شكراً لتحميلك هذا الملف من موقع المناهج العمانية

ملخص شرح الخصائص الفيزيائية والكيميائية للعناصر الانتقالية

موقع المناهج ← المناهج العمانية ← الصف الثاني عشر ← كيمياء ← الفصل الثاني ← الملف

تاريخ نشر الملف على موقع المناهج: 22-02-2024 05:28:36 ا اسم المدرس: مصطفى علي

التواصل الاجتماعي بحسب الصف الثاني عشر

روابط مواد الصف الثاني عشر على تلغرام

التربية الاسلامية اللغة العربية اللغة الانجليزية الانجليزية الرياضيات

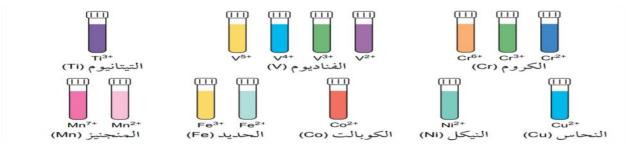
المزيد من الملفات بحسب الصف الثاني عشر والمادة كيمياء في الفصل الثاني			
ملخص ثاني لدرس العناصر الانتقالية	1		
ملخص شرح درس العناصر الانتقالية	2		
كراسة مسار في الوحدة الخامسة العناصر الانتقالية منهج كامبريدج	3		
أسئلة المادة مترجمة من كامبريدج	4		
ملخص شرح درس الليجندات وتكوين المعقدات	5		

الأستاذ /مصطفى على كيمياء صف ثانى عشر الفصل الدراسي الثاني 2023 2024

الخصائص الفيزيائية و الكيميائية للعناصر الانتقالية

الخصائص الفيزيائية للعناصر الانتقالية هي :-

3-موصلة جيدة للحررة و الكهرباء.


1-درجة انصهارها مرتفعة.

4-صلدة و قاسية و لذا تكون مفيدة للاستخدام كمواد للبناء و الانشاءات.

الخصائص الكيميائية للعناصر الانتقالية:-

1-تكون ايونات ملونة.

مثال الشكل التالى يوضح الوان المحاليل المائية لايونات بعض الفلزات الانتقالية.

2-تمتلك حالات تاكسد متعددة

العناصر الانتقالية جميعها فلزات تميل ذراتها الى <mark>فقدان الكترونات</mark> لتكون ايونات ذات شحنة <mark>موجبة</mark> ، كما يمكن لكل فلز انتقالي ان يكون اكثر من ايون موجب واحد لهذا يمكن القول ان الفلزات الانتقالية تمتلك <mark>حالات تأكسد متعددة.</mark>

حالات التأكسد الأكثر شيوعًا	العنصر
+4 ،+3	التيتانيوم (Ti)
+5 ،+4 ،+2	الفناديوم (V)
+6 ،+3	الكروم (Cr)
+7 ،+6 ،+4 .+2	المنجنيز (Mn)
+3 ،+2	الحديد (Fe)
+3 ،+2	الكوبالت (Co)
+2	النيكل (Ni)
+2 ،+1	النحاس (Cu)

و تكون الايونات الناتجة في الغالب ذات الوان مختلفة:-

مثال الوان محاليل ايونات الفناديوم في حالات تأكسد فلز الفناديوم المختلفة

اذكر السبب/ وجود حالات تأكسد متعددة للعناصر الانتقالية؟

بسبب التقارب في طاقات الافلاك الذرية 45,3d

ملاحظات هامة

1-عندما تكون العناصر الانتقالية ايونات ، تفقد ذراتها الالكترونات من الفلك 45 أولا ثم يليها فقدان

الالكترونات من الافلاك 3d

2- حالة التأكسد الأكثر شيوعا هي 2+ ، و هي تتكون عادة عندما تفقد ذرة عنصر انتقالي ما الكترونيها

الموجودين في الفلك الذرى 45

اذكر السبب / عند نهاية الدورة الرابعة بداية من عنصر الحديد حتى النحاس تصبح حالة التأكسد 2+

هي الأكثر شيوعا؟

لانه تزداد صعوبة إزالة الالكترونات من الافلاك الذرية 3d مع ازدياد الشحنة النووية من اليسار الى اليمين

عبر الدورة.

3- توجد اعلى حالة تأكسد للعناصر الانتقالية في الايونات المعقدة او في المركبات التي تتكون مع الاكسجين او الفلور.

اذكر السبب/ توجد اعلى حالة تأكسد للعناصر الانتقالية في المركبات التي تتكون مع الاكسجين او الفلور؟

لان هذين العنصرين يمتلكان السالبية الكهربائية الاعلي و حجمهما الذري صغير.

4-من الأمثلة الشائعة على المركبات التي تمتلك اعلى حالة تأكسد للعناصر الانتقالية:-

ايون الكرومات CrO₄-2 و ايون المنجانات MnO₄-

3-تعمل كعوامل حفازة

اذكر بعض العناصر الانتقالية التي تستخدم كعوامل حفازة مع ذكر استخدامتها؟

1-الحديد في عملية هابر لتصنيع الامونيا.

2-اكسد الفناديوم الخماسي في عملية التلامس لتصنيع حمض الكبريتيك.

3-البلاتين او النيكل في عملية هدرجة الالكينات لانتاج الالكانات.

4-البلاتين و البالاديوم و الروديوم في المحولات المحفزة.

اذكر السبب/ تسلك العناصر الانتقالية كعوامل حفازة؟

بسبب امتلاكها لحالات تأكسد متعددة.

	ti	*	
,	N	4	A

تفاعل ايونات فوق الكبريتات (-S2O₈2) و ايونات اليوديد (١٠) الذي يتم وفق المعالة الكلية :-

$$S_2O_8^{2-}(aq) + 2I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_2(aq)$$

و علي الرغم من ان ايونات فوق الكبريتات تعد عوامل مؤكسدة قوية و ايونات اليوديد تعد عوامل مختزلة قوية الا ان التفاعل بطئ جدا و تؤدي إضافة ايونات الحديد الثنائي او الثلاثي الي تحفيز التفاعل و زيادة معدل سرعته حيث ان كلا من ايونات الحديد الثنائي و ايونات الحديد الثنائي تعد مستقرة.

و يحدث التفاعل على مرحلتين:-

المرحلة الاولى:-

$$S_2O_8^{2-}(aq) + 2Fe^{2+}(aq) \rightarrow 2SO_4^{2-}(aq) + 2Fe^{3+}(aq)$$

المرحلة الثانية:-

$$2I^{-}(aq) + 2Fe^{3+}(aq) \longrightarrow I_{2}(aq) + 2Fe^{2+}(aq)$$

حيث تتم إعادة انتاج ايونات Fe+2 في نهاية التفاعل و بالتالي يمكنها ان تحفز المزيد من التفاعلات.

4-تكون ايونات معقدة