

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/qa

* للحصول على أوراق عمل لجميع مواد المستوى الثاني عشر العلمي اضغط هنا

https://almanahj.com/qa/17

* للحصول على جميع أوراق المستوى الثاني عشر العلمي في مادة رياضيات ولجميع الفصول, اضغط هنا

https://almanahj.com/qa/17math

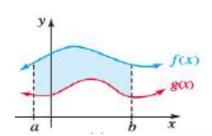
* للحصول على أوراق عمل لجميع مواد المستوى الثاني عشر العلمي في مادة رياضيات الخاصة بـ الفصل الثاني اضغط هنا

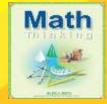
https://almanahj.com/qa/17math2

* لتحميل كتب جميع المواد في جميع الفصول للـ المستوى الثاني عشر العلمي اضغط هنا

https://almanahj.com/qa/grade17

للتحدث إلى بوت المناهج القطرية على تلغرام: اضغط هنا


https://t.me/qacourse_bot


مراجعة نهائية رياضيات

ثاني عشر – علي

الفصل الدراسي الثاني

2022

الأسئلة الموضوعية

$$\int \frac{2}{\sqrt[3]{x}} dx$$

$$3x^{\frac{3}{2}} + c$$

$$3x^{-\frac{1}{3}} + c$$

$$2x^{\frac{-1}{3}} + c$$

$$2x^{\frac{2}{3}} + c$$

$$3x^{\frac{2}{3}} + c$$

$$\int (e^{5x} + \cos(\pi)) dx$$
 أوجد التكامل

$$e^{5x} + \sin \pi + c$$

$$5e^{4x} - \sin \pi + c$$

$$\frac{1}{5}e^{5x} + x\cos \pi + c$$

$$5e^{5x} + -\cos \pi + c$$

$$\int \frac{\sqrt[3]{x}}{x} dx$$

$$3x^{\frac{2}{3}} + c$$

$$3x^{\frac{1}{3}} + c$$

$$\frac{1}{3}x^{\frac{2}{3}} + c$$

$$-3x^{\frac{-1}{3}} + c$$

 $f(x) = 5 e^{5x}$ أي من الدوال الثلاثة المذكورة أدناه هي دالة أصلية للدالة: 4

i. 25 e^{5x}

ii . e^{5x}

iii . $e^{5x} + 7$

i فقط

فقط ii

 $\int (x^e + e^x + e^e) dx$ أوجد 5

 $-x^{e-1}+e^{x-1}+c$

 $x^{e^2}+2e^x+c$

 $\frac{x^{e+1}}{x+1} + e^x + e^e x + c$

 $\frac{x^{e+1}}{a+1} + \frac{e^{x+1}}{x+1} + e^{e} + c$

A, B $\frac{2-x}{x(1-2x)} = \frac{A}{x} + \frac{B}{1-2x}$ | 6

A=2 , B=3

A = -2 , B = 3

A=2 , B=-3

A = -2 , B = -3

x=3 والمحور x من x=2 أي مما يلي يمثل المساحة الواقعة بين $f(x)=rac{-3}{x}$: إلى

 $\frac{-3}{x^2}\Big|_2^3$

 $\frac{3}{r^2}\Big|_2^3$

 $\frac{-3}{x}\Big|_2^3$

 $\frac{3}{x} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

 $\int_{1}^{3} xf'(x) dx$ أوجد قيمة التكامل المحدود

- 10
- 11
- 17

$$f(x) = \begin{cases} 2x - 1, & x \ge 1 \\ x^2, & x < 1 \end{cases}$$
 حيث $\int_0^2 f(x) dx$

- 2.33
- 3.33

الفصل علمت أن
$$\frac{dy}{dx} = 2y(1+x)^2$$
 معادلة تفاضلية قابلة للفصل إذا علمت أن

10

فأي مما يلى يمثل الحل العام للمعادلة؟

$$\ln\left|y\right| = \frac{3}{2}(1+x)^2 + c \quad \Box$$

$$\ln\left|y\right| = \frac{2}{3}(1+x)^3 + c \quad \boxed{}$$

$$\ln |y| = \frac{1}{3}(2+2x)^3 + c$$

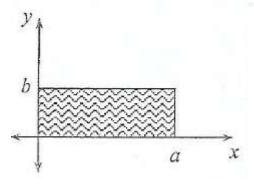
$$\ln\left|y\right| = \frac{3}{2}\left(1+x\right)^3 + c \qquad \boxed{}$$

$$\int_{-1}^{3} \frac{3x+1}{x^2+x} \ dx$$

$$\int_{-1}^{3} \frac{3x+1}{x^2+x} dx$$
 فما هو تكامل: $\frac{1}{x} + \frac{2}{x+1} = \frac{3x+1}{x^2+x}$ إذا كانت:

$$[\ln |x^2 + x|]_{-1}^3$$

$$\left[\frac{1}{2}ln\left|x^2+x\right|\right]_{-1}^3$$


$$\left[\ln |x| + \frac{1}{2} \ln |x+1| \right]_{-1}^{3}$$

$$[ln|x| + 2ln|x + 1|]_{-1}^{3}$$

$$\int_{0}^{\infty} \frac{dx}{x - \sqrt{x}}$$
 أوجد قيمة

- In2
- In3
- 2ln2
- 3ln2

ما حجم الجسم الناتج عن دوران المنطقة المظللة حول محور x ؟

- πab
- $\pi a^2 b$
- $\pi a b^2$
- $\pi a^2 b^2$

يصنع المتجة v مع محور x الموجب زاوية قدرها 300 ، فما هو المتجة v ؟

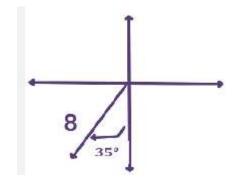
 $v = \langle 1, \sqrt{3} \rangle$

$$v = \langle -1, \sqrt{3} \rangle$$

$$v = \langle 1, -\sqrt{3} \rangle$$

$$v = \langle -1, -\sqrt{3} \rangle$$

أي زوج من أزواج المتجهات التالية متجهان متوازيان ؟


 $v = 2i - j \qquad , \quad u = 4i + 3j \qquad \square$

$$v = 2i - 3j$$
 , $u = 4i - 6j$

$$v=2i-j$$
 , $u=i-2j$

$$v=i-3j$$
 , $u=i+3j$

أوجد مركبات المتجه الممثل بالشكل البياني التالي؟

$$v = \langle 8\cos 35^o, 8\sin 35^o \rangle$$

$$v = \langle 8sin35^o, 8cos35^o \rangle$$

$$v = \langle 8\cos 235^o, 8\sin 235^o \rangle$$

$$v = \langle 8sin235^o, 8cos235^o \rangle$$

y و محور v=4i-2j+4k و محور v=4i-2j+4k

$$D(3x-1,9)$$
 , $C(3,2y)$, $B(3,-7)$, $A(-2,0)$ إذا كانت $\overrightarrow{AB}=\overrightarrow{CD}$ ، فما قيمة كلاً من (x,y) ، فما قيمة كلاً من (x,y)

$$x = 3$$
 , $y = 8$

$$x = 8$$
 , $y = 3$

$$x=2$$
 , $y=1$

$$x=-2$$
 , $y=-8$

$$q=2i-j$$
 , $p=i+3j$

$$q = i - 2j$$
 , $p = 2i + j$

$$q=2i-j$$
 , $p=i-3j$

$$q=2i-3j$$
 , $p=i+3j$

$$(\sqrt{-4}+i)(6-5i)$$
 أوجد ناتج

$$15 + 18i$$

$$18 - 15i$$

$$18 + 15i$$

. $z = 16(\cos(-60) + i\sin(-60))$ أوجد سعة العدد المركب

وجد الصورة القطبية لناتج ضرب العددين الممثلين في الشكل البياني أدناة .

$$2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

$$5\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$$

$$10\left(\cos\frac{7\pi}{9}+i\sin\frac{7\pi}{9}\right)$$

$$10\left(\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2}\right) \quad \Box$$

 $z = 2 - 2\sqrt{3}$ i أوجد الصورة القطبية للعدد المركب

$$z = 4\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right) \qquad \Box$$

$$z = 4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \qquad \Box$$

$$z = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \qquad \Box$$

$$Z = 4\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \qquad \Box$$

$$(\frac{\sqrt{3}}{2} + \frac{1}{2}i)^8$$
 أي الخيارات التالية يمثل قيمة أي الخيارات التالية أي الخيارات التالية إلى الخيارات التالية أي التالية

$$\frac{-1}{2} - \frac{\sqrt{3}}{2}i \quad \square$$

$$\frac{-1}{2} + \frac{\sqrt{3}}{2}i \quad \square$$

$$\frac{1}{2} - \frac{\sqrt{3}}{2}i \quad \square$$

$$\frac{1}{2} + \frac{\sqrt{3}}{2}i \quad \square$$

$$\frac{1}{2+i}$$
 أوجد ثاتع $\frac{2}{5} - \frac{1}{5}i$ $\frac{2}{5} + \frac{1}{5}i$ $\frac{2}{5} - i$ $\frac{2}{5} - i$ $\frac{1}{5}i$ $\frac{1}{5}i$ $\frac{1}{5}i$

الوحدة الرابعة - التكامل الغير محدود

1

 $p'=x\ (50x^2+30x)$ الصيغة التالية الربح الحدي بالريالات ، لمحل بيع اجبان x المحل المحل لحيث x كمية الجبن المبيعة بمئات الكيلو جرامات إذا علمت ان مقدار " ربح" المحل عندما لا يبيع أي كمية هو x=0

2) اوجد الربح عندما يبيع 200 كيلو جرام من الجبن.

1) أوجد دالة الربح

f(1) = 2 و $3x^2 + x$ المماس والمائة أوجد الدالة f(x)

$$f(0) = 3$$
 حيث $\frac{dy}{dx} = 4e^{2x} + 3x^2$ عيل المماس لها هو $y = f(x)$ حيث

$$f'(2)$$
 أوجد $f(x) = \int (x^2 - 5x + 1) dx$ إذا كان

$$f''(3)$$
 فأوجد (3) أفايت $f(x) = \int (3x^2 - 7x + 1) dx$

$$a$$
 أوجد $f(1) = -1$ وكان $\int f(x) dx = 3x^2 - 6ax + 5$

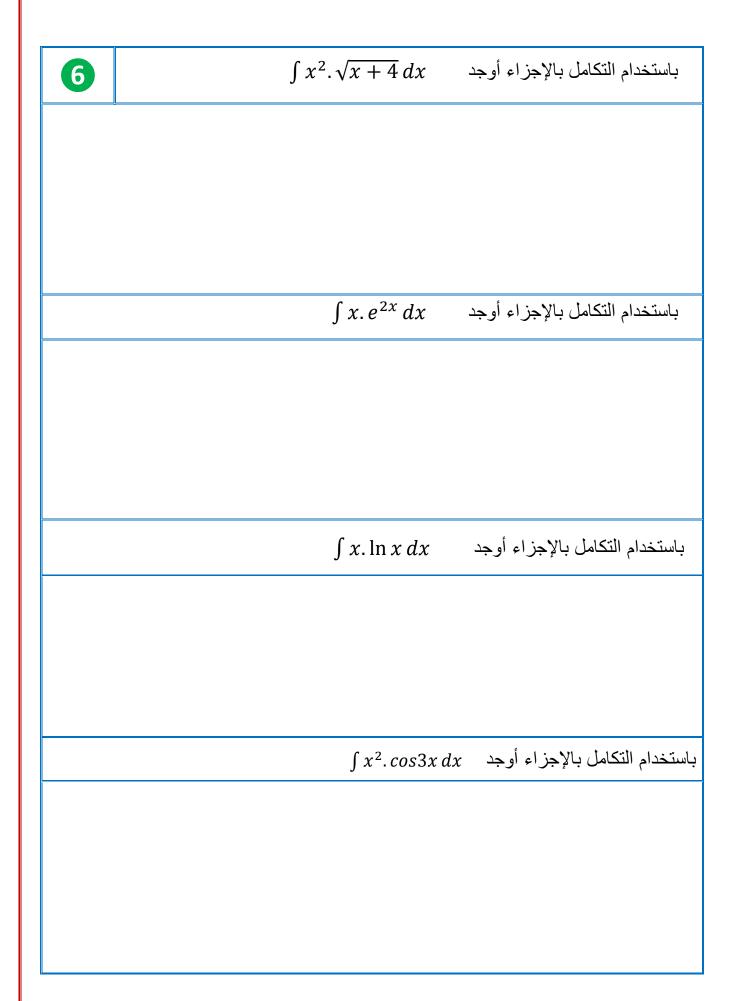
$$f(3)$$
 أوجد $\int f(x) dx = x^3 - 3x^2 + x$

$$\int (x^3 + \frac{3}{x+1} + e^{2x-1}) dx$$

أوجد التكامل المحدود

$$\int (e^{-2x+1} + \frac{4}{2x-1} - \sin 2x) dx$$

$$\int (1 - 2\cos 3x) \sin 3x \, dx$$


أوجد التكامل الغير محدود

$$\int \frac{3x^2 + 6x}{x^3 + 5x^2 + 6x} dx$$

أوجد بالتعويض التكامل $\int x^2 \sqrt{x^3 + 1} dx$

$$\int \frac{2x-3}{x^2-3x} \, dx$$

$\int \sin^2 x \cos x dx$	$\int x^2 e^{x^3} dx$

$$\int \frac{x-13}{2x^2-7x+3} dx$$
 التكامل بالكسور الجزئية أوجد التكامل بالكسور الجزئية

$$\int \frac{x+1}{x^2+5x+6} dx$$
 باستخدام طريقة الكسور الجزئية أوجد التكامل

$$\int \frac{3x-1}{x^2+4x+4} dx$$
 استخدام طريقة الكسور الجزئية لإيجادالتكامل

$$\int \frac{1}{x^2} \sin \frac{1}{x} dx$$

أوجد التكامل

$$\int \frac{\sin\sqrt{x}}{2\sqrt{x}} dx$$

أوجد التكامل

$$f(1) = 5$$
 کیت $f'(x) = x^3 \cdot \ln x$ افرجد $f'(x) = x^3 \cdot \ln x$

$$f'(x) = x^3$$

$$\int \left(e^{3x}-1\right)^2 e^{3x} dx$$

أوجد التكامل

الوحدة الخامسة - التكامل المحدود وتطبيقاته

$$\int_1^{64} \frac{\sqrt{x} - 2}{\sqrt[3]{x}} \ dx$$

أوجد قيمة التكامل

$$\int_1^4 \frac{-3}{(3\,x+1)^2} \, dx$$

أوجد قيمة التكامل

$$\int_0^3 x^2 (4x^3 + 2)^3$$

أوجد قيمة التكامل

$$\int_{1}^{9} \ln 3x \ dx$$

أوجد قيمة التكامل

$$\int_1^7 (x+1) dx$$
 فأوجد ، $\int_7^3 (2x+2) dx = -12$ ، $\int_1^3 (x+1) dx = 7$ فأوجد

$$\int_{2}^{-3} (2g(x) + 5) dx$$
 فأوجد $\int_{-3}^{2} 3g(x) dx = 6$ إذا كان

$$\int_{3}^{1} (4f(x) + 2x + 5) dx$$
 الأدا كان $\int_{3}^{3} f(x) dx = 5$ فأوجد

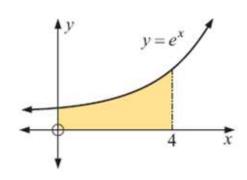
$$\int_3^5 (\,2f(x)+\,1\,)dx\,$$
 فأوجد $\int_1^5 f(x)dx=-2$ ، $\int_1^3 f(x)dx=8$

أوجد المساحة المحصورة بين منحنى الدالة x^2-4 ومحور السينات x=4 والمستقيمين x=4 والمستقيمين والمستقيمين والمستقيمين الدالة x=4

أوجد المساحة المحصورة بين منحنى الدالة $f(x) = x^2 - 16$ ومحور السينات

أوجد المساحة المحصورة بين منحنى الدالة $x^2-3x=x^2-3x$ ومحور السينات والمستقيمين x=3 إلى x=1

$$y=rac{1}{x-1}$$
 $y=rac{x-1}{4}$ أوجد مساحة المنطقة المحصورة بين المنحنيين الدالة $x=4$, $x=2$ ومحور السينات والمستقيمين


 $g(x) = -x^2 + 1$ f(x) = 2x + 4 أوجد مساحة المنطقة المحصورة بين المنحنيين x = -1 , x = 2 ومحور السينات والمستقيمين

$$y=x+1$$
, $y=x^2-2x+1$ dependent in $y=x+1$

أوجد حجم الجسم الناتج من دوران المنطقة المحصورة بين المنحنى

$$x=2$$
 ، $x=-1$ والمستقيمين $y=-\frac{2}{\sqrt{x-2}}$. دورة كاملة حول محور

أوجد الحجم الناتج عن دوران المنطقة المظللة حول محور χ دورة كاملة

у ومحور $y=\frac{1}{2x}$ الدالة $y=\frac{1}{2x}$ ومحور $y=\frac{1}{2x}$ ومحور $y=\frac{1}{2x}$ ومحور $y=\frac{1}{2x}$ ومحور $y=\frac{1}{2x}$ والمستقيم $y=\frac{1}{2x}$ دورة كاملة حول محور السينات.

يتحرك جسيم بحيث كانت سرعته v(t) = 12t - 8 مرث أوجد دالة المسافة حيث أن S(2) = 11

يتحرك جسم بعجلة حسب العلاقة المعطاة : $a(t) = 3t^2$ أوجد موضعه وسرعته عند أي لحظة إذا علمت أن سرعته الابتدائية 20 سم / ث و المسافة الابتدائية 5 سم.

جسيم يتحرك في خط مستقيم من نقطة الأصل بعجلة m/s^2 فإذا كانت سرعته من بداية الحركة 6 m/s أوجد المسافة التي يقطعها الجسم خلال 4 ثواني من بداية الحركة

	B
T.	D)

$$\frac{dy}{dx} = \frac{x^2 + 1}{xy^2}$$
 أوجد الحل العام للمعادلة التفاضلية

$$x \ y' = 2y$$
 أوجد الحل العام للمعادلة التفاضلية

$$y \frac{dy}{dx} = x^2$$
 أوجد الحل العام للمعادلة التفاضلية

$$y=1$$
 , $x=1$ $\frac{dy}{dx}=(xy)^2$ أوجد الحل الخاص للمعادلة التفاضلية

	6
V.	U,

$$\int_0^1 x\sqrt{4x^2 + 8} \ dx$$

 $\int_0^1 x\sqrt{4x^2+8} \ dx$ أوجد قيمة التكامل التالي باستخدام التعويض

$$\int_0^1 (x-1)e^x \, dx$$

أوجد قيمة التكامل التالي بالأجزاء

$$\int\limits_{0}^{1}\frac{x^{2}-x}{\sqrt{x}-1}\;dx$$

الوحدة السادسة - المتجهات

B=(2,5) ونقطة نهايته A الذي نقطة بدايته A الذي نقطة بدايته A الذي الفتح

 ${
m B}$ إذا كانت ${
m A}$ هي النقطة (1,2) ، وكان ${
m AB}$ يمثل <-2,4> أوجد إحداثي

18

v وقياس زاوية اتجاهه ، ثم أوجد مركبتي المتجه $ec{v}=<3.4>$

أوجد قياس الزاوية التي يصنعها المتجه $a=\langle -5, -2 \rangle$ مع الاتجاه الموجب للمحور x

v وقياس زاوية اتجاهه ، ثم أوجد مركبتي المتجه $\vec{v} = < -3.3 > 0$

v = i - 2j + 3k أوجد متجهًا مقداره 6 وله نفس اتجاه المتجه

v انجاه عكس اتجاه $v=\langle -2,5\rangle$ الديك المتجه $v=\langle -2,5\rangle$

20

إذا علمت أن : $\overrightarrow{b}=\langle 3,0\rangle$ و $\overrightarrow{a}=\langle 1,3\rangle$: فأوجد

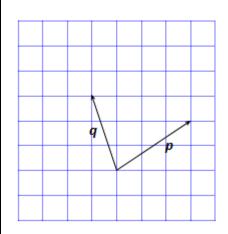
1) \overrightarrow{a} + 2 \overrightarrow{b}

 $2)|\vec{b}|$

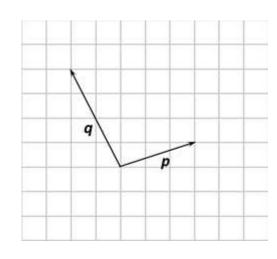
 $3)\hat{\vec{a}}$

أو حد ما بلي	$\mathbf{w} = \langle 0 \ 3 \rangle$	$\mathbf{v},\mathbf{v}=\langle2,\mathbf{-1}\rangle$,	$r = \langle 1 - 2 \rangle$	اذا کان
روجت حد پني	$\mathbf{w} - \langle \mathbf{o}, \mathbf{o} \rangle$	/ , v — \4 , — I / ,	I — \I, —2/	ہِـر کا

- 1) 3v w
- 2)2r + w
- $3) |\nu|^2$
- 4) $\frac{r}{|r|}$

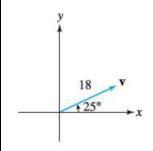

$$v=\langle 4,-2,0\rangle$$
 , $u=3i+5j-k$ إذا كان

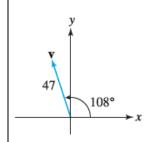
- i) **u** 2 v
- ii) |u-2v|
- iii) $oldsymbol{u}$. $oldsymbol{v}$
- iv) 4|u| وطوله يساوي r وطوله يساوي أوجد المتجه المتجه عكس إتجاه المتجه


21	m ^z	= b أو جد قيماً	= (3 , 2) a =	————————————————————————————————————	إذا علم
متعامدان			<u> </u>	هان a , b متكافئان	
⟨2 <i>n</i> -	$-4, m-3\rangle = \langle 2$	إذا كان (4,4	$\langle 4, 3n + 2 \rangle$	$2, m-2 \rangle = \langle r, 0 \rangle$,5 >
n,mā	أوجد قيم		m, n	، فأوجد قيمة كل من r	
		0.5 11.5	2 1211		
	,	بين حيث a ∥ b وكاز	إذا كان a , b متجه		
$b = \langle 2r \rangle$	$a, 3m, 4$ $a = \langle 8$, -6 , $2 angle$	$b = \langle -$	$6,8\rangle \cdot a = \langle n, -4 \rangle$	>
تعامدان	$\langle 4,t \rangle, \langle -2,1 \rangle$	 إذا كان المتجهان	$u = 15^{\circ}$	المتجهان $\langle k \rangle$ $\mathbf{v} = \langle 2 + \mathbf{k}, 3 \rangle$	• ,
		t أوجد قيمة	u — (3,2	ر , ۸ / ۷ – (۲ + ۸ , ۶) ن أوجد قيمة k	•

 $\vec{v} = i + 2j - 3k$ و $\vec{u} = 2i - j + 3k$ **22** أحسب: الزاوية المحصورة بين المتجهين u و v $v = \langle 2,3 \rangle$, $s = \langle 4,1 \rangle$ اوجد قیاس الزاویة بین المتجهین اوجد كلاً مما يأتي: v=<2 ,0, -1>، u=3i+2j-4k إذا كان 1) u . v 2) |u|3) |*v*| 4) $\cos \theta$

الشكل الموضح يمثل المتجهين \overrightarrow{p} و \overrightarrow{p}




- $\vec{q}_+ \vec{p}$ أوجد (1
- 2) أوجد ناتج $\overrightarrow{q} + \overrightarrow{p}$ جبرياً
- $\overrightarrow{q}_{+}\overrightarrow{p}$ على الشبكة البيانية ، ارسم المتجه (3

- اكتب $\overset{
 ightarrow}{oldsymbol{
 ho}}$ بدلالة متجهي الوحدة
 - 2) أوجد ناتج $\overrightarrow{\boldsymbol{p}}_{-}$ جبرياً
- \overrightarrow{q} \overrightarrow{p} على الشبكة البيانية ، ارسم المتجه

أوجد مركبتي المتجه V حل جبرياً وأوجد القيم الدقيقة باستعمال الحاسبة

الوحدة السابعة - الأعداد المركبة

 $\mathbf{a} + \mathbf{i}$ اذا كان $\mathbf{a} + \mathbf{i}$ وجد ناتج ما يلي في صورة $\mathbf{z}_2 = 3 - 4i$, $\mathbf{z}_1 = 1 + 2i$

$$z_1 + 2z_2 =$$
 $z_1 - \overline{z_2} =$

$$\overline{z_1}.z_2 = \frac{z_1}{z_2}$$

$$|z_1^{-1}| =$$

a + ib أوجد ناتج ما يلي في صورة $z_2 = 2 + 5i$, $z_1 = 3 - 4i$ إذا كان

$$\overline{z_1}.\overline{z_2} = \overline{z_1 - z_2}$$

$$\frac{z_1}{z_2}^{-1}$$

24	3i - 5x =	$1 + y^2 i - i$: x, y أوجد قيمة كل من
(2	+ i)(3 - 2i) = x + yi	4 - 5i = 3x - 5 + (y + 3)i
6	+3i(1-2i) = x + yi	(x+6i) = (3-i) + (4-2yi)
25	ة في صورة a + ib	حل المعادلة المعطاه في مجموعة الأعداد المركب
	$z = 3 + \frac{2i}{2 - 3i}$	$(2-3i) \times z + (1+2i) = 4-5i$
	(4-i)z = 3 + 2i	$\frac{z}{4-i} = 3 + 2i$

a + ib في صورة في مجموعة الأعداد المركبة في صورة

$$9x^2 + 4 = 0$$

$$(x+4)^2 + 36 = 0$$

$$x^2 - 3x + 5 = 0$$

$$x^2 + 2x + 6 = 0$$

$$2x^2 + 2x + 5 = 0$$

27	أوجد المقياس والسعة لكل مما يأتي ثم اكتبه في الصورة القطبية		
	$Z = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$	Z = 3i	
	Z = 2 - 2i	Z = -2	
28		a + ib اكتب العدد المركب من الصورة القياسية	
Z=2(a)	$\cos\frac{\pi}{4} + \sin\frac{\pi}{4}i)$	$Z = \sqrt{2}(\cos 225 + \sin 225 i)$	
$Z = 4(\alpha)$	$\cos \pi + \sin \pi i$	$Z = 6(\cos 150 + \sin 150 i)$	

$$Z_1 = 4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$Z_2 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

a + ib في الصورة Z_1, Z_2 أوجد ناتج

 $\frac{Z_1}{z_2}$ في الصورة $\frac{Z_1}{z_2}$

 $rac{\mathbf{a}+\mathbf{ib}}{\mathbf{b}}$ باستخدام نظریة دي موافر ضع $Z_1^{\ 4}$ في الصورة

أوجد الجذور التكعيبية للعدد المركب

 $Z_1 = 6(\cos 30^{\circ} + \sin 30^{\circ} i)$ $Z_2 = 2(\cos 120^{\circ} + \sin 120^{\circ} i)$ **30** a + ib في الصورة Z_1, Z_2 $\frac{Z_1}{Z_2}$ في الصورة $\frac{Z_1}{Z_2}$ $rac{\mathbf{a}+\mathbf{ib}}{\mathbf{b}}$ باستخدام نظرية دي موافر ضع $Z_1^{\ 3}$ في الصورة أوجد الجذور الرباعية للعدد المركب