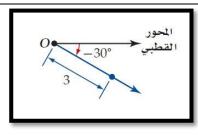
تم تحميل هذا الملف من موقع المناهج السعودية

الملف اختبار دوري الإحداثيات القطبية

موقع المناهج ← المناهج السعودية ← الثالث الثانوي ← رياضيات ← الفصل الثالث


المزيد من الملفات بحسب الثالث الثانوي والمادة رياضيات في الفصل الثالث				
نموذج إجابة بنك الأسئلة	1			
بنك أسئلة شامل لمواضيع المقرر	2			

الاختبار الدوري (٢) الإحداثيات القطبية رياضيات ٦

اسم الطالبة :

السؤال الأول: اختاري الاجابة الصحيحة فيما يلى:

الشكل المقابل يمثل نقطة في نظام الاحداثيات القطبية هي

 $(0, -30^{\circ})$

 $(0,30^{\circ})$

 $(3, -30^{\circ})$

 $(3,30^{\circ})$

موقع المناهج السعود

في الشكل المقابل النقطة T في المستوى القطبي هي

 $(4,135^{\circ})$

 $(0,135^{\circ})$

 $(4, -135^{\circ})$

 $(3,135^{\circ})$

المعادلة القطبية r=4 تمثيلها البياني عبارة عن دائرة طول قطرها

D

 $heta=rac{\pi}{6}$ ما الصورة الديكارتية للمعادلة $y=\sqrt{3}$ x

 $x^2 + y^2 = 3\sin\theta$

 $y = \frac{\sqrt{3}}{3}x$

٤

يقوم مراقب حركة الطيران بمراقبة طائرتين على الارتفاع نفسه إذا كانت احداثيات الطائرتين هي (°6,345) ،

(5,310°) فما المسافة التقريبية بينهما؟

3.71mi

3.44*mi*

3.25*mi*

 $z=7\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$ سعه المركب

120°

D

90°

C

60°

أحد الصور القطبية للنقطة (8,10) هي

(-12.8, -0.90)

(12.8, 4.04)D

(12.8, 0.90)

r = 3

B (-12.8, 0.90)

٧

الصورة القطبية للمعادلة $x^2+y^2=9$ هي

 $\theta = 3$

 $\theta = 9$ D

C

r = 9

القيمة المطلقة للعدد المركب $5+2i$ تساوي $\sqrt{5}$ D $\sqrt{7}$ C $\sqrt{21}$ B $\sqrt{29}$ A $\sqrt{5}$ D $\sqrt{7}$ C $\sqrt{21}$ B $\sqrt{29}$ A $\sqrt{5}$ D $\sqrt{7}$ C $\sqrt{21}$ B $\sqrt{29}$ A $\sqrt{5}$ L $\sqrt{29}$ A $\sqrt{60}$ A $\sqrt{3}$ L $\sqrt{60}$ A $\sqrt{3}$ L $\sqrt{60}$ A $\sqrt{3}$ L $\sqrt{60}$ B $\sqrt{29}$ A $\sqrt{3}$ D $\sqrt{60}$ A $\sqrt{60}$ B $\sqrt{60}$ A $\sqrt{60}$ B $\sqrt{60}$ A $\sqrt{60}$ B $\sqrt{60}$ A $\sqrt{60}$ A $\sqrt{60}$ B $\sqrt{60}$ A $\sqrt{60}$ A $\sqrt{60}$ B $\sqrt{60}$ A $\sqrt{60}$ B $\sqrt{60}$ A $\sqrt{60}$ B $\sqrt{60}$ A $\sqrt{60}$ B $\sqrt{60}$							
$4\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right)$ هي $4\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right)$ هي $2-8\sqrt{3}i$ هي $2-2\sqrt{3}i$ هي $2-2\sqrt{3}i$ هي $2-4\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$ إذا كان $2-4\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$ عان الاعدد واحد فإن مقياس الجذر الثالث يساوي			2 + 5 تساوي	i المطلقة للعدد المركب	القيمة المقيمة		
$8-8\sqrt{3}i$ D $4-4\sqrt{3}i$ C $2-2\sqrt{3}i$ B $2+2\sqrt{3}i$ A $\frac{1}{2}$ \frac	$\sqrt{5}$	D $\sqrt{7}$	$ C \sqrt{21}$	B $\sqrt{29}$	Α		
z^4 فإن $z=4\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$ الطورة المثلثية (القطبية اللعدد واحد فإن مقياس الجذر الثاثث يساوي	الصورة الديكارتية للعدد $4\left(\cosrac{5\pi}{3}+i\sinrac{5\pi}{3} ight)$ هي						
	$8-8\sqrt{3}i$		C $2-2\sqrt{3}i$		Α '		
عند البجاد الجذور الرباعية للعدد واحد فإن مقياس الجذر الثالث يساوي	اِذا کان $z=4\left(\cosrac{\pi}{2}+i\sinrac{\pi}{2} ight)$ اِذا کان $z=4\left(\cosrac{\pi}{2}+i\sinrac{\pi}{2} ight)$ ا						
	1	D 32	С 16	В 256	A '		
	عند إيجاد الجذور الرباعية للعدد واحد فإن مقياس الجذر الثالث يساوي						
$-10+i$ D -10 C $10+i$ B 10 A $10+i$ P الاحداثيات الديكارتيه $(\sqrt{2},\sqrt{2})$ فإن الاحداثيات القطبية (r,θ) النقطة (r,θ) النقطة $(\sqrt{2},\sqrt{2})$ فإن الاحداثيات القطبية $(z,45^\circ)$ D $(\sqrt{2},45^\circ)$ C $(z,30^\circ)$ B $(\sqrt{2},30^\circ)$ A $(z,45^\circ)$ D $(\sqrt{2},45^\circ)$ C $(z,30^\circ)$ B $(\sqrt{2},30^\circ)$ A $(z,45^\circ)$ D $(z,$	4	D 3	с 2	B 1	A		
-10+i D -10 C $10+i$ B 10 A P P C D C							
(2,45°) $\frac{a}{b}$ $\frac{a}{$	-10 + i	D -10	C 10 + i	В 10			
$(2,45^{\circ})$ D $(\sqrt{2},45^{\circ})$ C $(2,30^{\circ})$ B $(\sqrt{2},30^{\circ})$ A $\frac{1}{2}$	P للنقطة $(r, heta)$	فإن الاحداثيات القطبيــــــــــــــــــــــــــــــــــــ	$\left(\sqrt{2},\sqrt{2} ight)$ الديكارتيه، الديكارتيه،	كان للنقطم P الاحداثيات	ا إذا ك		
السؤال الثاني: ضع علامة $$ امام العبارة الصحيحة وعلامة \times امام الخطأ () $(5,-120)$ الضورة المثلثية (القطبية النقطة $(5,240)$ تكافيء النقطة () $(5,-120)$ الصورة المثلثية (القطبية) للعدد المركب $a+bi$ هي $a+bi$ الصورة المثلثية (القطبية) للعدد المركب $a+bi$ هي $a+bi$ الصورة المثلثية () $()$	(0 1 7 0)	<u> </u>	(2, 220)				
() $(5,-120)$ تكافيء النقطة $(5,240)$ تكافيء النقطة $(5,-120)$ نظام الاحداثيات القطبية النقطة $(5,240)$ تكافيء النقطة $(5,240)$ الصورة المثلثية (القطبية) للعدد المركب $a+bi$ هي $a+bi$ هي $a+bi$ الصورة المثلثية (القطبية) للعدد $a+bi$ الصورة المثلثية ديموافر $(5,240)$ للعدد $a+bi$ هي $a+bi$ هي $a+bi$ هي $a+bi$ الصورة المثلثية ($a+bi$ عن $a+bi$ المركب $a+bi$ المرك	(2,45°)	£		,			
$cos heta + i sin heta$ هي $a + bi$ () () () $z^n = r^n (cos n\theta + i sin n\theta)$ من نظرية ديموافر $z^n = r^n (cos n\theta + i sin n\theta)$ من نظرية ديموافر $z^n = r^n (cos n\theta + i sin n\theta)$ () () $z = 4 \left(cos \frac{\pi}{2} + i sin \frac{\pi}{2}\right)$ () () () $\pm 1, \pm i$ هي $\pm 1, \pm i$ هي $\pm 1, \pm i$ هي $\pm 1, \pm i$ () ()		<u>ة × امام الخطا</u>	<u>م العبارة الصحيحة وعلامة</u>	<u> الثاني: ضع علامة √ اما</u>	<u>السؤال</u>		
() $\cos\theta+i\sin\theta$ هي $a+bi$ الصورة المثلثية (القطبية) للعدد المركب $a+bi$ هي $a+bi$ () () $z^n=r^n(\cos n\theta+i\sin n\theta)$ من نظرية ديموافر $z^n=r^n(\cos n\theta+i\sin n\theta)$ فإن $z=4\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$ () $z=4\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$ () الجذور الرباعية للعدد $z=1,\pm i$ هي $z=1,\pm i$	()	النقطة (5, –120)	نقطة (5,240) تكافيء ا	 نظام الاحداثبات القطبية ال	١) في		
$z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ فإن $z^n=r^n(\cos n heta+i\sin n heta)$ ($z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ فإن $z^n=r^n(\cos n heta+i\sin n heta)$ من نظرية ديموافر ($z^n=r^n(\cos n heta+i\sin n heta)$ فإن $z^n=r^n(\cos n heta+i\sin n heta)$ ($z^n=r^n(\cos n heta+i\sin n heta)$	· · · · · · · · · · · · · · · · · · ·						
() $z=4\left(cos\frac{\pi}{2}+isin\frac{\pi}{2} ight)$ () $\pm 1, \pm i$ هی $\pm 1, \pm i$ ه							
() $\pm 1, \pm i$ هی $\pm 1, \pm i$ ()							
		$Z = 4 \left(\frac{\cos \frac{1}{2} + i \sin \frac{1}{2}}{2} \right)$ إذا كان $Z = 4 \left(\frac{\cos \frac{1}{2} + i \sin \frac{1}{2}}{2} \right)$					
<u>السؤال الثالث:</u> أوجدي الصورة الديكارتية للنقطة (—2, 270°)	()		$\pm 1, \pm i$	ذور الرباعية للعدد 1 هي	ه) الج		
		(-2	ديكارتية للنقطة (°270,	<u>ى الثالث: أ</u> وجدي الصورة اا	<u>السؤاا</u> 		