركز من حمض الكبريتيك (r.t.p)، لمدة (r.t.p)، يشغل المول الواحد من الغاز حجمًا مقداره 24.0 L عند (r.t.p)
- احسب حجم غاز الأكسجين الناتج على المصعد عند درجة حرارة وضغط الغرفة (r.t.p) أثناء إجراء التحليل الكهربائي لمحلول مركز من كبريتات الصوديوم (Na_2SO_4) لمدة 0.50 دقيقة باستخدام تيار كهربائي شدته 0.70 A من الغاز حجمًا مقداره F = 96500 C/mol)

$$40H^{-}(aq) \rightarrow O_{2}(g) + 2H_{2}O(l) + 4e^{-\frac{Q}{2.F}}$$

$$n = \frac{Q}{z.F}$$

$$n = \frac{0.70 \times 55 \times 60}{4 \times 96500}$$

$$= 5.98 \times 10^{-3} \text{ mol } \times 24$$

$$= 0.144 \text{ L}$$

$$2H^{+} + 2e^{-} \longrightarrow H_{2}$$

$$n = \frac{Q}{z.F}$$

$$= \frac{1260}{2 \times 96500}$$

$$= 6.53 \times 10^{-3} \text{ mol } \times 24$$

$$= 0.157 \text{ L}$$

$$Ag^{+} + e^{-} \longrightarrow Ag^{23}$$

$$m = \frac{QM_{r}}{z.F}$$

$$\frac{4860 \times 108}{1 \times 96500}$$

$$= 5.44g$$

حساب ثابت أفوجادرو (N_A)

ثابت أفوجادرو N_{A} يمثل عددًا معيّنًا من الجسيمات الموجودة في مول واحد من المادة.

$$N_A = 6,023 \times 10^{23}$$

حساب ثابت أفوجادرو (N_A)

العلاقة بين الفارادي (F) وثابت أفوجادرو N_A بالعلاقة الآتية:

$$F = N_A \cdot e$$

$$N_A = \frac{F}{e}$$

حيث إن:

- F تمثل ثابت فارادي (96500 C/mol)
- $(6.02 \times 10^{23} \text{ mol}^{-1})$ نمثل ثابت أفوجادرو N_{A} •
- $^{-9}$ د مثل الشحنة الموجودة على الإلكترون (1.60 × 10 $^{-19}$ C) ع تمثل الشحنة الموجودة على الإلكترون

أسئلة صفحة 100

وم أحد الطلبة بتمرير تيار كهربائي ثابت شدته A 0.15 عبر محلول مائي من نترات الفضة، مستخدمًا قطبين كهربائيين من الفضة النقية، لمدة 45 دقيقة. وقد نقصت كتلة المصعد (الآنود) بمقدار g 0.45. استخدم هذه البيانات لحساب شحنة المول الواحد من الإلكترونات. شحنة مول واحد من الإلكترونات يعني فارداي

$$Q_{(c)} = I_{(A)} \times t_{(c)}$$

$$n = \frac{Q}{z.F}$$

$$m = \frac{Q.M_r}{z.F}$$

$$V_{(g)} = n \times 24 L$$

$$F = \frac{Q.Mr}{z.m} = \frac{I.t.Mr}{z.m}$$

$$= \frac{0.15 \times 45 \times 60 \times 108}{1 \times 0.45}$$

$$= 97200 C$$

أسئلة صفحة 100

(۲۷) القيمة الدقيقة لثابت فارادي تساوي 96485 C/mol والقيمة الدقيقة لشحنة الإلكترون الواحد تساوي ℃ 10-10 × 1.6022 .
استخدم هاتين القيمتين لحساب قيمة ثابت أفوجادرو مقربة إلى 5 أرقام معنوية.

$$N_A = \frac{F}{e}$$

$$N_A = \frac{96485}{1.6022 \times 10^{-19}}$$

$$N_A = 6.0220 \times 10^{23}$$
 e/mol

٦-٢ حسابات التحليل الكهربائي

لا تتراجع أبداً, فالنجاح العظيم يستغرق وقتاً.

أجب عن السؤال 7 صفحة 106-105 في كتاب الطالب.

سؤال 7 صفحة 106-105

- تم تمرير تيار كهربائي شدته A 1.04 عبر محلول مخفف من حمض الكبريتيك لمدة 6.00 min. حجم غاز
 الهيدروجين الناتج عند درجة حرارة وضغط الغرفة (r.t.p) يساوي 43.3 mL.
 - أ. احسب كمية الشحنة المنتقلة أثناء إجراء التجربة.
 - ب. احسب كمية الشحنة الكلية اللازمة لإنتاج مول واحد من غاز الهيدروجين (F = 96500 C/mol)
 - ج. في تجربة أخرى، تم إجراء تحليل كهربائي لكبريتات النحاس (١١) باستخدام قطبين من النحاس. فترسّب النحاس على المهبط (الكاثود).
 - ١. اكتب نصف-معادلة هذا التفاعل.
- ٢. أجرى أحد الطلبة تجربة لحساب قيمة لثابت فارادي F. قام بتمرير تيار كهربائي شدّته A مناسب قيمة عبر محلول كبريتات النحاس (II) لمدة 40 min مناسب قيمة عبر محلول كبريتات النحاس على المهبط (الكاثود). استخدم هذه البيانات لحساب قيمة F. قرّب إجابتك إلى 3 أرقام معنوية (قيمة A. قرّب إبرابتك أبرابتك أبرا
- ٣. قيمة الشحنة الموجودة على إلكترون واحد تساوي C وا-10 × 1.60 تقريبًا. استخدم هذه المعلومة وإجابتك على الجزئية ٢ لحساب قيمة لثابت أفوجادرو.

الاجباية:

أ. كميّة الشحنة:

 $Q = 1.t = 1.04 \times 6.00 \times 60 = 374.4 \text{ C}$

ب. يتم التفاعل وفق نصف-المعادلة الآتية:

 $2H^+(aq) + 2e^- \rightarrow H_2(g)$

يلزم 2 mol من الإلكترونات لإنتاج 1 mol من H_2

لذا يلزم: 2 × 96500 C = 193000 C

 Cu^{2+} (aq) + 2e $^ \rightarrow$ Cu(s) .۱ .ج

٢. كميَّة الشحنة:

 $Q = I.t = 0.300 \times 40 \times 60 = 720 \text{ C}$

الشحنة اللازمة لترسيب 1 mol من Cu:

 $720 \times \frac{63.5}{0.240} = 190\ 500\ C$

ولكن يلزم mol 2 من الإلكترونات لترسيب nol من Cu، لهذا فإن الشحنة الموجودة على mol من الإلكترونات:

 $F = \frac{190500}{2}$

F = 95250 C = **95300** *C*/mol

. "

N_A = (F) الشحنة الموجودة على مول واحد من الإلكترونات (e) الشحنة الموجودة على إلكترون واحد

 $\frac{95300}{1.60 \times 10^{-19}}$ = 5.96 × 10²³ mol⁻