تم تحميل هذا الملف من موقع المناهج العمانية

ملخص المادة من مندليف وفق منهج كامبريدج

موقع فايلاتي ← المناهج العمانية ← الصف الثاني عشر ← فيزياء ← الفصل الثاني ← ملخصات وتقارير ← الملف

تاريخ إضافة الملف على موقع المناهج: 21-02-2025 19:13:37

ملفات ا كتب للمعلم ا كتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

المزيد من مادة فيزياء:

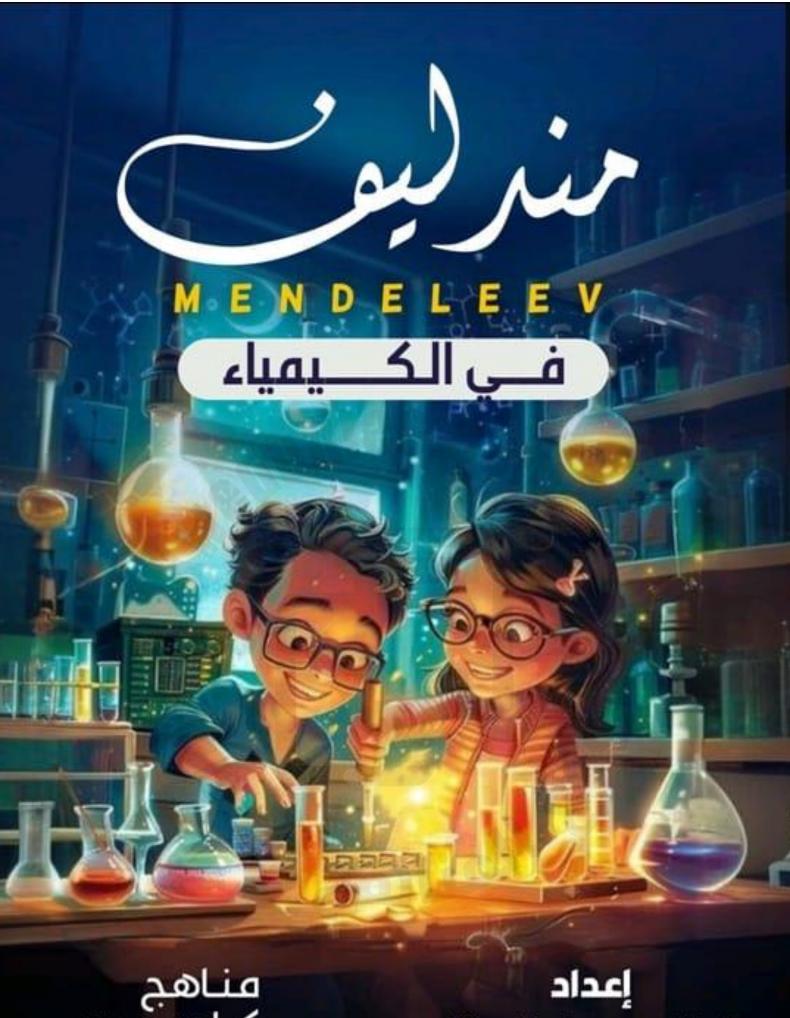
إعداد: مهاب السقا

التواصل الاجتماعي بحسب الصف الثاني عشر

صفحة المناهج العمانية على فيسببوك

الرياضيات

اللغة الانجليزية


اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الثاني عشر والمادة فيزياء في الفصل الثاني

المريد من الملقات بحسب الصف النائي عشر والمادة فيرياء في القصل النائي	
اختبار عملي نموذج خامس	1
اختبار عملي نموذج رابع	2
اختبار عملي نموذج ثالث	3
اختبار عملي نموذج ثاني	4
اختبار عملي نموذج أول	5

مناهج کامبریدج

الحكتور مهاب السقا

أدعية المذاكره

* دعاء قبل المذاكرة

اللهم إني أسالك فهم النبيين و حفظ المرسلين و الملائكة المقربين. اللهم اجعل ألسنتنا عامرة بذكرك و قلوبنا بخشيتك وأسرارنا بطاعتك

انك على كل شيء قدير وحسبنا الله ونعم الوكيل.

★ دعاء بعد المذاكرة:

اللهم إني استودعك ما قرأت وما حفظت وما فهمت وما تعلمت فرده عند حاجتي إليه انك

على كل شيء قدير وحسبنا الله ونعم الوكيل.

◄ عند التوجه الى الامتحان :

اللهم إني توكلت عليك وسلمت امرى إليك لا ملجأ ولا منجا منك إلا إليك.

عند دخول لجنة الامتحان

رب ا دخلنی مدخل صدق و اخرجنی مخرج صدق واجعل لی من لدنك سلطانا نصیرا.

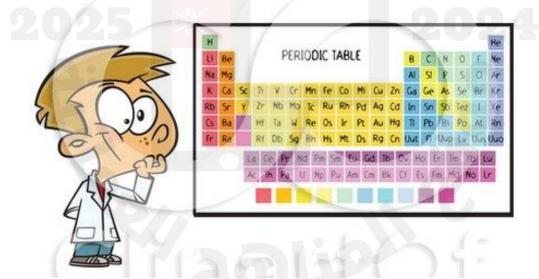
عند تعسر الاجابه

لا إله الا أنت سبحانك انى كنت من الظالمين. يا حى يا قيوم برحمتك استغيث، رب انى مسنى الضر وأنت ارحم الراحمين.

- ◄ عند النسيان : اللهم يا جامع الناس ليوم لا ريب فيه اجمع على ضالتي .

مع أطيب الامنيات بالتفوق والنجاح

أهم معادلة في حياتك


رضا الله + رضا الوالدين + الاجتهاد ____ التفوق الباهر

الوحدة الخامسة العناصر الانتقالية

Transition Elements

كن ايجابيا وتذكر أنه مازال هناك أمل ينتظرك ونجاح يليق بك وفرص أنت جدير بها فقط عليك دائما أن تحاول

92594064

التوزيع الالكتروني وعدد التأكسد

تأسيس الوحدة الأولى

🖋 قواعد توزيع الإلكترونات:

م كل مستوى طاقة رئيسي يتكون من عدد من المستوبات الفرعية يساوى رقمه (ترتيبه)

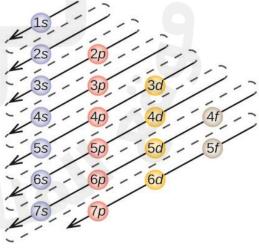
 $(\mathbf{f},\mathbf{d},\mathbf{p},\mathbf{s})$ مستویات الطاقه الفرعیه تأخذ الرموز \Box

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,
عدد المستويات الفرعية	رقم مستوى الطاقة الرئيسي (n)
1 s	1
2s, 2p	2
3s, 3p, 3d	3
4s, 4p, 4d, 4f	4

🗇 كل مستوى طاقة فرعى يتكون من عدد من الأفلاك الذرية (الأوربيتالات)

◄ لا يتسع أى فلك ذري (أوربيتال) في أى مستوى فرعى لأكثر من 2 إلكترون.

f	d	P	S	المستوى الفرعي	
7	5	3	1	عدد الأوربيتالات	
14	10	6	2	عدد الإلكترونات	


: (Auf Bau) مبدأ البناء التصاعدي

لابد للإلكترونات أن تملأ المستويات الفرعية ذات الطاقة المنخفضة أولاً ثم المستويات الفرعية ذات الطاقة الأعلى .

🗍 التوزيع الكامل للمستويات الفرعيه :

1s - 2s - 2p - 3s - 3p - 4s - 3d - 4p - 5s - 4d - 5p - 6s - 4f - 5d - 6p - 7s - 5f - 6d - 7p

أغنية كيميائية توضح طريقة ملء مستويات الطاقة الفرعية بالإلكترونات الساقة المناقة المن

العنصر	التوزيع الكامل للإلكترونات في المستويات الفرعية
$_{1}\mathrm{H}$	1s ¹
₃ Li	$1s^2 2s^1$
₇ N	$1s^2 2s^2 2p^3$
₁₁ Na	$1s^2 2s^2 2p^6 3s^1$
₁₉ K	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$
₂₀ Ca	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
21Sc	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$
₂₆ Fe	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

التوزيع الالكتروني المختصر (بالنسبه لاقرب غاز خامل) :

[2He] 2s 2p

 $[_{10}Ne]$ 3s 3p

[₁₈Ar] 4s 3d 4p

[36Kr] 5s 4d 5p

[54Xe] 6s 4f 6p

[86Rn] 7s 5f 6d 7p

◄ اكتب التوزيع الإلكتروني المختصر لذرات العناصر التالية:

₁₁Na, ₁₈Ar, ₂₅Mn, ₃₅Br

التوزيع الإلكتروني المختصر لاقرب غاز خامل	العنصر
$[_{10}\text{Ne}] 3s^1$	₁₁ Na
$[_{10}\text{Ne}] 3\text{s}^2, 3\text{p}^6$	₁₈ Ar
$[_{18}\text{Ar}] 4\text{s}^2, 3\text{d}^{10}, 4\text{p}^5$	₃₅ Br
$[_{36}\text{Kr}] 5\text{s}^2, 4\text{d}^2$	$_{40}\mathrm{Zr}$

🖋 حالتان شاذتان في التوزيع الالكتروني :

الحاله الاولى:

اذا انتهى التوزيع الإلكترونى للعنصر بالمستوى الفرعى d وكان يحتوى على (4) او (9) إلكترون ، فلابد من انتقال إلكترون من المستوى الفرعى 4s الى المستوى الفرعى 3d ليصبح المستوى الفرعى d الفرعى d مكتمل أو نصف مكتمل مما يجعل الذرة أكثر استقرار .

29 Cu	$1s^{2} 2s 2p^{6} 3s^{2} 3p^{6} 4s^{1}3d^{10}$ [₁₈ Ar] $4s^{1} 3d^{10}$
₂₄ Cr	$1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{1} 3d^{5}$ [₁₈ Ar] $4s^{1} 3d^{5}$

🎤 تدريب: اكتب التوزيع الإلكتروني الكامل والكختصر لذرات العناصر التالية:

التوزيع الإلكتروني المختصر	التوزيع الإلكتروني الكامل	العنصر
		21 SC
		₂₂ Ti
		₂₃ V
		₂₄ Cr
	100	₂₅ Mn
	169.60	₂₆ Fe
		₂₇ Co
		₂₈ Ni
OCCE TO		₂₉ Cu
2023	2027	₃₀ Zn

🖋 عدد الألكترونات في الايونات :

- 🗷 عدد الالكترونات في الايون الموجب (الكاتيون)
- = العدد الذري Z عدد الشحنات الموجبه التي يحملها الأيون الموجب
 - 🗷 عدد الألكترونات في الايون السالب (الأنيون)
- = العدد الذري Z + عدد الشحنات السالبه التي يحملها الأيون الايون السالب

التوزيع الالكتروني للايونات:

الأيون الموجب: ققد الالكترونات يبدأ من مستوي الطاقه الفرعي الأبعد 45 ثم الأقرب 3d.

23 V	$ \begin{array}{c} 1s^2 2s 2p^6 3s^2 3p^6 4s^2 3d^3 \\ [_{18}Ar] 4s^2 3d^3 \end{array} $	$_{23}V^{3+}$	$1s^2 2s 2p^6 3s^2 3p^6 4s^0 3d^2$
	$[_{18}Ar] 4s^2 3d^3$		$[_{18}Ar] \frac{4s^2}{3d^3}$
₂₆ Fe	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$	₂₆ Fe ³⁺	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^5$
	$[_{18}Ar] 4s^2 3d^6$		$[_{18}Ar] 4s^{0} 3d^{5}$
₂₄ Cr	$1s^2 2s 2p^6 3s^2 3p^6 4s^1 3d^5$	₂₄ Cr ³⁺	$1s^2 2s 2p^6 3s^2 3p^6 4s^0 3d^3$
	$[_{18}Ar] \frac{4s^1}{3d^5}$		$[_{18}Ar] 4s^0 3d^3$

92594064

ملاحظه : يمكنك حذف ${f d}^0$ اكتب التوزيع الإلكترونى لكل من الذرات والأيونات الآتية :

$^{23}V^{2+}$	
₂₃ V ³⁺	
₂₈ Ni ²⁺	
29Cu ⁺	
29Cu ²⁺	
₂₁ Sc ³⁺	.6100 0
₃₀ Zn ²⁺	

قاعدة هوند

◄ لا يحدث ازدواج بين الكترونين في مستوى فرعى معين الا بعد ان تشغل افلاكه الذريه فرادى اولا.

مثال: ذرة النيتروجين _{7N:}

ن توزيعها الإلكتروني تبعاً لمبدأ البناء التصاعدي: 1s², 2s², 2p³

التركيب الإلكتروني لأيون الفانديوم +23√2:
 التركيب الإلكتروني لأيون الفانديوم +23√2:

 $(23)^{2+}$ $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^0$, $3d^3$

تدربب: اكتب التوزيع الإلكتروني لكل مما يلي حسب قاعدة هوند:

عدد الالكترونات المفردة	التوزيع الالكتروني لأوربيتالات d	الكاتيون
	$[_{18}Ar] 3d^0$	Ti ²⁺
		11
	$[_{18}Ar] 4s^0, 3d^4$	Cr ²⁺
		Cr
	$[_{18}Ar] 4s^0, 3d^9$	Cu ²⁺
		Cu
	$[_{18}Ar] 4s^0, 3d^5$	Fe ³⁺
		ге

عدد التأكسد

هو عدد يمثل الشحنة الكهربية (الموجبة أو السالبة) التى تبدو على الأيون أو الذرة سواء كان المركب أيونياً أو تساهمياً .

🥒 قواعد حساب أعداد التاكسد:

- $({
 m O}_2\,,{
 m O}_3\,,{
 m P}_4\,,{
 m Cu}\,,{
 m H}_2\,)$ عدد تأكسد اى عنصر مهما كان عدد ذرات يساوى صفر $ar{
 ho}$
 - المجموعة الأولى ($\overline{
 m Na}$, $\overline{
 m Li}$, $\overline{
 m K}$) في مركباتها دائماً $\overline{
 m I}$ عدد تأكسد عناصر المجموعة الأولى ($\overline{
 m 1A}$
 - +2 المجموعة الثانية (Mg, Ca, Ba) (2A) في جميع مركباتها دائما (2A)
 - $rac{1}{2}$ عناصر المجموعة الثالثة $rac{1}{2}$ ($rac{1}{2}$) في جميع مركباته دائما $rac{1}{2}$
- 🧻 عدد تأكسد الكلور Cl و البروم Br و اليود I يساوي 1- ما عدا مركباتها مع الأكسجين .
 - 🧻 الفلور عدد تأكسده 1- لأنه أعلى العناصر سالبية كهربية .

القاعدة الأولى: مجموع اعداد تأكسد عناصر أي مركب متعادل = صفر

مثال : احسب عدد تأكسد الكروم في ثانى كرومات البوتاسيوم $K_2Cr_2O_7$ ثم استنتج عدد الالكترونات في أيون الكروم ثم اكتب التوزيع الالكتروني له ؟ بالمركب متعادل في عدد تأكسده O

$$\mathbf{K}_2$$
 \mathbf{Cr}_2 \mathbf{O}_7 $=$ $\mathbf{0}$

$$(+1\times2) + 2 Cr + (-2\times7) = 0$$

$$2 + 2Cr - 14 = 0$$

$$2Cr - 14 = 0$$
 $Cr = +6$

$$Cr^{+6}:[_{18}Ar] 4s^0 3d^0$$

تدريب: احسب عدد تاكسد العنصر تحته خط:

- $\underline{\mathbf{V}}\mathbf{F}_{5}$ (1
- **KCl**O₄ (
- KMnO₄ (*

القاعدة الثانية:

مجموع اعداد تأكسد عناصر أي مجموعة متأينه (مشحونة) = شحنتها

$$: SO_3^{-2}$$
 احسب عدد تأكسد الكبريت في

مجموعة أيونية.
$$SO_3^{-2}$$
 ...

$$S + (-2 \ 3) = -2$$

$$S - 6 = -2$$

$$S = +4$$

تدريب: أحسب عدد تاكسد العنصر تحته خط:

- VO^{2+}
- VO_2^+
- $\frac{\mathbf{Mn}\mathbf{O_4}^-}{\mathbf{Cr}\mathbf{O_4}^2}$
- $\operatorname{Cr}_2\operatorname{O}_7^{2-}$

أنواع المجموعات الذريه

١- مجموعات متأينه:

🗇 عدد تأكسد أي مجموعة ذرية متأينه أو الأيون يساوي الشحنة التي تكتب أعلاه: \cdot الفوسفات \cdot الفوسفات \checkmark

 SO_4^{-2} و الكبريتات CO_3^{-2}

-2 = (الذي يُمثل بالرمز OX في صيغ المعقدات -OOC - COO -أيون الأكسالات

- CN^- ايون الهيدروكسيد OH^- أيون الثيوسيانات SCN^- أيون السيانيد $\mathbf{NH_4}^+$ أيون النترات $\mathbf{NO_2}^-$ أيون النيتريت $\mathbf{NO_3}^-$

 $-4 = EDTA^{-4}$ عدد تأكسد أيون ثنائي أمين إيثيلين رباعي الأسيتات ورمزه = -4

٢- مجموعات المتعادله:

أعداد تأكسد المجموعات المتعادله يساوي صفر مثل:

- CO الأمونيا NH_3 الأمونيل $- H_2O$

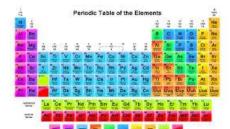
2,1- ثنائي أمينو إيثان (الذي يُمثل بالرمز " en " في صيغ المعقدات) = صفر

✓ مثال احسب عدد تأكسد Zn في Zn SO₄:

 $(C_0(\mathbf{ox})_3)^{3-1}$ ا فی $(C_0(\mathbf{ox})_3)^{3-1}$

 $[Co(ox)_3]^{3}$

$$Co + (-2 \times 3) = -3$$


Co
$$-6 = -3$$
 Fe = +3

٣- اذكر عدد التأكسد للفلز الانتقالي المركزي الموجود في كل من:

: $[Fe(H_2O)_6]^{2+}$

: [CoCl₄]²⁻

: Cu(OH)₂(H₂O)₄

chemistry

counio

د/ مهاب السقا

: $[\text{Co}(\text{NH}_3)_6]^{3+}$

: [Ni (CN)₄]²⁻

 $[Cr(OH)_6]^{3-}$

 $[\text{Co}(\text{en})_3]^{3+}$

: [**Fe**(**EDTA**)]⁻

العناصر الإنتقالية

الدرس الأول

العناصر الانتقالية:

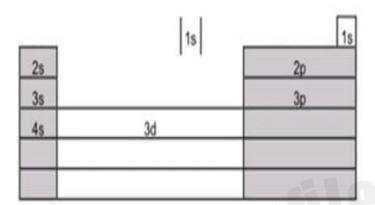
- ☑ توجد في الفئة: d من الجدول الدورى.
 - بين المجموعتين: 2 و 13. ×
- : Transition element العنصر الانتقالي
- ♦ هو أحد عناصر الفئة d الذي يكون أيونًا واحدًا مستقرًا أوأكثر يكون الفلك (d) له ممتلئًا جزئيًا. او
- ♦ هي العناصر التي ينتهي توزيعها الإلكتروني بالمستوى الفرعي (d) وتكون ممتلئة جزئيًا في الحالة الذرية أو الأيونية .

ملحوظه: لا تُصنّف جميع عناصر الفئة d كعناصر انتقالية.

🗷 لا يُعدّ السكانديوم (Sc) والخارصين (Zn) عنصرين انتقاليين : فسر عنصر السكانديوم:

 $[_{18} {
m Ar}] {
m 4s}^0 {
m 3d}^0 {
m Sc}^{3+}$ حيث يكوّن أيونًا واحدًا فقط هو

الذي لا يحتوي أي إلكترونات في الفلك الذري d الخا<mark>ص به ،</mark>


[Ar]: Ar والتوزيع الإلكتروني للأيون Sc^{3+} مماثل للتوزيع الإلكتروني لعنصر الآرغون عنصر الخارصين:

- [Ar] $4s^2$ $3d^{10}$ يمتلك التوزيع الإلكتروني •
- ♦ التوزيع الإلكتروني للأيون ²⁺ Zn : هو 3d¹⁰ [Ar]. لا يمتلك أي إلكترونات في الفلك الذري d الخاص به ،
- 🗷 في هذه الوحدة سوف ندرس العناصرالانتقالية الموجودة في الصف الأول من الفئة d (الدورة الرابعة):

وهي الفلزات من التيتانيوم (Ti) إلى النحاس (Cu) .

√ التوزيع الإلكتروني للعناصر الانتقالية:

يوضح الجدول التالي التوزيع الإلكتروني لذرات العناصر الانتقالية في الدورة الرابعة

- في ذرات هذه العناصريتم ملء الفلك الذري 45 أولًا بالإلكترونات ، ثم
- تشغل باقى الإلكترونات الأفلاك الذرية الموجودة في مستوى الطاقة الفرعي 3d .

مخطط الأفلاك الذرية	التوزيع الإلكتروني	العنصر
[Ar] 4s 1 3d 1 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ²	التيتانيوم 22Ti
[Ar] 4s 1 3d 1 1 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	الفناديوم 23V
[Ar] 4s 1 3d 1 1 1 1 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵	الكروم ₂₄ Cr
[Ar] 4s 1 3d 1 1 1 1 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	المنجنيز ₂₅ Mn
[Ar] 4s 1 3d 1 1 1 1 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶	الحديد ₂₆ Fe
[Ar] 4s 1 3d 1 1 1 1 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷	الكوبالت ₂₇ C0
[Ar] 4s 11 3d 11 11 1 1 1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸	النيكل ₂₈ Ni
[Ar] 4s 1 3d 1l 1l 1l 1l 1l	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	29Cu النحاس

♦ الحالات الشاذه في التوزيع الالكتروني:

يستثنى من هذه الفئة كلُّ من ذرات الكروم

🗍 التوزيع الالكتروني لذرة الكروم:

والنحاس:

حيث تمتلك كل ذرة كروم إلكترونًا واحدًا فقط في الفلك الذري 45 الخاص بها:

وتشغل الإلكترونات الباقية الأفلاك الذرية 3d.

حتي تكون جميع أفلاكه الذرية نصف ممتلئة (أكثر استقرارًا)

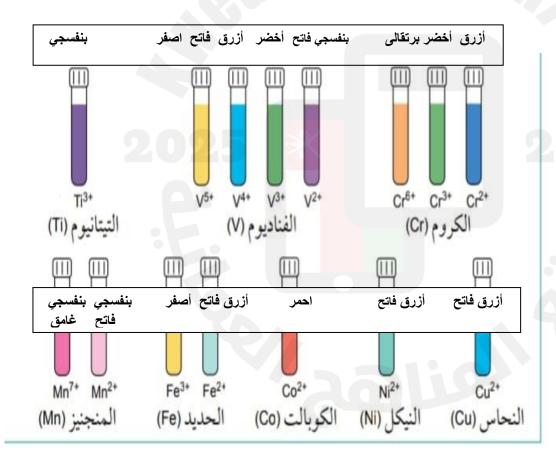
ي التوزيع الالكتروني لذرة النحاس : التوزيع الالكتروني لذرة النحاس : التوزيع الالكتروني لذرة النحاس : التوزيع الالكتروني الذرة النحاس التوزيع الالكتروني الذرة النحاس : التحاس ال

الخاص بها . أي كذلك تمتلك كل ذرة نحاس إلكترونًا واحدًا فقط في الفلك الذري 45 الخاص بها . وتشغل الإلكترونات الباقية الأفلاك الذرية 3d .

يكون كل واحد من الأفلاك الذرية الخمسة ممتلئًا بإلكترونين.

(تصبح جميع الافلاك الذريه d ممتلئة بالالكترونات والذرة أكثر استقرارا)

الخصائص الفيزيائية والكيميائية للعناصر الانتقالية:


- 🗇 تمتلك العناصر الانتقالية عادة الخصائص الفيزيائية النموذجية لمعظم الفلزات ، وهي:
 - ١. درجات انصهار مرتفعة.
 - ٢. كثافة عالية.
 - ٣. صلدة وقاسية.

🗷 ولذا تكون مفيدة للاستخدام:

- ١. موصلة جيدة للكهرباء والحرارة.
 - ٢. كمواد للبناء والإنشاءات.

🗷 الخصائص الكيميائية التي تنفرد بها الفلزات الانتقالية وهي :

- ١. تمتلك حالات تأكسد متعدده.
 - ٢. تسلك كعوامل حفّازة.
 - ٣. تكوّن أيونات معقدة .
 - ٤. تكوّن أيونات ملونة.

الشكل ٥-٣ ألوان المحاليل المائية لأيونات بعض الفلزات الانتقالية.

🗷 تمتلك الفلزات الانتقاليه حالات تأكسد متعددة :

جميع العناصر الانتقالية فلزات تميل ذراتها إلى فقدان إلكترونات: لتكوّن أيونات ذات شحنة موجبة

♦ .يمكن لكل فلز انتقالى أن يكوّن أكثر من أيون موجب واحد .

مثال : الأيونان الشائعان للنحاس هما Cu^+ و . Cu^2

🗷 الفلزات الانتقالية تمتلك حالات تأكسد متعددة : فسر

بسبب التقارب في طاقات الأفلاك الذرية 3d و 3d حيث تفقد ذراتها الإلكترونات من الفلك الذري 4s أولًا ثم يليها فقدان الإلكترونات من الأفلاك الذرية 3d .

◄ الأيونات الناتجة من حالات التأكسد المتعددة في الغالب ذات ألوان مختلفة:
 كما التي توضح أيونات الفناديوم الموجودة في حالات التأكسد المختلفة لفلز الفناديوم.

الصورة ٥-٢ ألوان محاليل أيونات الفناديوم في حالات تأكسد فلز الفناديوم المختلفة.

 ♦ يوضح الجدول التالي حالات التأكسد الأكثر شيوعًا للعناصر الانتقالية الموجودة في الدورة الرابعة

حالات التأكسد الأكثر شيوعًا	العنصر
+4 ،+3	التيتانيوم (Ti)
+5 ،+4 ،+3 ،+2	الفناديوم (V)
+6 ،+3	الكروم (Cr)
+7 ,+6 ,+4 ,+2	المنجنيز (Mn)
+3 ،+2	الحديد (Fe)
+3 ،+2	الكوبالت (Co)
+2	النيكل (Ni)
+2 ،+1	النحاس (Cu)

عندما تكوّن العناصر الانتقالية أيونات:

- ♦ تفقد ذراتها الإلكترونات من الفلك الذري 4s أولًا ،
- ♦ ثم يليها فقدان لإلكترونات من الأفلاك الذرية 3d

لاحظ: الأفلاك الذرية 3d المشغولة جزئيًا في الأمثلة الآتية:

 $V = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3 \rightarrow V^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^2$

 $\mathbf{Fe} = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^6 \ \rightarrow \ \mathbf{Fe}^{3+} = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^5$

 $Cu = 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^1\ 3d^{10} \rightarrow Cu^{2+} = 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^9$ إن حالة التأكسد الأكثر شيوعًا هي +2 :

وهي تتكوّن عادة عندما تفقد ذرة عنصر انتقالي ما إلكترونيها الموجودين في الفلك الذري 4s .

- اعلى حالة تأكسد للعناصر الانتقالية الموجودة في بداية الدورة الرابعة من الفناديوم إلى المنجنيز تنتج من فقدان جميع إلكترونات الفلكين الذريّين 4s و 3d الموجودة في الذرات.

 - $V = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$: توزیعه الألكتروني:
 - ♦ أعلى حالة تأكسد للفناديوم هي: + 5
 - ♦ تنتج من فقدان الإلكترونين الموجودين في الفلك الذري 4s والإلكترونات الثلاثة الموجودة في الفلك الذري 3d
- ♦ عند نهاية الدورة: من عنصر الحديد فصاعدًا ، تصبح حالة التأكسد +2 هي الأكثر شيوعًا:
 لأنه تزداد صعوبة إزالة الإلكترونات من الأفلاك الذرية 3d مع ازدياد الشحنة النووية
 من اليسار إلى اليمين عبر الدورة.
 - التي تتكوّن مع الأكسجين أو الفلور:

لأن حجمهما الذري صغير و يمتلكان السالبية الكهربائية الأعلى.

من الأمثلة الشائعة على ذلك:

- +6=ايون الكرومات (۷۱): ${
 m CrO_4}^{2-}:$ عدد تأكسد الكروم الأعلى =6
- +7=ايون المنجنات MnO_4^- : (VI) عدد تأكسد المنجنيز الأعلى =7+
- +5= عدد تأكسد الفناديوم الأعلى عدد \mathbf{VF}_5 : (\mathbf{V}) عدد (\mathbf{V})

ملاحظه: يجب تضمين عدد التأكسد في أسماء المركبات التي تحتوي على عناصر انتقالية: لوجود حالات تأكسد متعددة لها (تفاعلات الأكسدة - الاختزال.)

الفلزات الانتقالية كعوامل حفّازة:

تستخدم العناصر الانتقالية كعوامل حفازة في تفاعلات كيميائية مختلفة: مثل

- الحديد : في عملية هابر لتصنيع الأمونيا.
- كسيد الفناديوم (\mathbf{V}) : في عملية التلامس لتصنيع حمض الكبريتيك. \succ
 - البلاتين أو النيكل: في عملية هدرجة الألكينات لإنتاج ألكانات.
 - البلاتين، والبالاديوم ، والروديوم : في المحوّلات المحفّزة.
 - 🗇 تسلك العناصر الانتقالية كعوامل حفّازة: بسبب امتلاكها لحالات تأكسد متعددة
 - $\mathbf{S}_2\mathbf{O}_8^{2}$ وأيونات اليوديد $\mathbf{S}_2\mathbf{O}_8$ مثال :التفاعل بين أيون فوق الكبريتات معادلة التفاعل الكلية :
 - $S_2O_8^{2-}_{(aq)} + 2I_{(aq)}^- \rightarrow 2SO_4^{2-}_{(aq)} + I_{2(aq)}$
 - 🗇 وعلى الرغم من أن أيونات فوق الكبريتات تُعدّ عوامل مؤكسِدة قوية
 - ، وأيونات اليوديد تُعدّ عوامل مختزلة قوية ، إلا أن :

التفاعل بطيء جدًا وتؤدي إضافة أيونات الحديد (II) أو أيونات الحديد (III) إلى :

- تحفيز التفاعل و
- زیادة معدل سرعته ،
- 🗇 حيث إن كلًا من أيونات الحديد (II) وأيونات الحديد (III) تُعدّ مستقرة
 - 🗍 ويحدث التفاعل على مرحلتَين:

المرحلة الأولى :

$$S_2O_8^{2-}(aq) + 2Fe^{2+}_{(aq)} \rightarrow 2SO_4^{2-}_{(aq)} + 2Fe^{3+}_{(aq)}$$

المرحلة الثانية:

$$2I^-_{(aq)} + 2Fe^{3+}_{(aq)} \to I_{2(aq)} + 2Fe^{2+}_{(aq)}$$


حيث تتم إعادة إنتاج أيونات ${\bf Fe}^{+2}$ في نهاية التفاعل، وبالتالى يمكنها أن تحفّز المزيد من التفاعلات .

ويدهشك الله بما تمنيته وحسبته مستحيلاً حتما هناك شيئا من نصيبك اياك واليأس

تدريبات الدرس الأول

 $^{\text{Cu}^{2+}}$ ، Fe $^{3+}$). اكتب التوزيع الإلكتروني لأيونات الفلزات الآتية ($^{\text{Cu}^{2+}}$ ، Fe $^{3+}$).

التوزيع الإلكتروني	أيون الفلز الانتقالي
	Fe ³⁺
	Cu ²⁺

أكمل الجدول (3-1) بكتابة التوزيع الإلكتروني للفلز الإنتقالي و ايون الفلز الإنتقالي.

التوزيع الإلكتروني	الفلز الإنتقالي او ايونه
	Sc3+
2025	Cr 4

الجدول (3-1)

ب عدم إعتبار العنصرين السكانديوم والخارصين من العناصر الإنتقالية؟

التوزيع الإلكتروني:	ة ويمتلك	اصر الانتقالي	الأول من العا	في الصف	(Mn)	المنجنيز	يقع	_
---------------------	----------	---------------	---------------	---------	------	----------	-----	---

 $.[Ar] 4s^2 3d^5$

فسر سبب امتلاك المنجنيز (Mn) لحالات تأكسد متعددة.	متعددة.	تأكسد	لحالات	(Mn)	المنحنيز	امتلاك	سىب	فئہ	
---	---------	-------	--------	------	----------	--------	-----	-----	--

ب. تنبأ بأعلى حالة تأكسد مستقرة للمنجنيز (Mn).

[1] _____

اشرح إجابتك.

ما المقصود ب الفلز الإنتقالي .

ه اكملي الجدول التالي :

المعدن	الذرة	المتكونة	الأيونات	هل المعدن انتقالي ؟
Sc	Sc [Ar]	Sc3+ [Ar]		6
Cu	Cu [Ar]	Cu* [Ar]	Cu ²⁺ [Ar]	
Zn	Zn [Ar]	Zn ²⁺ [Ar]		(46)

٦ أكملي الجدول التالي :

	العنصر الإنتقالي	أدنى حالة تأكسد	أعلى حالة تأكسد
1	Ti		
2	٧		
3	Cr		
4	Mn		
5	Fe		

أكمل الجدول الآتي حول بعض الأيونات المعقدة.

عدد التأكسد	الفلز وأيون الفلز	الأيون المعقد
		[Fe(CN) ₆] ⁴⁻
		[Ag(NH ₃) ₂]*
		[Cr(H ₂ O) ₄ Cl ₂] ⁺
		[CrO ₃ Cl] ⁻
		[Co(NH ₃) ₄ Cl ₂] ⁺

أحسب حالة تأكسد أيون الفلز الإنتقالي في المعقدات التالية :

Pt(NH₃)₂Cl₂ /a

[Mn(CN)₆]³⁻ /b

[Co(H₂O)₆]²⁺ / c.

[Cr(Ox)₃]-3 / d

أي مما يلي يوضح حالات الأكسدة الصحيحة للكروم في الأيونات المعطاة :

[Cr(OH) ₆] ³⁻	CrO ₄ ²⁻	$[Cr(H_2O)_6]^{2+}$		
-3	-2	+2		Α
-3	+10	+2		В
+3	+8	+6		c
+3	+6	+2	E3	D

10 في أي الأيونات التالية تكون حالة تأكسد الفلز الإنتقالي +2:

- MnO₄²⁻ 🛛 A
 - VO²⁺ □ B
- [Fe(CN)₆]⁴⁻
 C

: يتمتع الكروم بالتوزيع الإلكتروني التالي $3d^5 \left[Ar \right] 4s^1$ ، في أي من المركبات التالية غير محتمل وجوده

- K₃CrO₄ A
- CrO,CI, B
- KCrO,CI C
 - KCrO₄ ☑ D

للاشتراك في منصة الراقي فقط 15 يالي أول حصة مجانيه للتاكد من تميز المعلم

> العدد محدود شرح كامل للمنهج حصص مباشره تدريب على حل الأسئلة جميع الكتب

مراجعات دوريه للاختبارات القصيره الحصول على نسخة هديه مجانية الكترونيه من كتاب مندليف

للتواصل: واتس

