تم تحميل هذا الملف من موقع المناهج السعودية

أسئلة تحصيلي للمتطابقات المثلثية وحل المعادلات

موقع المناهج ← المناهج السعودية ← الصف الثالث الثانوي ← رياضيات ← الفصل الثاني ← حلول ← الملف

تاريخ إضافة الملف على موقع المناهج: 30-12-2024 05:51:55

ملفات ا كتب للمعلم ا كتب للطالب ا اختبارات الكترونية ا اختبارات ا حلول ا عروض بوربوينت ا أوراق عمل منهج انجليزي ا ملخصات وتقارير ا مذكرات وبنوك ا الامتحان النهائي ا للمدرس

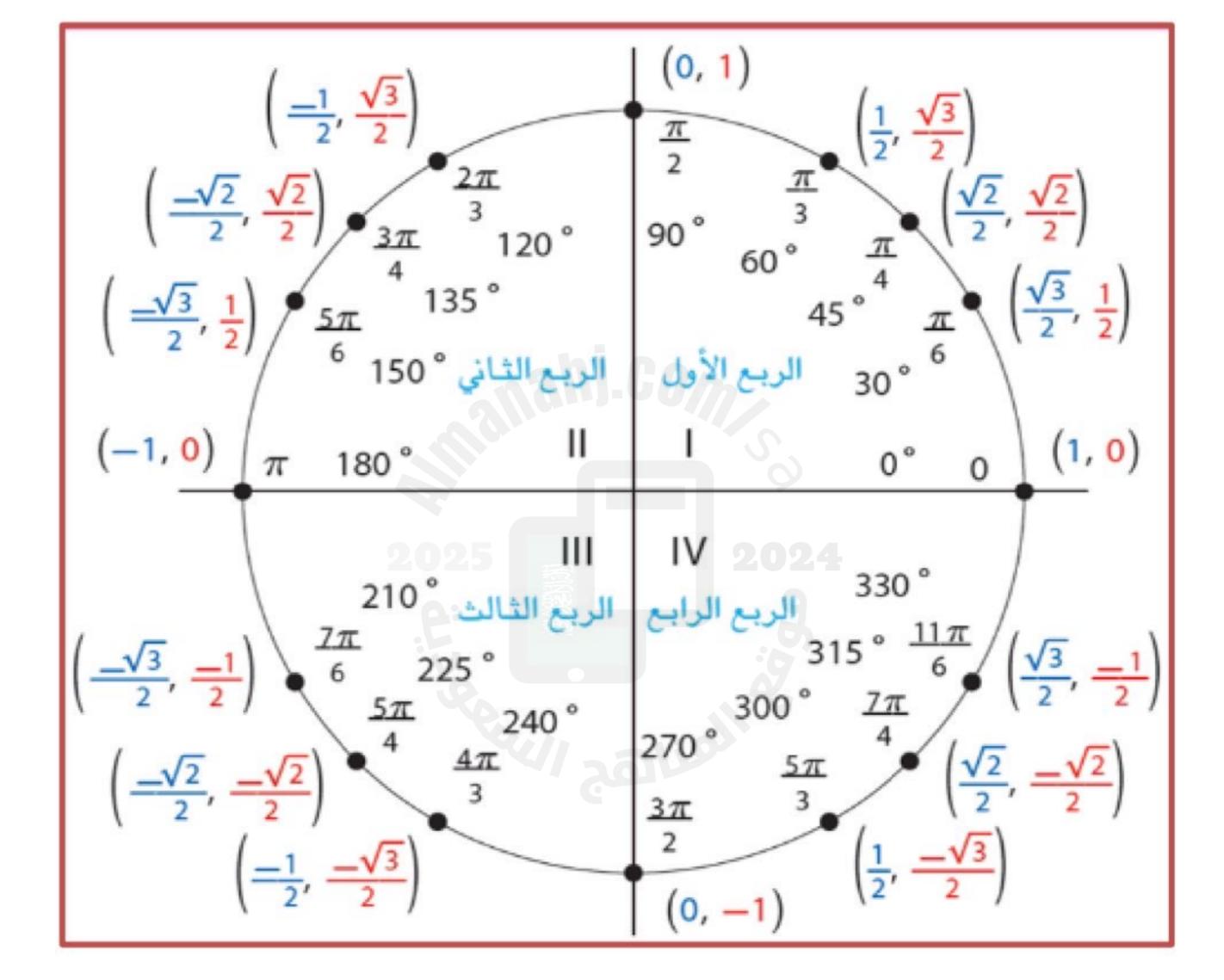
المزيد من مادة رياضيات:

التواصل الاجتماعي بحسب الصف الثالث الثانوي

صفحة المناهج السعودية على فيسببوك

الرياضيات

اللغة الانجليزية


اللغة العربية

التربية الاسلامية

المواد على تلغرام

المزيد من الملفات بحسب الصف الثالث الثانوي والمادة رياضيات في الفصل الثاني

المريد من المداه بالمريد المداه المريد المداه المريد المداه المريد المداه المريد المداه المدا	
أوراق عمل لفصل المتطابقات المثلثية مع الحل	1
نماذج اختبارات منتصف الفصل ودورية مع نماذج الإجابة علم الأرض والفضاء	2
عرض بوربوينت مميز لدرس القطوع المكافئة	3
حل اختبار منتصف الفصل المتطابقات المثلثية	4
اختبار منتصف الفصل المتطابقات المثلثية	5

 $\frac{\cos \theta}{\sin \theta} imes an heta}$ تكافئ....

 $\sin \theta \times \cos \theta$ **D**

 $\cot \theta$ **C**

 $\csc \theta$ **B**

 $\tan \theta$

(A)

 \dots العبارة: θ sin θ تكافئ $(1 - \cot \theta)$ sin θ

 $\sec \theta$ **D**

 $\cos^2\theta$ **©** $\sin\theta - \cos\theta$ **B** $\sin\theta\cos\theta$ **(A)**

..... العبارة $cot^2\theta \sin^2\theta$:تكافئ

 $cos^4\theta$ $cos^2\theta$

D

 $tan^2\theta$ **©**

 $\cos^2\theta$ **B**

 $sin^2\theta$ (A)

 $\sin \theta$ فأوجد $\cos \theta = \frac{1}{2}$ و $\cos \theta = \frac{1}{2}$ فأوجد أوجد أوجد

 $\frac{-1}{2}$ **D**

 $\frac{-\sqrt{3}}{2}$ ©

 $\frac{1}{2}$ (A)

 $\cos \theta$ فأوجد $\sin \theta = -\frac{1}{2}$ و $\sin \theta = -\frac{1}{2}$ فأوجد $\sin \theta = -\frac{1}{2}$

العبارة: cot θ · sin θ تكافئ.....

 $\csc \theta$ **D**

© $\cos \theta$

 $\sec \theta$ **B**

 $\sin \theta$ (A)

 $cos^2\theta + sin^2\theta$ ماقیمة

cos 20 **D**

©

0 **B**

 $\tan \theta$ فأوجد $\sin \theta = \frac{3}{5}$ و $\cos \theta = \frac{4}{5}$ فأوجد

D

©

lacksquare

 $\frac{4}{3}$ (A)

 $[\cos^2(\cot 75)] + [\sin^2(\cot 75)]$ ما قیمه

75 **D**

© 60

45 **B**

1 **A**

 $\frac{\cos^2\theta + \sin^2\theta}{\sin\theta}$ مالعبارة المكافئة ل /10

 $an oldsymbol{ heta}$

- $tan^2\theta$ **D** \mathbf{B} $\sec \theta$ **©** $\csc \theta$
 - /11

 $\tan \theta$ (A)

A

- $\frac{\sec \theta}{\csc \theta}$ تكافئ.....
- $\sec \theta$ **D** $\cot \theta$ **B ©**
 - tan heta ($rac{cos heta}{csc heta}$) العبارة ($rac{cos heta}{csc heta}$) العبارة
- $csc^2\theta$ **B** $cos\theta$ **D** $sin^2\theta$ (A) sinθ **©**
 - /13 $(1-\sin\theta)(1+\sin\theta)$
- $sin\theta$ \bigcirc $sin^2\theta$ (A) $cos\theta$ **D** $\cos^2\theta$ **B**
 - /14 x اذا كانت : x تمثل زاوية حادة و x حادة و x فأوجد قيمة
- 60° © 30° B 130° ©
- 40° (A)
- /15 $(1-\cos\theta)(1+\cos\theta)$ ما أبسط قيمة للمقدار:
- $cos^2\theta$ **B** $cos\theta$ **D** sinθ **©** $sin^2\theta$ (A)
 - $sec^2\theta tan^2\theta$: اوجد قیمة
 - **D** 0.5 **©**

0 **B**

1 **A**

1 B

خصيلي رياضيات

..... العبارة $csc^2 heta-cot^2 heta$ تكافئ:

 $\cot \theta$ ① $tan \theta$ ©

-1 A

 \dots العبارة: $(1-\sin^2\theta)\cos^2\theta$ تكافئ

 $\cot^2\theta$ ① $tan^2\theta$ ©

 $sin^4\theta$ (A) $cos^4\theta$ B

....العبارة $\sin^2 heta$ $\sin^2 heta$:تكافئ

 $tan^2\theta$ © $\sec \theta$ ①

 $\cos^2\theta \sin^2\theta$ B $\sin^2\theta - \cos^2\theta$ A

 $cot^2\theta(tan^2\theta-sin^2\theta)$ تكافئ $\cot^2\theta(tan^2\theta-sin^2\theta)$ تكافئ

 $-\sin^2\theta$ ① $\cos \theta$ ©

 $cos^2\theta$ B $sin^2\theta$ A

 $cot^2\theta(tan^2\theta + sin^2\theta)$ تكافئ /5

 $sin^2\theta$ ①

 $\cos^2\theta$ © $1 + \cos^2\theta$ B $1 + \sin^2\theta$ A

قيمة المحددة $\begin{vmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{vmatrix}$

 $2sin^2x$ $\cos 2x$ (C) **B**

0 (A)

 $\frac{sin\theta}{cot\theta \cdot sec\theta}$ تكافئ..... العبارة:

 $cos^2\theta$ B $\tan \theta$ ① $\cot \theta$

 $sin^2\theta$ (A)

 $24(csc^2\theta - cot^2\theta)$

12 D 24 © B $\cos \theta$ (A) $\sin \theta$

 $\sqrt{1-\sin^2\theta} = 9$

 $|\cos\theta + \sin\theta|$ ① $\sin \theta$ B (C) 3 $|\cos\theta|$ (A)

 $sec\theta \ csc\theta \ (1-sin^2\theta)$ تكافئ المتطابقة..... /10

 $\cot \theta$ ① $\tan \theta$ © $\sin \theta$ B $\cos \theta$ (A)

... حل المعادلة :
$$heta = \frac{1}{2}$$
 هو $heta = 0^\circ \leq heta \leq 360^\circ$, $\sin heta = \frac{1}{2}$ هو

120° أو °45° أو °100 أو °30° أو

60°

(A)

... على المعادلة:
$$0^\circ \leq heta \leq 360^\circ$$
 , $\cos heta = -rac{\sqrt{3}}{2}$: مو

30° B أو 210° © 210° أو 210° D لا يوجد لها حل

30° (A)

... حل المعادلة:
$$heta = 0^\circ \le heta \le 180^\circ$$
 , $3\cos^2 heta - 4\cos heta = 0$ هو ...

© 30° أو © 330° كا يوجد لها حل

90° B

30° (A)

 $\sin heta + \cos heta \, tan^2 \, heta = 0$: أي التالي ليس حلا للمعادلة $\theta = 0$

 2π ©

 $\frac{7\pi}{4}$ B

$$0 \leq heta \leq 2\pi$$
 , $tan \, heta = -1$ هو $heta = -1$ هو $heta = -1$

 $\frac{\pi}{4}$ ①

 $\frac{5\pi}{4}$ ©

 $\frac{3\pi}{2}$ B

 $\frac{7\pi}{4}$ (A)

$$oldsymbol{ heta} = \cdots$$
: إذا كان $rac{\pi}{2} \leq oldsymbol{ heta} \leq \pi$ حيث $sce~ oldsymbol{ heta} + 2 = oldsymbol{0}$ فإن

240° D

120° ©

90° B

60° (A)

$$tan\, heta-sec heta=0$$
 هو: $dan\, heta-sec$

 $\frac{\pi}{4}$ ①

 $\frac{\pi}{2}$ ©

 $\frac{\pi}{3}$ B

الايوجد حل

... إذا علمت أن: $0^\circ \leq heta \leq 0$ و $0^\circ = heta$ فإن القيمة الدقيقة ل $0^\circ \leq heta \leq 0$ تساوي ...

2 D

 $\frac{\sqrt{2}}{2}$ ©

1 B

0 (A)

... إذا علمنا أن: $m{0} < m{ heta} < m{9}$ و $m{0} = \frac{1}{2}$ و $m{0} < m{ heta} < m{9}$ أذا علمنا أن: $m{0} < m{ heta} < m{9}$ و كا

 $\frac{3}{4}$ ①

 $\frac{\sqrt{3}}{4}$ ©

 $\frac{\sqrt{2}}{2}$ B

 $\frac{\sqrt{3}}{2}$ (A)

... و $\cos 2 heta$ و $\cos heta=rac{3}{5}$ فإن قيمة $\cos 2 heta=360^\circ$ تساوي $\cos 2 heta=10^\circ$

 $-\frac{24}{25}$ ①

 $\frac{7}{25}$ ©

 $-\frac{7}{25}$ B

 $-\frac{24}{7}$ (A)

... إذا علمت أن: $m{ au} \leq m{ heta} \leq rac{3}{5}$ و $rac{\pi}{2} \leq m{ heta} \leq \pi$ أذا علمت أن: $m{ heta} \leq m{ heta} \leq m{ heta}$

 $-\frac{24}{25}$ ①

 $\frac{7}{25}$ ©

 $-\frac{7}{25}$ B

 $-\frac{24}{7}$ (

 $\sinrac{ heta}{2}$ اذا علمنا أن: $\mathbf{e} = \mathbf{e} = \mathbf{e}$ و $\mathbf{e} = \mathbf{e}$ کان قیمة $\frac{ heta}{2}$ تساوي \mathbf{e}

1 D

 $\frac{1}{2}$ ©

 $\frac{\sqrt{2}}{2}$ B

 $\frac{\sqrt{3}}{2}$ (A)

... قيمة
$$\cos(30^\circ - \theta)\cos(\theta) = \sin(30^\circ - \theta)\sin(\theta)$$
 تساوي /1

 $\frac{1}{2}$ ©

 $-\frac{1}{2}$ B

 $-\frac{\sqrt{3}}{2}$ (A)

 $cos^4 \theta - sin^4 \theta$ تكافئ.....

 $\sin 2\theta$ ①

 $\cos 2\theta$ ©

 $\sin 4\theta$ B

 $\cos 4\theta$ (A)

القيمة الدقيقة ل° sin 15 هي:

 $\frac{\sqrt{6}-\sqrt{2}}{2}$ ©

 $\frac{\sqrt{6}+\sqrt{2}}{2}$ B

 $\frac{\sqrt{6}+\sqrt{2}}{4}$ (A)

 $\cos 45^{\circ}\cos 15^{\circ}+\sin 45^{\circ}\sin 15^{\circ}$ القيمة الدقيقة ل

1 (D)

 $\frac{1}{2}$ © $\frac{\sqrt{2}}{2}$ B

 $\frac{\sqrt{3}}{2}$ (A)

5/ قيمة العبارة :. °3 sin 15° cos 45° + cos 15° sin 45° هي :

 $\sin(60^{\circ}+\theta)\cos\theta-\cos(60^{\circ}+\theta)\sin60^{\circ}$ ما القيمة الدقيقة للعبارة: $\sin(60^{\circ}+\theta)\sin60^{\circ}$

 $\frac{2}{\sqrt{3}}$ (D)

 $\frac{1}{2}$ ©

 $\frac{\sqrt{3}}{2}$ B

 $\sqrt{3}$ (A)

 $tan(90^{\circ} - \theta) = in \frac{4}{5}$ إذا كان:

(D)

 $\frac{\sqrt{2}}{3}$ ©

 $\frac{1}{2}$ B

 $\tan(90^\circ - \theta) = ian \frac{7}{8}$ إذا كان:

(D)

 $\frac{8}{7}$ ©

 $\frac{4}{3}$ B

A

 $\sin(\pi - \theta) = \sin \theta = 0.21$ إذا كان: $\sin \theta = 0.21$

0.79 D

0 ©

-0.21 B

0.21 A

 $cos(-\theta) \frac{tan\theta}{sec\theta}$ تكافئ: /11

- $\cot \theta$ ①
- sec θ ©
- B $\sin \theta$
- $\sin\theta\cos\theta$
- (A)

/12 ما الدالة الزوجية من الدوال التالية؟

- $f(x) = \csc x$ $f(x) = \tan x$ $f(x) = \sin x$ $f(x) = \cos x$

 $(sin \theta + cos \theta)^2$ العبارة /13

- $3\sin\theta\cos\theta$ \bigcirc $1+2\sin\theta\cos\theta$ \bigcirc $\cos^2\theta-\sin^2\theta$ \bigcirc $\sin^2\theta+\cos^2\theta$ \bigcirc

 $y^2 = 8 (x-5)$: ما اتجاه القطع المكافئ: $y^2 = 8 (x-5)$

D أعلى

أسفل

B يسار

🗚 يمين

 $y^2 = 4x$: ما إحداثيات بؤرة القطع المكافئ

(4,0) D

(0,4) ©

(1,0) B

(0,1) A

/3 x = -3 ما معادلة القطع المكافئ: الذي بؤرته (2, 5)، ودليله

 $(y-5)^{2} = 10(x-\frac{1}{2})$ $(y-5)^{2} = -10(x-\frac{1}{2})$ $(x+\frac{1}{2})^{2} = -10(y-5)$ $(x+\frac{1}{2})^{2} = -10(y-5)$

=-10(y-5)

 $x^2 = 3 (y - 2)$ ما اتجاه القطع المكافئ ($x^2 = 3 (y - 2)$ ما اتجاه القطع المكافئ ($x^2 = 3 (y - 2)$

أعلى

B يسار B أسفل

A يمي*ن*

5/ ما اتجاه القطع المكافئ الذي بؤرته (5,3)، ودليله 1 = y ؟

أعلى

© أسفل

B يسار

🗚 يمين

6/ ما اتجاه القطع المكافئ الذي رأسه (1,2)، ودليله 5 =y ؟

أعلى

© أسفل

B يسار

(A) يمين

 $(x-2)^2 = 8(y+2)$: ما إحداثيات رأس القطع المكافئ

(2, 2) D

(2, -2) C

(-2,2) B

(-2, -2) (A)

 $x^2 - 2x + y = 16$: ما معادلة محورتماثل القطع المكافئ

x = 17 ①

x=1 ©

x=-1 B

x = -17 (A)

طول الوتر البؤري للقطع المكافئ: $(y-5)^2=8(x-3)$ ؟

10 © وحدات

8 وحدات

©

3 A وحدات 3 وحدات

 $(y-4)^2 = -6(x+1)$ معادلة محور تماثل القطع المكافئ:

x = 4 D

x = 1 ©

y = 4 B y = 1 A

 $(x-2)^2 = (y+3)$: القطع المكافئ ($(x-2)^2 = (y+3)$ /11

(3, -2)) D

(2,-3) **©**

(-2, 3) B

(-3, 2) (A)

(4, -1) ما معادلة القطع المكافئ: الذي رأسه (0, 0)، ومحوره منطبق على محور y ويمر بالنقطة (2, -4)?

 $y^2 + 8x = 0$ ① $x^2 + 8y = 0$ ② $y^2 = 8x$ ® $x^2 = 8y$ A

 $x^2 = 8(y-8)$ ما اتجاه القطع المكافئ

 $(y-5)^2 = -6(x-2)$ طول الوتر البؤري للقطع المكافئ: $(y-5)^2 = -6(x-2)$

-6 D

 $\frac{6}{4}$ (A)

/14

أعلى

C أسفل

B يسار

(A) يمين

منحنى القطع المكافئ الذي معادلته $(x-2)^2$ منحنى القطع المكافئ الذي معادلته $(x-2)^2$ منحنى القطع المكافئ الذي معادلته

D رأسيا لأسفل

B أفقيا لليمين (C) رأسيا الأعلى

(A) أفقيا لليسار

/16 $(x-6)^2 = -4(y-15)$ معادلة الدليل للقطع المكافئ الذي معادلته

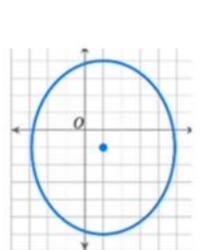
y = -16 ①

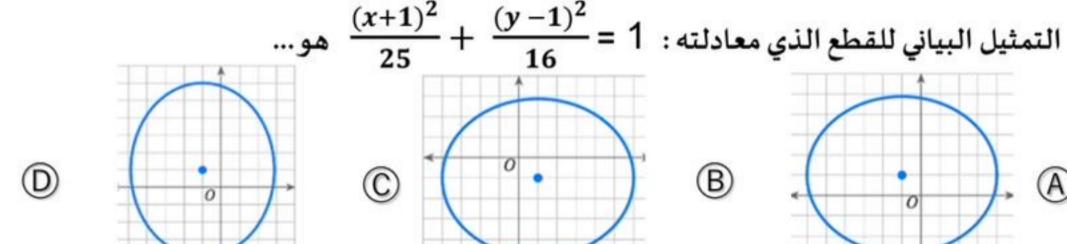
y = 16 © x = -16 B

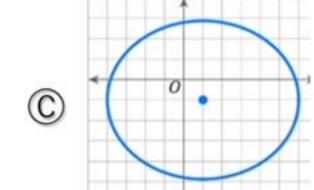
x = 16 (A)

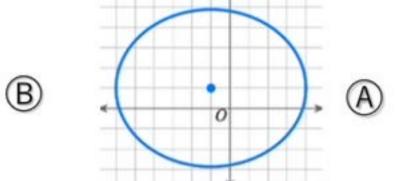
x=1 القطع الذي دليله x=1 ، والرأس (3, x=1) يكون مفتوحا لـ:

اليسار


اليمين


B الأسفل


(A) الأعلى


... في القطع الناقص: 1 =
$$\frac{(x-2)^2}{9} + \frac{(y-12)^2}{9}$$
 طول المحور الأكبر ...

- D 18 وحدة
- 12 @ حدة
- A وحدات B وحدات

$$\frac{(x-5)^2}{9} + \frac{(y-7)^2}{16} = 1$$
 هو ...

- (-7, -5) ①
- (-5, -7) ©
- (7,5) B
- (5,7) \bigcirc

$$\frac{(x-3)^2}{9} + \frac{(y-1)^2}{16} = 1$$
 ما الاختلاف المركزي للقطع الناقص الذي معادلته : 1

- e = 1.66 D
- e = 1.25 (C)
- e=1 (B)
- e = 0.66
- قطع ناقص المسافة بين بؤرتيه 10 وحدات وطول محوره الأكبر 16 وحدة فإن اختلافه المركزي e يساوي
- 10 D

6 C

B

- (A)
- القطع الذي اختلافه المركزي e = 0 عبارة عن

- D مربع
- © دائرة
- B قطع زائد
- A قطع مكافئ
- في القطع الناقص قيمة الاختلاف المركزي تنحصربين 0 و.....

2 D

1 (C)

-1 B

- -2 (A)
- $\frac{x^2}{9} + \frac{(y-1)^2}{25} = 1$ في القطع الناقص: $\frac{x^2}{9} + \frac{(y-1)^2}{25} = 1$

- 🛈 10 وحدات
- © 6 وحدات
- B 5 وحدات
- (A) 3 وحدات
- أى القطوع الناقصة التالية مركزه النقطة: (1,3)؟

$$\frac{(x+3)^2}{9} + \frac{(y-1)^2}{3} = 1$$

$$\frac{(x+3)^2}{9} + \frac{(y-1)^2}{3} = 1 \quad \textcircled{D} \qquad \frac{(x-3)^2}{9} + \frac{(y+1)^2}{6} = 1 \quad \textcircled{C} \qquad \frac{(x-1)^2}{9} + \frac{(y-3)^2}{6} = 1 \quad \textcircled{B} \qquad \frac{(x-3)^2}{9} + \frac{(y-1)^2}{6} = 1 \quad \textcircled{A}$$

$$\frac{(x-1)^2}{9} + \frac{(y-3)^2}{6} = 1$$

$$\bigcirc$$
 $(x-3)^{\frac{1}{2}}$

$$\frac{(x-3)^2}{9} + \frac{(y-1)^2}{6} = 1$$

 $\frac{(x+3)^2}{16} + \frac{(y-6)^2}{9} = 1$: إحداثيا الرأسان المر افقان للقطع الناقص: /10

- $(6 \pm 3, -3)$ ①

- $(6,-3\pm3)$ © $(6\pm4,-3)$ B $(6,-3\pm4)$ A

 $\frac{(x-1)^2}{3} + \frac{(y-5)^2}{2} = 1$ هو... مركز القطع الناقص الذي معادلته: 1 /11

- (1,-5) ①

- (-1,5) © (1,5) B (-1,-5) A

 $(x-2)^2+(y+1)^2=4$ ما مركز الدائرة التي معادلتها: $(x-2)^2+(y+1)^2=4$

- (2,1) **D**

- (2,-1) © (-2,1) B (-2,-1) A

إذا كان حاصل الضرب الداخلي لمتجهين يساوي صفر فإن الزاوية بينهما تكون

- D مستقیمة
- شفرجة
- B)
- A

.... إذا كان $u=\langle -3,6
angle$, $v=\langle 2,-5
angle$, $w=\langle 8,4
angle$, $u=\langle -2,7
angle$ أذا كان $v=\langle 2,-5
angle$, $v=\langle 2,-5
angle$, $v=\langle 2,-5
angle$

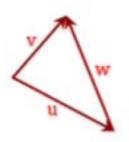
- V,c ①
- w,u ©
- V, w B
- V,u 🛞

u=ai+2j , v=3i+6j متعامدين a=ai+2j , a=ai+2j , a=ai+2j , a=ai+2j , a=ai+2j

4 D

- 3 (C)
- **−3** ®
- -4 A

 $v=\langle 1,-2 \rangle$, $v=\langle 3,k \rangle$ اذا كان المتجهان $v=\langle 1,-2 \rangle$, $v=\langle 3,k \rangle$ باذا كان المتجهان


- (C)
- B
- -2 \bigcirc

ما قياس الزاوية بين المتجهين , $\langle 0,2 \rangle$ $\langle 8,3 \rangle$ ؟

- 135° D
- 120° ©
- 45° B
- 30°

u ,v وذا كان $\langle 4$, $v = \langle 0, 4 \rangle$ ولما قياس الزاوية بين المتجهين v ؟ $u = \langle 0, 4 \rangle$ إذا كانv

- 240° ①
- 120° ©
- 60° B
- 30° \bigcirc

المتجه الذي يمثل محصلة المتجهين الآخرين في الشكل هو:....

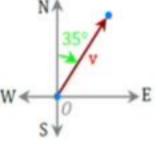
W+V ①

 $W \odot$

u B

(A)

11/ إذا كان اتجاه متجه °120 فإن قياس زاوية اتجاهه الربعي


N 60° E

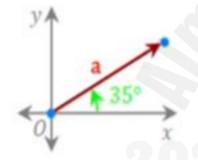
N 60° W ©

N 30° E B

N 30° W (A)

12/ زاوية الاتجاه الربعي للمتجه في الشكل

N 35° W ①

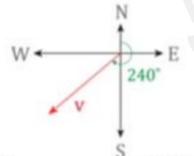

W 55° S ©

N 55° E B

N 35° E

A

13/ قياس زاوية الاتجاه الحقيقي للمتجه في الشكل


090°

055° ©

035° B

35°

في الشكل زاوية الاتجاه الربعي للمتجه هو:

S 240° W

W 60° S

B E 60° S

S 60° W

(A)

15/ يتحرك خالد بسرعة 4 km/h باتجاه مسجدالحي فيقطع مسافة 550 m جنوبا ثم يواصل المشي 200 m شرقا فيصل إلى المسجد بعد 15 دقيقة ما الكمية القياسية؟

15 D دقیقة

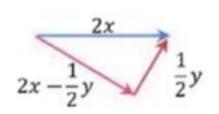
3 km/h B باتجاه المسجد 350 m

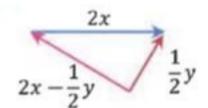
200 m شرقا

(A)

16/ عند تحليل المتجه إلى مركبتيه ، فإن مقدار المتجه الأساسي يساوي

 (A) قسمة إحدى مركبتيه
 (B) تزيد قيمة مركبتيه
 © حاصل ضرب مركبتيه © كتوسط قيمة مركبتيه

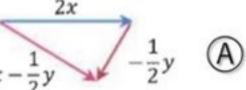

الموضوع: 1-5: تابع مقدمة في المتجهات


خصيلي رياضيات

أى الكميات التالية كمية متجهة؟

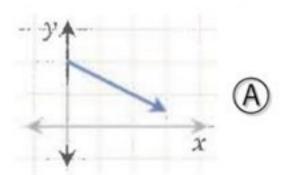
- الكتلة
- (C) الإزاحة
- B المسافة
- (A) الزمن
- اذا كان المتجه a = (3,5) يوازي المتجه b وعكس اتجاهه، فإن a = (3,5)
- $\left(\frac{1}{3},\frac{1}{5}\right)$ ©
- ⟨**0**,**3**⟩ ®
 - $\langle -3, -5 \rangle$ (A)

 $x \to \sqrt{y}$ إذا كان الشكل يمثل المتجهين x, فأي التالي يمثل المشكل يمثل المتجهين x



أى المتجهات التالية له مركبة أفقية أكبر؟

- /4 في الشكل المجاور إذا كانت قيمة المتجه A تساوي 8 ، وقيمة المتجه B تساوي 6 ، فما قيمة متجه المحصلة ؟
- **16** ①


- **10** (C)
- **14** B

2 A

(D)

B

- تسير باخرة بزاوية قيمتها °60 مع الأفقي وبسرعة 100 km/h ، ما مقدار المركبة الأفقية لسرعة الباخرة؟
- $200\sqrt{3} \text{ km/h}$
- 200 km/h (C)
- 50 √3 km/h B
- 50 km / h (A)
- إذا كان قياس زاوية الاتجاه الحقيقي لمتجه °155 فإن اتجاهه الربعي هو...
- (D) N35°E
- W55°S ©
- S25°E B
- N55°E (A)
- المركبة الرأسية لمتجه طوله 5in , وقياس زاوية اتجاهه °32

- 31.88 i*N* ①
- 2.79 iN ©
- 2.65 iN B
- 4.24 iN (A)
- إذا كان اتجاه متجه °180 فإن قياس زاوية اتجاهه الحقيقي....

- (D) 300°
- 270° ©
- 180° B
- 90° (A)

...: في القطع الزائد
$$1 = \frac{x^2}{9} - \frac{y^2}{16}$$
 طول المحور القاطع

8 وحدة

A وحدات B وحدات 6 C وحدة

....... مركز القطع الزائد
$$\frac{(y-4)^2}{36} - \frac{(x+5)^2}{36} = 1$$
 مركز القطع الزائد

(5,-4) D

(-5,4) © (4,5) B (5,4) A

...:
$$\frac{(x-5)^2}{9} - \frac{(y-7)^2}{16} = 1$$
 هو:...

y=7 ①

$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$
 ما معادلة خطي التقارب للقطع الزائد 1

أي القطوع الزائدة التالية طول محوره المر افق 10 وحدات؟

$$\frac{y^2}{10} - \frac{(x-1)^2}{5} = 1 \quad \textcircled{D} \quad \frac{y^2}{9} - \frac{(x-1)^2}{10} = 1 \quad \textcircled{C} \quad \frac{y^2}{25} - \frac{(x-1)^2}{9} = 1 \quad \textcircled{B} \quad \frac{y^2}{9} - \frac{(x-1)^2}{25} = 1 \quad \textcircled{A}$$

$$\frac{(y-1)^2}{9} - \frac{(x+2)^2}{16} = 1$$
: ما معادلة خطي التقارب للقطع الزائد: 1

 $(y-1) = (y-1) = (y-1) = (y-1) = \pm \frac{4}{3}(x+2)$ © $\pm \frac{16}{9}(x+2)$ B $\pm \frac{9}{16}(x+2)$ A

... الاختلاف المركزي للقطع الزائد: 1 =
$$\left(\frac{x}{3} - \frac{y}{2}\right) \left(\frac{x}{3} + \frac{y}{2}\right) = 1$$
 يساوي ...

 $\frac{2}{\sqrt{31}}$

 $\frac{2}{\sqrt{13}}$ ©

 $\frac{\sqrt{31}}{2}$ B

A(3,4,-4) , B(-5,2,1) (1, AB اذا كان: AB اخالى يمثل التالى يمثل

 $\langle -8, -2, -3 \rangle$ \bigcirc

 $\langle \mathbf{8}, \mathbf{2}, -\mathbf{3} \rangle$ ©

 $\langle 8, -2, 3 \rangle$ \bigcirc \bigcirc $\langle -8, -2, 5 \rangle$ \bigcirc

AB هو إذا كان: (2, 6, 2) (3, 6, 2) هإن متجه الوحدة الذي له اتجاه (3, 6, 2) هو

 $\left\langle \frac{-4}{5}, \frac{-3}{5}, \mathbf{0} \right\rangle$

 $\langle -1,3,2 \rangle$ ©

 $\langle 2, \frac{3}{2}, 0 \rangle$ B

 $\left\langle \frac{4}{5}, \frac{3}{5}, \mathbf{0} \right\rangle$ (A)

 $a=\langle 2,4,-3 \rangle$ تساوي $a=\langle 2,4,-3 \rangle$ تساوي $a=\langle 2,4,-3 \rangle$ تساوي

(9,15,-5) ①

 $\langle 9,15,-7\rangle$ © $\langle 4,8,-6\rangle$ B $\langle -1,1,5\rangle$ A

 $w=5i+3j-\sqrt{2}k$ يساوي $w=5i+3j-\sqrt{2}$

 $4\sqrt{2}$ ①

 $8 + \sqrt{2}$ ©

6 B

 $8 - \sqrt{2}$ (A)

 $v = \langle 2, -3, 6 \rangle$ يساوي.... $v = \langle 2, -3, 6 \rangle$ يساوي....

 $\left\langle \frac{1}{2}, \frac{-1}{3}, \frac{1}{6} \right\rangle$ \bigcirc

 $\left\langle \frac{2}{7}, \frac{-3}{7}, \frac{6}{7} \right\rangle$ © $\left\langle \frac{2\sqrt{31}}{31}, \frac{3\sqrt{31}}{31}, \frac{6\sqrt{31}}{31} \right\rangle$ B

(1,1,1) (A)

..... إذا كانت (3,0,6) نقطة المنتصف بين النقطتين (3,0,1) النقطة المنتصف بين النقطتين (3,0,1) فإن (3,0,1)

12 D

8 ©

6 B

(A) 2

? إذا كان: $\langle b, 1, 2, 2, 1, v = \langle -2, -1, 3 \rangle$ التي تجعل المتجهين u,v متعامدين الار كان: v,v متعامدين

6 D

- 3 (C)
- −**3** ®
- -6 A

 $egin{array}{c|ccc} 1 & j & k \ 1 & -2 & 0 \ 2 & 0 & -1 \ \end{array}$: الم

- -2i-j-4k ①
 - - 2i j + 4k © -2i + j 4k B
- 2i + j + 4k (A)

u imes v يساوي $u imes u = \langle 1 \, , -2 \, , 0
angle, v = \langle 2 \, , 0 \, , -1
angle$ يساوي u imes v

- $\langle 1, -1, -2 \rangle$ \bigcirc $\langle -1, 1, 2 \rangle$

- \bigcirc $\langle 1,1,-2 \rangle$ \bigcirc $\langle -1,-1,2 \rangle$ \bigcirc

v=4i+3j+3k و u=7i+2j-2k ضلعان متجاوران ، ما مساحته بالوحدات u=7i+2j-2kالمربعة؟

- $\sqrt{186}$ (C)
- 21 B

13 A

 $a=\langle \sqrt{2},2,0
angle, b=\langle \sqrt{3},0,1
angle$ يساوي $a=\langle \sqrt{2},2,0
angle, b=\langle \sqrt{3},0,1
angle$ يساوي

- 90° D
- 60° ©
- 45° B
- 30° (A)

w=4i+3j-k و v=2i-k أي المتجهات التالية عمودي على المتجهين وv=2i-k

- $\langle -3, -6, 6 \rangle$ ① $\langle 3, -2, 6 \rangle$ ② $\langle -3, 6, -6 \rangle$ B
- $\langle -3, 2, 6 \rangle$ (A)